Какие свойства у эллипса

Какие свойства у эллипса thumbnail

Эллипс, его фокусы и главные оси

Эллипс как коническое сечение, его фокусы и директрисы, получаемые геометрически с помощью шаров Данделена.

Э́ллипс (др.-греч. ἔλλειψις «опущение; нехватка, недостаток (эксцентриситета до 1)») — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость.

Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой.

Определение[править | править код]

Эллипс — геометрическое место точек M евклидовой плоскости, для которых сумма расстояний до двух данных точек и (называемых фокусами) постоянна и больше расстояния между фокусами, то есть

, причём .

Другие определения[править | править код]

Эллипс также можно определить как:

  • фигуру, которую можно получить из окружности, применяя аффинное преобразование
  • ортогональную проекцию окружности на плоскость
  • пересечение плоскости и кругового цилиндра.

Связанные определения[править | править код]

  • Проходящий через фокусы эллипса отрезок AB, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a в вышеприведённом уравнении.
  • Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
  • Точка пересечения большой и малой осей эллипса называется его центром.
  • Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.
  • Расстояния и от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Расстояние называется фокальным расстоянием.
  • Величина называется эксцентриситетом.
  • Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.
  • Радиус эллипса в данной точке это отрезок, соединяющий центр эллипса с точкой, а также его длина, которая вычисляется по формуле , где  — угол между радиусом и большой полуосью.
  • Фокальным параметром называется половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса.
  • Отношение длин малой и большой полуосей называется коэффициентом сжатия эллипса или эллиптичностью: . Величина, равная называется сжатием эллипса. Для окружности коэффициент сжатия равен единице, сжатие — нулю. Коэффициент сжатия и эксцентриситет эллипса связаны соотношением
  • Для каждого из фокусов существует прямая, называемая директрисой, такая, что отношение расстояния от произвольной точки эллипса до его фокуса к расстоянию от этой точки до данной прямой равно эксцентриситету эллипса. Весь эллипс лежит по ту же сторону от такой прямой, что и фокус. Уравнения директрис эллипса в каноническом виде записываются как для фокусов соответственно. Расстояние между фокусом и директрисой равно .

Соотношения между элементами эллипса[править | править код]

Части эллипса (описание см. в разделе «Связанные определения»)

;

;

.

Координатное представление[править | править код]

Эллипс как кривая второго порядка[править | править код]

Эллипс является центральной невырожденной кривой второго порядка и удовлетворяет общему уравнению вида

при инвариантах и , где:

Соотношения между инвариантами кривой второго порядка и полуосями эллипса (верно только при условии, что центр эллипса совпадает с началом координат и ):

Соотношения

Если переписать общее уравнение в виде

то координаты центра эллипса:

угол вращения определяется из выражения

Направления векторов осей:

отсюда

Длины полуосей определяются выражениями

Обратное соотношение — коэффициенты общего уравнения из параметров эллипса — можно получить, подставив в каноническое уравнение (см. раздел ниже) выражение для поворота системы координат на угол Θ и переноса в точку :

Выполнив подстановку и раскрыв скобки, получим следующие выражения для коэффициентов общего уравнения:

Если ввести только угол, а центр эллипса оставить в начале координат, то

Следует заметить, что в уравнении общего вида эллипса, заданного в декартовой системе координат, коэффициенты (или, что то же самое, ) являются определёнными с точностью до произвольного постоянного множителя, т.е. приведённая выше запись и

где , являются эквивалентными. Нельзя ожидать, что выражение

будет выполняться при любом .

Соотношение между инвариантой и полуосями в общем виде выглядит следующим образом:

где — коэффициент при переносе начала координат в центр эллипса, когда уравнение приводится к виду

Другие инварианты находятся в следующих соотношениях:

Каноническое уравнение[править | править код]

Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением:

Это уравнение называется каноническим уравнением эллипса. Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат[Комм. 1].

Соотношения[править | править код]

Для определённости положим, что .
В этом случае величины и — соответственно, большая и малая полуоси эллипса.

