Какие свойства у равнобедренной трапеции

В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях являются смежными (в сумме дающие 180º).
Специальные случаи[править | править код]
Прямоугольники и квадраты обычно рассматриваются как специальные случаи равнобедренных трапеций, хотя в некоторых источниках они таковыми не считаются.
Другим специальным случаем является трапеция с 3 равными сторонами. В англоязычной литературе её называют trilateral trapezoid (трёхсторонняя трапеция) [1], trisosceles trapezoid (триравнобедренная трапеция) [2] или, реже, symtra [3]. Такую трапецию можно рассматривать как отсечение 4 последовательных вершин от правильного многоугольника, имеющего 5 или более сторон.
Самопересечения[править | править код]
Любой несамопересекающийся четырёхугольник с единственной осью симметрии должен быть либо равнобедренной трапецией, либо дельтоидом[3]. Однако, если разрешить самопересечение, множество симметричных четырёхугольников нужно расширить включением в него самопересекающиеся равнобедренные трапеции, в которых пересекающиеся стороны равны, а две другие стороны параллельны, и антипараллелограммы, у которых противоположные стороны имеют равные длины.
У любого антипараллелограмма выпуклая оболочка является равнобедренной трапецией и антипараллелограмм может быть получен из диагоналей равнобедренной трапеции[4].
Описания[править | править код]
Если четырёхугольник является трапецией, не обязательно проверять, равны ли боковые стороны (и недостаточно, поскольку ромбы, являющиеся специальными случаями трапеций с боковыми сторонами равной длины, но у него нет осевой симметрии через середины оснований). Любое из следующих свойств выделяет равнобедренную трапецию от других трапеций:
- Диагонали имеют одинаковую длину.
- Углы при основании равны.
- Отрезок, соединяющий середины параллельных сторон, перпендикулярен им.
- Противоположные углы дополнительны (до 180º), из чего, в свою очередь, следует, что равнобедренные трапеции являются вписанными четырёхугольниками.
- Диагонали делятся точкой пересечения на попарно равные отрезки. В терминах рисунка ниже, AE = DE, BE = CE (и AE ≠ CE, если хотят исключить прямоугольники).
Если прямоугольники включаются в класс трапеций, то можно определить равнобедренную трапецию как «вписанный четырёхугольник с равными диагоналями» [5], как «вписанный четырёхугольник с парой параллельных сторон», или как «выпуклый четырёхугольник с осью симметрии, проходящей через середины противоположных сторон».
Углы[править | править код]
В равнобедренной трапеции углы при основаниях попарно равны. На рисунке ниже углы ∠ABC и ∠DCB являются одинаковыми тупыми углами, а углы ∠BAD и ∠CDA являются одинаковыми острыми углами.
Поскольку прямые AD и BC параллельны, углы, принадлежащие противоположным основаниям, являются дополнительными, то есть ∠ABC + ∠BAD = 180°.
Диагонали и высота[править | править код]
Другая равнобедренная трапеция.
Диагонали равнобедренной трапеции равны. То есть любая равнобедренная трапеция является равнодиагональным четырёхугольником. Однако диагонали равнобедренной трапеции делятся в одной и той же пропорции. На рисунке диагонали AC и BD имеют одинаковую длину (AC = BD) и делят друг друга на отрезки той же длины (AE = DE и BE = CE).
Отношение, в котором делятся диагонали, равно отношению длин параллельных сторон, то есть
Длина каждой диагонали, согласно теореме Птолемея, задаётся формулой
,
где a и b — длины параллельных сторон AD и BC, а c — длина каждой боковой стороны AB и CD.
Высота, согласно теореме Пифагора, задаётся формулой
Расстояние от точки E до основания AD задаётся формулой
,
где a и b — длины оснований AD и BC, а h — высота трапеции.
Площадь[править | править код]
Площадь равнобедренной (а также любой) трапеции равна половине произведения суммы оснований на высоту. На рисунке, если мы примем AD = a, BC = b, а высота h равна длине отрезка между прямыми AD и BC (перпендикулярного им), то площадь K задаётся формулой:
Если вместо высоты трапеции известны длины боковых сторон AB =CD = c, то площадь можно вычислить по формуле Брахмагупты площади вписанных четырёхугольников. Равенство двух боковых сторон упрощает формулу до
где — полупериметр трапеции. Эта формула аналогична формуле Герона вычисления площади треугольника. Эту же формулу можно переписать в виде
Радиус описанной окружности[править | править код]
Радиус описанной окружности задаётся формулой[6]
Для прямоугольника, в котором a = b, формула упрощается до .
