Какие свойства у квадратных корней
Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств , изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n-ой степени.
Свойства корней
Мы поговорим о свойствах.
- Свойство умноженных чисел a и b, которое представляется как равенствоa·b=a·b. Его можно представить в виде множителей, положительных или равных нулю a1, a2, …, ak как a1· a2· …· ak=a1· a2· …· ak;
- из частного a:b= a:b, a≥0, b>0, он также может записываться в таком виде ab=ab;
- Свойство из степени числа a с четным показателем a2·m=am при любом числе a, например, свойство из квадрата числа a2=a.
В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a·b=a·b трансформируется как a·b=a·b. Свойства для равенства часто используются для упрощения сложных уравнений.
Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.
Первым делом, необходимо доказать свойства квадратного корня a·b=a·b. Согласно определению , необходимо рассмотреть, что a·b — число, положительное или равное нулю, которое будет равно a·bпри возведениив квадрат. Значение выражения a·b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a·b)2=a2·b2. По определению квадратного корня a2=a и b2=b, то a·b2=a2·b2=a·b.
Аналогичным способом можно доказать, что из произведения k множителей a1, a2, …, ak будет равняться произведению квадратных корней из этих множителей. Действительно, a1·a2· …· ak2=a12· a22· …· ak2=a1· a2· …· ak.
Из этого равенства следует, что a1· a2· …· ak=a1· a2· …· ak.
Рассмотрим несколько примеров для закрепления темы.
Пример 1
3·525=3·525, 4,2·1312=4,2·1312 и 2,7·4·1217·0,2(1)=2,7·4·1217·0,2(1).
Необходимо доказать свойство арифметического квадратного корня из частного: a:b=a:b, a≥0, b>0. Свойство позволяет записать равенство a:b2=a2:b2, а a2:b2=a:b, при этом a:bявляется положительным числом или равно нулю. Данное выражение и станет доказательством.
Например, 0:16=0:16, 80:5=80:5 и 30,121=30,121.
Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a2=aЧтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a≥0 и при a<0.
Очевидно, что при a≥0 справедливо равенство a2=a. При a<0 будет верно равенство a2=-a. На самом деле, в этом случае −a>0 и (−a)2=a2. Можно сделать вывод, a2=a, a≥0-a, a<0=a. Именно это и требовалось доказать.
Рассмотрим несколько примеров.
Пример 2
52=5=5 и -0,362=-0,36=0,36.
Доказанное свойство поможет дать обоснованиеa2·m=am, где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a2·m выражением (am)2, тогда a2·m=(am)2=am.
Пример 3
38=34=34 и (-8,3)14=-8,37=(8,3)7.
Свойства корня n-ой степени
Для начала необходимо рассмотреть основные свойства корней n-ой степени:
- Свойство из произведения чисел a и b, которые положительны или равны нулю, можно выразить в качестве равенства a·bn=an·bn, данное свойство справедливо для произведения k чисел a1, a2, …, ak как a1· a2· …·akn=a1n· a2n· …·akn;
- из дробного числа обладает свойством abn=anbn, где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
- При любом a и четных показателях n=2·m справедливо a2·m2·m=a, а при нечетных n=2·m−1 выполняется равенство a2·m-12·m-1=a.
- Свойство извлечения из amn=an·m, где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде …ankn2n1=an1·n2…·nk;
- Для любого неотрицательного a и произвольных n и m, которые являются натуральными, также можно определить справедливое равенство amn·m=an;
- Свойство степени n из степени числа a, которое положительно или равно нулю, в натуральной степени m, определяемое равенством amn=anm;
- Свойство сравнения , которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a<b, выполняется неравенство an<bn;
- Свойство сравнения , которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m>n, тогда при 0<a<1 справедливо неравенство am>an, а при a>1 выполняется am<an.
Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.
Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.
- Первым делом докажем свойства корня n-ой степени из произведения a·bn=an·bn. Для a и b, которые являютсяположительными или равными нулю, значение an·bn также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство an·bnn=ann·bnn. По определению корня n-ой степени ann=a и bnn=b, следовательно, an·bnn=a·b. Полученное равенство – именно то, что и требовалось доказать.
Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a1, a2, …, an выполняется a1n· a2n· …· akn ≥0 .
Приведем примеры использования свойства корня n-ой степени из произведения: 5·2127=57·2127 и 8,34·17,(21)4·34·574=8,3·17,(21)·3·574.
- Докажем свойство корня из частного abn=anbn. При a≥0 и b>0выполняется условие anbn≥0, а anbnn=annbnn=ab.
Покажем примеры:
Пример 4
8273=83273 и 2,310:2310=2,3:2310.