Зная полуоси эллипса, можно вычислить:

Эллипс имеет две директрисы, уравнения которых можно записать как

Фокальный параметр (т. е. половина длины хорды, проходящей через фокус и перпендикулярной оси эллипса) равен

Фокальные радиусы, т. е. расстояния от фокусов до произвольной точки кривой :

Уравнение диаметра, сопряжённого хордам с угловым коэффициентом :

Читайте также:  Какие лечебные свойства конопли

Уравнение касательной к эллипсу в точке имеет вид:

Условие касания прямой и эллипса записывается в виде соотношения .

Уравнение касательных, проходящих через точку :

Уравнение касательных, имеющих данный угловой коэффициент :

точки касания такой прямой эллипса (или что то же самое, точки эллипса, где касательная имеет угол с тангенсом, равным ):

Уравнение нормали в точке

Уравнения в параметрической форме[править | править код]

Геометрическая иллюстрация параметризации эллипса (анимация).

Каноническое уравнение эллипса может быть параметризовано:

где  — параметр.

Только в случае окружности (то есть при ) параметр
является углом между положительным направлением оси абсцисс и радиус-вектором данной точки.

В полярных координатах[править | править код]

Если принять фокус эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах будет иметь вид

где e — эксцентриситет, а p — фокальный параметр.
Знак минус соответствует помещению полюса полярных координат в левый фокус, а знак плюс — в правый.

Вывод уравнения[править | править код]

Пусть r1 и r2 — расстояния до данной точки эллипса от первого и второго фокусов.
Пусть также полюс системы координат находится в первом фокусе, а угол отсчитывается от направления на второй фокус.
Тогда из определения эллипса следует, что

.

Отсюда .
С другой стороны, из теоремы косинусов

Исключая из последних двух уравнений, получаем

Учитывая, что и , получаем искомое уравнение.

Если принять центр эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах будет иметь вид

Длина дуги эллипса (s) в зависимости от его параметра (θ)

Длина дуги эллипса[править | править код]

Длина дуги плоской линии определяется по формуле:

Воспользовавшись параметрическим представлением эллипса, получаем следующее выражение:

После замены выражение для длины дуги принимает окончательный вид:

Получившийся интеграл принадлежит семейству эллиптических интегралов, которые в элементарных функциях не выражаются, и сводится к эллиптическому интегралу второго рода . В частности, периметр эллипса равен:

где  — полный эллиптический интеграл второго рода.

Приближённые формулы для периметра[править | править код]

Максимальная погрешность этой формулы при эксцентриситете эллипса (соотношение осей ).
Погрешность всегда положительна.

Приблизительно в два раза меньшие погрешности в широком диапазоне эксцентриситетов дает формула:
, где
Максимальная погрешность этой формулы при эксцентриситете эллипса (соотношение осей )
Погрешность также всегда положительна.

Существенно лучшую точность при обеспечивает формула Рамануджана:

При эксцентриситете эллипса (соотношение осей ) погрешность составляет .
Погрешность всегда отрицательна.

Ещё точней оказалась вторая формула Рамануджана:

Точные формулы для периметра[править | править код]

Джеймс Айвори[1] и Фридрих Бессель[2]
независимо друг от друга получили формулу для периметра эллипса:

Альтернативная формула

где  — Арифметико-геометрическое среднее 1 и ,
а  — модифицированное арифметико-геометрическое среднее 1 и , которое было введено С. Ф. Адлаем в статье 2012 года.[3]

Площадь эллипса и его сегмента[править | править код]

Площадь эллипса вычисляется по формуле

Площадь сегмента между дугой[en], выпуклой влево, и вертикальной хордой, проходящей через точки и , можно определить по формуле[4]:

Если эллипс задан уравнением
, то площадь можно определить по формуле

Другие свойства[править | править код]