См. также[править | править код]
- Равнобедренная описанная трапеция
Примечания[править | править код]
Литература[править | править код]
- George Bruce Halsted. Elementary Synthetic Geometry. — J. Wiley & sons, 1896..
- William Dwight Whitney, Benjamin Eli Smith. The Century Dictionary and Cyclopedia. — The Century co., 1911..
Ссылки[править | править код]
- Some engineering formulas involving isosceles trapezoids
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 января 2020;
проверки требуют 10 правок.
Трапе́ция (от др.-греч. τραπέζιον — «столик» от τράπεζα — «стол») — выпуклый четырёхугольник, у которого две стороны параллельны. Часто в определение трапеции добавляют условие, что две другие стороны должны быть не параллельны[1]. Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.
Варианты определения[править | править код]
Существует и другое определение трапеции.
Трапеция — это выпуклый четырёхугольник, у которого две стороны параллельны[2][3]. Согласно этому определению, параллелограмм и прямоугольник — частные случаи трапеции. Однако при использовании такого определения большинство признаков и свойств равнобедренной трапеции перестают быть верными (так как параллелограмм становится её частным случаем). Приведённые в разделе Общие свойства формулы верны для обоих определений трапеции.
Связанные определения[править | править код]
Элементы трапеции[править | править код]
Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой
- Параллельные противоположные стороны называются основаниями трапеции.
- Две другие стороны называются боковыми сторонами.
- Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
- Углом при основании трапеции называется ее внутренний угол, образованный основанием с боковой стороной.
Виды трапеций[править | править код]
- Трапеция, у которой боковые стороны равны, называется равнобедренной трапецией (реже равнобокой[4] или равнобочной[5] трапецией).
- Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.
Равнобедренная трапеция
Прямоугольная трапеция
Свойства[править | править код]
Основной источник: [6]
- Средняя линия трапеции параллельна основаниям и равна их полусумме.[7]
- Отрезок, соединяющий середины диагоналей трапеции, равен половине разности оснований и лежит на средней линии.
- Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен среднему гармоническому длин оснований трапеции.
- В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.
- Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
- Если сумма углов при одном из оснований трапеции равна 90°, то продолжения боковых сторон пересекаются под прямым углом, а отрезок, соединяющий середины оснований, равен полуразности оснований.
- Диагонали трапеции делят ее на 4 треугольника. Два из них, прилежащие к основаниям, подобны. Два других, прилежащие к боковым сторонам, имеют одинаковую площадь.
- Если отношение оснований равно , то отношение площадей треугольников, прилежащих к основаниям, равно .
- Высота трапеции определяется формулой:
где — большее основание, — меньшее основание, и — боковые стороны.
Их можно выразить в явном виде:
Если, наоборот, известны боковые стороны и диагонали, то основания выражаются формулами:
а при известных основаниях и диагоналях боковые стороны следующие:
Если же известна высота , то
- Прямая Гаусса для трапеции совпадает с ее средней линией.
Равнобедренная трапеция[править | править код]
Трапеция является равнобедренной тогда и только тогда, когда выполнено любое из следующих эквивалентных условий:
- прямая, которая проходит через середины оснований, перпендикулярна основаниям (то есть является осью симметрии трапеции);
- высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований;
- углы при любом основании равны;
- сумма противоположных углов равна 180°;
- длины диагоналей равны;
- вокруг этой трапеции можно описать окружность;
- вершинами этой трапеции также являются вершины некоторого антипараллелограмма.
Кроме того
- если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Вписанная и описанная окружность[править | править код]
- Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований).
- В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.
- Если трапецию можно вписать в окружность — то она равнобедренная.
- Радиус описанной окружности равнобедренной трапеции:[источник не указан 1827 дней]
где — боковая сторона, — бо́льшее основание, — меньшее основание, — диагонали равнобедренной трапеции.
- Если , то в равнобедренную трапецию можно вписать окружность радиуса
Площадь[править | править код]
Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников.