- Для следующего шага необходимо доказать свойстваn-ой степени из числа в степени n. Представим это в виде равенства a2·m2·m=a и a2·m-12·m-1=a для любого действительного a и натурального m. При a≥0 получаем a=a и a2·m=a2·m, что доказывает равенство a2·m2·m=a, а равенство a2·m-12·m-1=a очевидно. При a<0 получаем соответственно a=-a и a2·m=(-a)2·m=a2·m. Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a2·m2·m=a, а a2·m-12·m-1=a будет справедливо, так как за нечетной степени рассматривается -c2·m-1=-c2·m-1 для любого числа c, положительного или равного нулю.
Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:
Пример 5
744=7=7, (-5)1212=-5=5, 088=0=0, 633=6 и (-3,39)55=-3,39.
- Докажем следующее равенство amn=an·m. Для этого необходимо поменять числа до знака равно и после него местами an·m=amn. Это будет означать верная запись . Для a, которое является положительнымили равно нулю, из вида amn является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению . С их помощью можно преобразовать равенства в виде amnn·m=amnnm=amm=a. Этим доказано рассматриваемое свойство корня из корня.
Аналогично доказываются и другие свойства. Действительно, …ankn2n1n1·n2·…·nk=…ankn3n2n2·n3·…·nk=…ankn4n3n3·n4·…·nk=…=anknk=a.
Например,735=75·3 и 0,00096=0,00092·2·6=0,000924.
- Докажем следующее свойствоamn·m=an. Для этого необходимо показать, что an – число, положительное или равное нулю. При возведении в степень n·m равно am. Если число a является положительным или равным нулю, то n-ой степени из числа a является числом положительным или равным нулю При этом an·mn=annm, что и требовалось доказать.
Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров
2312=24.
- Докажем следующее свойство – свойство корня из степени вида amn=anm. Очевидно, что при a≥0 степень anm является неотрицательным числом. Более того, ее n-ая степень равна am, действительно, anmn=anm·n=annm=am. Этим и доказано рассматриваемое свойство степени.
Например, 2353=2335.
- Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a<b. Рассмотрим неравенство an<bn. Воспользуемся методом от противного an≥bn. Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным ann≥bnn, то есть, a≥b. Но это не соответствует условию a<b. Следовательно, an<bn при a<b.
Для примера приведем 124<15234.
- Рассмотрим свойство корня n-ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m>n и 0<a<1справедливо am>an. Предположим, что am≤an. Свойства позволят упростить выражение до anm·n≤amm·n. Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство anm·nm·n≤amm·nm·n, то есть, an≤am. Полученное значение при m>n и 0<a<1 не соответствует свойствам, приведенным выше.
Таким же способом можно доказать, что при m>n и a>1справедливо условие am<an.
Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.
Пример 6
0,73>0,75 и 12>127.
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
Для начала почитай комментарии внизу этой статьи, чтобы понять насколько крутой материал ты сейчас читаешь! )
А теперь давай попробуем разобраться, что это за понятие такое «квадратный корень».
К примеру, перед нами уравнение .
Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом ?
Вспомнив таблицу умножения, ты легко дашь ответ: и (ведь при перемножении двух отрицательных чисел получается число положительное)!
Для упрощения математики ввели специальное понятие квадратного корня и присвоили ему специальный символ
Давай разберемся с корнем до конца…
СОДЕРЖАНИЕ
Введение понятия арифметического квадратного корня
.
А почему же число должно быть обязательно неотрицательным?
Например, чему равен ?
Так-так, попробуем подобрать. Может, три? Проверим: , а не .
Может, ? Опять же, проверяем: .
Ну что же, не подбирается?
Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!
Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!
Однако ты наверняка уже заметил, что в определении сказано, что «квадратным корнем из числа называется такое неотрицательное число, квадрат которого равен ».
А в самом начале мы разбирали пример , подбирали числа, которые можно возвести в квадрат и получить при этом , ответом были и , а тут говорится про какое-то «неотрицательное число»!
Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа.
К примеру, не равносильно выражению .
Из следует, что
, то есть или ; (не помнишь почему так? Почитай тему «Модуль числа»!)
А из следует, что .
Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.
В наше квадратное уравнение подходит как , так и .
Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
Итак, вкратце на примере, нужно ли ставить «плюс-минус» (этот наглядный пример привёл наш читатель Игорь, спасибо ему за это):
Пусть есть две ситуации:
1)
2)
В первом случае у нас квадратное уравнение и его решением будет (уже видно отличие от второго случая) и далее получаем два корня
Во втором случае у нас НЕТ квадратного уравнения, просто х равен корню из числа и в этом случае ответ всегда «одно неотрицательное число», то есть 8.
А теперь попробуй решить такое уравнение .
Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?
Начнем с самого начала – с нуля: – не подходит.
Двигаемся дальше ; – меньше трех, тоже отметаем.
А что если ? Проверим: – тоже не подходит, т.к. это больше трех.
С отрицательными числами получится такая же история.
И что же теперь делать? Неужели перебор нам ничего не дал?
Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между и , а также между и .
Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.
И что дальше?
Давай построим график функции и отметим на нем решения.
Попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из , делов-то!
Ой-ой-ой, выходит, что Такое число никогда не кончается.
Как же такое запомнить, ведь на экзамене калькулятора не будет!?
Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. и уже сами по себе ответы.
Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.
Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной км, сколько км тебе предстоит пройти?
Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора: .
Таким образом, .
Так чему же здесь равно искомое расстояние?
Очевидно, что расстояние не может быть отрицательным, получаем, что . Корень из двух приблизительно равен , но, как мы заметили раньше, -уже является полноценным ответом.
Извлечение корней
Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать.
Для этого необходимо знать, по меньшей мере, квадраты чисел от до , а также уметь их распознавать.
То есть, тебе необходимо знать, что в квадрате равно , а также, наоборот, что – это в квадрате.
Первое время в извлечении корня тебе поможет эта таблица.
Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет.
Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:
- ;
- ;
- ;
- ;
Ответы:
Ну как, получилось? Теперь давай посмотрим такие примеры:
- ;
- ;
- .
Ответы:
- ;
- ;
- .
Свойства арифметического квадратного корня
Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:
- умножение;
- деление;
- возведение в степень.
Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:
Свойство | Пример |
Корень произведения равен произведению корней: | |
Корень из дроби — это корень из числителя и корень из знаменателя: , если | |
Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение: , при |
Попробуем решить по несколько примеров на каждое свойство!
Умножение корней
Взглянул еще раз на табличку… И, поехали!
Начнем с простенького:
Минуууточку. это , а это значит, что мы можем записать вот так:
Усвоил? Вот тебе следующий:
Корни из получившихся чисел ровно не извлекаются? Не беда – вот тебе такие примеры:
А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:
Теперь полностью самостоятельно:
Ответы: Молодец! Согласись, все очень легко, главное знать таблицу умножения!
- ;
- ;
- .
Деление корней
С умножением корней разобрались, теперь приступим к свойству деления.
Напомню, что формула в общем виде выглядит так:
, если .
А значит это, что корень из частного равен частному корней.
Ну что, давай разбираться на примерах:
Вот и вся наука. А вот такой пример:
Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.
А что, если попадется такое выражение:
Надо просто применить формулу в обратном направлении:
А вот такой примерчик:
Еще ты можешь встретить такое выражение:
Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!
Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.
Возведение в степень
А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа – это число, квадратный корень которого равен .
Так вот, если мы возводим число, квадратный корень которого равен , в квадрат, то что получаем?
Ну, конечно, !
Рассмотрим на примерах:
Все просто, правда? А если корень будет в другой степени? Ничего страшного!
Придерживайся той же логики и помни свойства и возможные действия со степенями.
Забыл?
Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.
Вот, к примеру, такое выражение:
В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:
С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:
Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:
Ну как, все понятно? Тогда реши самостоятельно примеры:
А вот и ответы:
Внесение под знак корня
Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!
Это совсем легко!
Допустим, у нас записано число
Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка – корень квадратный из !
Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:
Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.
Реши самостоятельно вот этот пример —
Справился? Давай смотреть, что у тебя должно получиться:
Молодец! У тебя получилось внести число под знак корня! Перейдем к не менее важному – рассмотрим, как сравнивать числа, содержащие квадратный корень!
Сравнение корней
Зачем нам учиться сравнивать числа, содержащие квадратный корень?
Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)
Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!
Например, определи, что больше: или ?
Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?
Тогда вперед:
Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень!
Т.е. если , значит, .
Отсюда твердо делаем вывод, что . И никто не убедит нас в обратном!
Извлечение корней из больших чисел
До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!
Можно было пойти по иному пути и разложить на другие множители:
Что дальше? А дальше раскладываем на множители до самого конца:
Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.
Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:
Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:
А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):
Разве это конец? Не останавливаемся на полпути!
На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:
Вот и все, не так все и страшно, правда?
Получилось ? Молодец, все верно!
А теперь попробуй вот такой пример решить:
А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.
Ну что, начнем раскладывать на множители? Сразу заметим, что можно поделить число на (вспоминаем признаки делимости):
А теперь, попробуй сам (опять же, без калькулятора!):
Ну что, получилось ? Молодец, все верно!
Подведем итоги
- Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен .
. - Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
- Свойства арифметического корня:
Свойство Пример Корень произведения равен произведению корней , если Корень из дроби — это корень из числителя и корень из знаменателя. , если Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение , при - При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.
Как тебе квадратный корень? Все понятно?
Мы постарались объяснить тебе без воды все что нужно знать на экзамене про квадратный корень.
Теперь твоя очередь. Напиши нам сложная это для тебя тема или нет.
Узнал ты что-то новое или все было и так ясно.
Пиши в комментариях и удачи на экзаменах!
ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
Стать учеником YouClever,
Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц»,
А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.