  • Оптические
    • Свет от источника, находящегося в одном из фокусов, отражается эллипсом так, что отраженные лучи пересекутся во втором фокусе.
    • Свет от источника, находящегося вне любого из фокусов, отражается эллипсом так, что отраженные лучи ни в каком фокусе не пересекутся.
  • Если и  — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой равен углу между этой касательной и прямой .
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
    • Эквивалентная формулировка: через середины двух любых параллельных хорд эллипса проходит какой-либо диаметр эллипса. В свою очередь, любой диаметр эллипса всегда проходит через центр эллипса.
  • Эволютой эллипса является астроида, вытянутая вдоль вертикальной оси.
  • Точки пересечения эллипса с осями являются его вершинами.
  • Эксцентриситет эллипса, то есть отношение характеризует вытянутость эллипса. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.
    • Если эксцентриситет эллипса равен нулю (что то же самое, что фокальное расстояние равно нулю: ), то эллипс вырождается в окружность.
  • Экстремальные свойства[5]

где обозначает площадь фигуры .

  • Более того: равенство достигается в том и только в том случае, если ограничено эллипсом.
  • Среди всех выпуклых замкнутых кривых, ограничивающих данную площадь, эллипсы и только они имеет максимальную аффинную длину.
  • Если произвольный эллипс вписан в треугольник ABC и имеет фокусы P и Q, тогда для него справедливо соотношение[6]
  • Если лестницу (бесконечно тонкий отрезок прямой) прислонить к вертикальной стенке с горизонтальным полом, и один конец лестницы будет скользить по стенке (всё время касаясь её) а второй конец лестницы будет скользить по полу (всё время касаясь его), тогда любая фиксированная точка лестницы (не на её концах), будет двигаться по дуге некоторого эллипса. Это свойство остаётся верным, если мы возьмём точку не внутри лестницы-отрезка, а на её мыслимом продолжении. Последнее свойство используется в описанном выше[⇦] эллипсографе.
  • Касательная, проходящая через точку , принадлежащую эллипсу, имеет следующее уравнение:
Читайте также:  С каким свойствами земли это связано

Построение эллипса[править | править код]

Построение эллипса с помощью иголок, нитки и карандаша.

Инструментами для рисования эллипса являются:

  • эллипсограф
  • две иголки, воткнутые в фокусы эллипса и соединённые ниткой длиной 2a, которую оттягивают карандашом.

При помощи циркуля или циркуля и линейки можно построить любое количество точек, принадлежащих эллипсу, но не весь эллипс целиком.

Эллипсы, связанные с треугольником[править | править код]

  • Эллипс Брокара — эллипс с фокусами в точках Брокара
  • Эллипс Мандарта
  • Эллипс Штейнера

См. также[править | править код]

  • Кривая второго порядка
  • Парабола
  • Каустика
  • Эллипсоид
  • Эллипсограф
  • Гипербола
  • Окружность Аполлония
  • Овал Кассини

Комментарии[править | править код]

  1. ↑ Если же в правой части стоит единица со знаком минус, то получившееся уравнение

    описывает мнимый эллипс, он не имеет точек на вещественной плоскости.

Примечания[править | править код]

  1. Ivory, J. A new series for the rectification of the ellipsis (неопр.) // Transactions of the Royal Society of Edinburgh. — 1798. — Т. 4. — С. 177—190. — doi:10.1017/s0080456800030817.
  2. Bessel, F. W. The calculation of longitude and latitude from geodesic measurements (1825) (англ.) // Astron. Nachr. : journal. — 2010. — Vol. 331. — P. 852—861. — doi:10.1002/asna.201011352. — arXiv:0908.1824. Englisch translation of Bessel, F. W. Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermesssungen (нем.) // Astron. Nachr. : magazin. — 1825. — Bd. 4. — S. 241—254. — doi:10.1002/asna.18260041601. — Bibcode: 1825AN……4..241B.

  3. Adlaj, Semjon (September 2012), An eloquent formula for the perimeter of an ellipse, Notices of the AMS Т. 76 (8): 1094–1099, ISSN 1088-9477, doi:10.1090/noti879, <https://www.ams.org/notices/201208/rtx120801094p.pdf>
  4. ↑ Корн, 1978, с. 68.
  5. ↑ Фейеш Тот Расположения на плоскости, на сфере и в пространстве//М., Физматгиз, 1958. 364 с.; глава II, § 4,6
  6. ↑ Allaire, Patricia R.; Zhou, Junmin; and Yao, Haishen, «Proving a nineteenth century ellipse identity», Mathematical Gazette 96, March 2012, 161—165.