Примечание: Приведённые выше две формулы эквивалентны, так как полусумма оснований равняется средней линии трапеции:
или
- Средняя линия разбивает фигуру на две трапеции, площади которых соотносятся как[8]
- Площадь равнобедренной трапеции:
где — боковая сторона, — бо́льшее основание, — меньшее основание, — угол между бо́льшим основанием и боковой стороной[9].
- Площадь равнобедренной трапеции через её стороны
История[править | править код]
Слово «трапеция» происходит от греческого слова др.-греч. τραπέζιον «столик» (уменьш. от τράπεζα «стол»), означающего стол. В русском языке от этого слова происходит слово «трапеза» (еда).
Примечания[править | править код]
[{Large{text{Произвольная трапеция}}}]
Определения
Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.
Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.
Теоремы: свойства трапеции
1) Сумма углов при боковой стороне равна (180^circ).
2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.
Доказательство
1) Т.к. (ADparallel BC), то углы (angle BAD) и (angle ABC) – односторонние при этих прямых и секущей (AB), следовательно, (angle
BAD
+angle ABC=180^circ).
2) Т.к. (ADparallel BC) и (BD) – секущая, то (angle DBC=angle
BDA) как накрест лежащие.
Также (angle BOC=angle AOD) как вертикальные.
Следовательно, по двум углам (triangle BOC sim triangle AOD).
Докажем, что (S_{triangle AOB}=S_{triangle COD}). Пусть (h) – высота трапеции. Тогда (S_{triangle ABD}=frac12cdot hcdot
AD=S_{triangle ACD}). Тогда: [S_{triangle AOB}=S_{triangle ABD}-S_{triangle AOD}=S_{triangle ACD}-S_{triangle AOD}=S_{triangle
COD}]
Определение
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Теорема
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем параллельность.
Проведем через точку (M) прямую (MN’parallel AD) ((N’in CD)). Тогда по теореме Фалеса (т.к. (MN’parallel ADparallel BC, AM=MB)) точка (N’) — середина отрезка (CD). Значит, точки (N) и (N’) совпадут.
2) Докажем формулу.
Проведем (BB’perp AD, CC’perp AD). Пусть (BB’cap MN=M’, CC’cap
MN=N’).
Тогда по теореме Фалеса (M’) и (N’) — середины отрезков (BB’) и (CC’) соответственно. Значит, (MM’) – средняя линия (triangle
ABB’), (NN’) — средняя линия (triangle DCC’). Поэтому: [MM’=dfrac12 AB’, quad NN’=dfrac12 DC’]
Т.к. (MNparallel ADparallel BC) и (BB’, CC’perp AD), то (B’M’N’C’) и (BM’N’C) – прямоугольники. По теореме Фалеса из (MNparallel AD) и (AM=MB) следует, что (B’M’=M’B). Значит, (B’M’N’C’) и (BM’N’C) – равные прямоугольники, следовательно, (M’N’=B’C’=BC).
Таким образом:
[MN=MM’+M’N’+N’N=dfrac12 AB’+B’C’+dfrac12 C’D=] [=dfrac12 left(AB’+B’C’+BC+C’Dright)=dfrac12left(AD+BCright)]
Теорема: свойство произвольной трапеции
Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем, что точки (P), (N) и (M) лежат на одной прямой.
Проведем прямую (PN) ((P) – точка пересечения продолжений боковых сторон, (N) – середина (BC)). Пусть она пересечет сторону (AD) в точке (M). Докажем, что (M) – середина (AD).
Рассмотрим (triangle BPN) и (triangle APM). Они подобны по двум углам ((angle APM) – общий, (angle PAM=angle PBN) как соответственные при (ADparallel BC) и (AB) секущей). Значит: [dfrac{BN}{AM}=dfrac{PN}{PM}]
Рассмотрим (triangle CPN) и (triangle DPM). Они подобны по двум углам ((angle DPM) – общий, (angle PDM=angle PCN) как соответственные при (ADparallel BC) и (CD) секущей). Значит: [dfrac{CN}{DM}=dfrac{PN}{PM}]
Отсюда (dfrac{BN}{AM}=dfrac{CN}{DM}). Но (BN=NC), следовательно, (AM=DM).