Литература[править | править код]

  • Корн Г., Корн Т. Свойства окружностей, эллипсов, гипербол и парабол // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 70—73.
  • Селиванов Д. Ф. Эллипс // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • А. В. Акопян, А. А. Заславский. Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
  • И. Бронштейн. Эллипс // Квант, № 9, 1970.
  • А. И. Маркушевич. Замечательные кривые // «Популярные лекции по математике», выпуск 4.

Внешние ссылки[править | править код]

  • S.Sykora, Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae (англ.)
  • Grard P. Michon. Perimeter of an Ellipse (Final Answers) (англ.), 2000—2005. — 20 c.
  • Видео: Как нарисовать эллипс

Источник

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек , и есть величина постоянная , бо́льшая расстояния между этими заданными точками (рис.3.36,а). Это геометрическое определение выражает фокальное свойство эллипса.

Фокальное свойство эллипса

Точки , и называются фокусами эллипса, расстояние между ними — фокусным расстоянием, середина отрезка — центром эллипса, число — длиной большой оси эллипса (соответственно, число — большой полуосью эллипса). Отрезки и , соединяющие произвольную точку эллипса с его фокусами, называются фокальными радиусами точки . Отрезок, соединяющий две точки эллипса, называется хордой эллипса.

Отношение называется эксцентриситетом эллипса. Из определения следует, что . При , т.е. при , фокусы и , а также центр совпадают, и эллипс является окружностью радиуса (рис.3.36,6).

Геометрическое определение эллипса, выражающее его фокальное свойство, эквивалентно его аналитическому определению — линии, задаваемой каноническим уравнением эллипса:

(3.49)

Действительно, введем прямоугольную систему координат (рис.3.36,в). Центр эллипса примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось или первую ось эллипса), примем за ось абсцисс (положительное направление на ней от точки к точке ); прямую, перпендикулярную фокальной оси и проходящую через центр эллипса (вторую ось эллипса), примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат оказалась правой).

Составим уравнение эллипса, пользуясь его геометрическим определением, выражающим фокальное свойство. В выбранной системе координат определяем координаты фокусов . Для произвольной точки , принадлежащей эллипсу, имеем:

Записывая это равенство в координатной форме, получаем:

Переносим второй радикал в правую часть, возводим обе части уравнения в квадрат и приводим подобные члены:

Разделив на 4, возводим обе части уравнения в квадрат:

Обозначив , получаем . Разделив обе части на , приходим к каноническому уравнению эллипса:

Следовательно, выбранная система координат является канонической.

Если фокусы эллипса совпадают, то эллипс представляет собой окружность (рис.3.36,6), поскольку . В этом случае канонической будет любая прямоугольная система координат с началом в точке , a уравнение является уравнением окружности с центром в точке и радиусом, равным .

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.49), и только они, принадлежат геометрическому месту точек, называемому эллипсом. Другими словами, аналитическое определение эллипса эквивалентно его геометрическому определению, выражающему фокальное свойство эллипса.

Директориальное свойство эллипса

Директрисами эллипса называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии от нее. При , когда эллипс является окружностью, директрис нет (можно считать, что директрисы бесконечно удалены).

Эллипс с эксцентриситетом можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки (фокуса) к расстоянию до заданной прямой (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету (директориальное свойство эллипса). Здесь и — один из фокусов эллипса и одна из его директрис, расположенные по одну сторону от оси ординат канонической системы координат, т.е. или .

В самом деле, например, для фокуса и директрисы (рис.3.37,6) условие можно записать в координатной форме:

Избавляясь от иррациональности и заменяя , приходим к каноническому уравнению эллипса (3.49). Аналогичные рассуждения можно провести для фокуса и директрисы .

Уравнение эллипса в полярной системе координат

Уравнение эллипса в полярной системе координат (рис.3.37,в и 3.37(2)) имеет вид

где фокальный параметр эллипса.

В самом деле, выберем в качестве полюса полярной системы координат левый фокус эллипса, а в качестве полярной оси — луч (рис.3.37,в). Тогда для произвольной точки , согласно геометрическому определению (фокальному свойству) эллипса, имеем . Выражаем расстояние между точками и (см. пункт 2 замечаний 2.8):

Следовательно, в координатной форме уравнение эллипса имеет вид

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

Выражаем полярный радиус и делаем замену :

что и требовалось доказать.

Геометрический смысл коэффициентов в уравнении эллипса

Найдем точки пересечения эллипса (см. рис.3.37,а) с координатными осями (вершины зллипса). Подставляя в уравнение , находим точки пересечения эллипса с осью абсцисс (с фокальной осью): . Следовательно, длина отрезка фокальной оси, заключенного внутри эллипса, равна . Этот отрезок, как отмечено выше, называется большой осью эллипса, а число — большой полуосью эллипса. Подставляя , получаем . Следовательно, длина отрезка второй оси эллипса, заключенного внутри эллипса, равна . Этот отрезок называется малой осью эллипса, а число — малой полуосью эллипса.

Действительно, , причем равенство получается только в случае , когда эллипс является окружностью. Отношение называется коэффициентом сжатия эллипса.

Замечания 3.9

1. Прямые ограничивают на координатной плоскости основной прямоугольник, внутри которого находится эллипс (см. рис.3.37,а).

2. Эллипс можно определить, как геометрическое место точек, получаемое в результате сжатия окружности к ее диаметру.

Действительно, пусть в прямоугольной системе координат уравнение окружности имеет вид . При сжатии к оси абсцисс с коэффициентом координаты произвольной точки , принадлежащей окружности, изменяются по закону

Подставляя в уравнение окружности и , получаем уравнение для координат образа точки :

поскольку . Это каноническое уравнение эллипса.

3. Координатные оси (канонической системы координат) являются осями симметрии эллипса (называются главными осями эллипса), а его центр — центром симметрии.

Действительно, если точка принадлежит эллипсу . то и точки и , симметричные точке относительно координатных осей, также принадлежат тому же эллипсу.

4. Из уравнения эллипса в полярной системе координат (см. рис.3.37,в), выясняется геометрический смысл фокального параметра — это половина длины хорды эллипса, проходящей через его фокус перпендикулярно фокальной оси ( при ).

5. Эксцентриситет характеризует форму эллипса, а именно отличие эллипса от окружности. Чем больше , тем эллипс более вытянут, а чем ближе к нулю, тем ближе эллипс к окружности (рис.3.38,а). Действительно, учитывая, что и , получаем

где — коэффициент сжатия эллипса, . Следовательно, . Чем больше сжат эллипс по сравнению с окружностью, тем меньше коэффициент сжатия и больше эксцентриситет. Для окружности и .

6. Уравнение при определяет эллипс, фокусы которого расположены на оси (рис.3.38,6). Это уравнение сводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение определяет эллипс с центром в точке , оси которого параллельны координатным осям (рис.3.38,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).

При уравнение описывает окружность радиуса с центром в точке .

Параметрическое уравнение эллипса

Параметрическое уравнение эллипса в канонической системе координат имеет вид

Действительно, подставляя эти выражения в уравнение (3.49), приходим к основному тригонометрическому тождеству .

Пример 3.20. Изобразить эллипс в канонической системе координат . Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: — большая полуось, — малая полуось эллипса. Строим основной прямоугольник со сторонами с центром в начале координат (рис.3.39). Учитывая симметричность эллипса, вписываем его в основной прямоугольник. При необходимости определяем координаты некоторых точек эллипса. Например, подставляя в уравнение эллипса, получаем

Следовательно, точки с координатами — принадлежат эллипсу.

Вычисляем коэффициент сжатия ; фокусное расстояние ; эксцентриситет ; фокальный параметр . Составляем уравнения директрис: .

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Источник

Читайте также:  Какими качествами характера свойствами личности обладали горожане ответ