2) Докажем, что точки (N, O, M) лежат на одной прямой.
Пусть (N) – середина (BC), (O) – точка пересечения диагоналей. Проведем прямую (NO), она пересечет сторону (AD) в точке (M). Докажем, что (M) – середина (AD).
(triangle BNOsim triangle DMO) по двум углам ((angle OBN=angle
ODM) как накрест лежащие при (BCparallel AD) и (BD) секущей; (angle BON=angle DOM) как вертикальные). Значит: [dfrac{BN}{MD}=dfrac{ON}{OM}]
Аналогично (triangle CONsim triangle AOM). Значит: [dfrac{CN}{MA}=dfrac{ON}{OM}]
Отсюда (dfrac{BN}{MD}=dfrac{CN}{MA}). Но (BN=CN), следовательно, (AM=MD).
[{Large{text{Равнобедренная трапеция}}}]
Определения
Трапеция называется прямоугольной, если один из ее углов – прямой.
Трапеция называется равнобедренной, если ее боковые стороны равны.
Теоремы: свойства равнобедренной трапеции
1) У равнобедренной трапеции углы при основании равны.
2) Диагонали равнобедренной трапеции равны.
3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.
Доказательство
1) Рассмотрим равнобедренную трапецию (ABCD).
Из вершин (B) и (C) опустим на сторону (AD) перпендикуляры (BM) и (CN) соответственно. Так как (BMperp AD) и (CNperp AD), то (BMparallel CN); (ADparallel BC), тогда (MBCN) – параллелограмм, следовательно, (BM = CN).
Рассмотрим прямоугольные треугольники (ABM) и (CDN). Так как у них равны гипотенузы и катет (BM) равен катету (CN), то эти треугольники равны, следовательно, (angle DAB = angle CDA).
2)
Т.к. (AB=CD, angle A=angle D, AD) – общая, то по первому признаку (triangle ABD=triangle ACD). Следовательно, (AC=BD).
3) Т.к. (triangle ABD=triangle ACD), то (angle BDA=angle CAD). Следовательно, треугольник (triangle AOD) – равнобедренный. Аналогично доказывается, что и (triangle BOC) – равнобедренный.
Теоремы: признаки равнобедренной трапеции
1) Если у трапеции углы при основании равны, то она равнобедренная.
2) Если у трапеции диагонали равны, то она равнобедренная.
Доказательство
Рассмотрим трапецию (ABCD), такую что (angle A = angle D).
Достроим трапецию до треугольника (AED) как показано на рисунке. Так как (angle 1 = angle 2), то треугольник (AED) равнобедренный и (AE
= ED). Углы (1) и (3) равны как соответственные при параллельных прямых (AD) и (BC) и секущей (AB). Аналогично равны углы (2) и (4), но (angle 1 = angle 2), тогда (angle 3 = angle 1 = angle 2 =
angle 4), следовательно, треугольник (BEC) тоже равнобедренный и (BE = EC).
В итоге (AB = AE — BE = DE — CE = CD), то есть (AB = CD), что и требовалось доказать.
2) Пусть (AC=BD). Т.к. (triangle AODsim triangle BOC), то обозначим их коэффициент подобия за (k). Тогда если (BO=x), то (OD=kx). Аналогично (CO=y Rightarrow AO=ky).
Т.к. (AC=BD), то (x+kx=y+ky Rightarrow x=y). Значит (triangle AOD) – равнобедренный и (angle OAD=angle ODA).
Таким образом, по первому признаку (triangle ABD=triangle ACD) ((AC=BD, angle OAD=angle ODA, AD) – общая). Значит, (AB=CD), чтд.
Основные определения и свойства трапеций
Тип утверждения | Фигура | Рисунок | Формулировка |
Определение | Трапеция | ![]() | Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны. Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции |
Определение | Диагонали трапеции | ![]() | Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции |
Определение | Высота трапеции | ![]() | Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение |
Свойство | Точка пересечения диагоналей | ![]() | Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой Более подробно об этом свойстве |
Определение | Средняя линия трапеции | ![]() | Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции |
Свойство | Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме Посмотреть доказательство | ||
Свойство | Биссектрисы углов при боковой стороне трапеции | ![]() | Биссектрисы углов при боковой стороне трапеции перпендикулярны |
Определение: трапеция | |
![]() | Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны. Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции |
Определение: диагонали трапеции | |
![]() | Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции |
Определение: высота трапеции | |
![]() | Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение |
Свойство: точка пересечения диагоналей | |
![]() | Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой Более подробно об этом свойстве |
Определение: средняя линия трапеции | |
![]() | Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции |
Свойство: средняя линия трапеции | |
![]() | Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме Посмотреть доказательство |
Свойство: биссектрисы углов при боковой стороне трапеции | |
![]() | Биссектрисы углов при боковой стороне трапеции перпендикулярны |
Трапеция |
![]() Определение: Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны. Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции |
Диагонали трапеции |
![]() Определение: Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции |
Высота трапеции |
![]() Определение: Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение |
Точка пересечения диагоналей |
![]() Свойство: Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой Более подробно об этом свойстве |
Средняя линия трапеции |
![]() Определение: Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции Свойство: Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме Посмотреть доказательство |
Биссектрисы углов при боковой стороне трапеции |
![]() Свойство: Биссектрисы углов при боковой стороне трапеции перпендикулярны |
Подробнее со свойствами средней линии трапеции можно ознакомиться в разделе нашего справочника «Средняя линия трапеции».
В разделе нашего справочника «Типы четырёхугольников» представлена схема классификации трапеций. В том же разделе представлена таблица, в которой описаны всевозможные типы трапеций.
Свойства и признаки равнобедренных трапеций
Тип утверждения | Фигура | Рисунок | Формулировка |
Определение | Равнобедренная трапеция | ![]() | Равнобедренной трапецией называют трапецию, у которой боковые стороны равны. |
Свойство | Равенство углов при основании | ![]() | Если трапеция является равнобедренной, то углы при каждом из её оснований равны. |
Признак | Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной. | ||
Свойство | Равенство диагоналей | ![]() | Если трапеция является равнобедренной, то её диагонали равны. |
Признак | Если у трапеции диагонали равны, то она является равнобедренной | ||
Свойство | Углы, которые диагонали образуют с основаниями | ![]() | Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований. |
Признак | Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной. | ||
Свойство | Описанная окружность | ![]() | Если трапеция является равнобедренной, то около неё можно описать окружность. |
Признак | Если около трапеции можно описать окружность, то она является равнобедренной. | ||
Свойство | Высоты трапеции | ![]() | Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований |
Определение: Равнобедренная трапеция | |
![]() | Равнобедренной трапецией называют трапецию, у которой боковые стороны равны. |
Свойство: равенство углов при основании | |
![]() | Если трапеция является равнобедренной, то углы при каждом из её оснований равны. |
Признак: равенство углов при основании | |
![]() | Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной. |
Свойство: равенство диагоналей | |
![]() | Если трапеция является равнобедренной, то её диагонали равны. |
Признак: равенство диагоналей | |
![]() | Если у трапеции диагонали равны, то она является равнобедренной |
Свойство: углы, которые диагонали образуют с основаниями | |
![]() | Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований. |
Признак: углы, которые диагонали образуют с основаниями | |
![]() | Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной. |
Свойство: описанная окружность | |
![]() | Если трапеция является равнобедренной, то около неё можно описать окружность. |
Признак: описанная окружность | |
![]() | Если около трапеции можно описать окружность, то она является равнобедренной. |
Свойство: высоты трапеции | |
![]() | Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований |
Равнобедренная трапеция |
![]() Определение: Равнобедренной трапецией называют трапецию, у которой боковые стороны равны. |
Равенство углов при основании |
![]() Свойство: Если трапеция является равнобедренной, то углы при каждом из её оснований равны. Признак: Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной. |
Равенство диагоналей |
![]() Свойство: Если трапеция является равнобедренной, то её диагонали равны. Признак: Если у трапеции диагонали равны, то она является равнобедренной. |
Углы, которые диагонали образуют с основаниями |
![]() Свойство: Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований. Признак: Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной. |
Описанная окружность |
![]() Свойство: Если трапеция является равнобедренной, то около неё можно описать окружность. Признак: Если около трапеции можно описать окружность, то она является равнобедренной. |
Высоты трапеции |
![]() Свойство: Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований |
На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.