Какие свойства у электромагнитной волны

Какие свойства у электромагнитной волны thumbnail

Тестирование онлайн

Электромагнитное поле

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.

Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.

Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.

Какие свойства у электромагнитной волны

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Какие свойства у электромагнитной волны

Какие свойства у электромагнитной волны

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Какие свойства у электромагнитной волныКакие свойства у электромагнитной волныКакие свойства у электромагнитной волны

Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур «открывают», т.е. создают условия для того, чтобы поле «уходило» в пространство. Это устройство называется открытым колебательным контуром — антенной.

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.

Источник

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого элеетрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Читайте также:  Какое свойство воды делает ее хорошим растворителем для биологических систем

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.

Какие свойства у электромагнитной волны

Рисунок 2.6.1.

Закон электромагнитной индукции в трактовке Максвелла

Какие свойства у электромагнитной волны

Рисунок 2.6.2.

Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы Какие свойства у электромагнитной волны и Какие свойства у электромагнитной волны перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3).

Какие свойства у электромагнитной волны

Рисунок 2.6.3.

Синусоидальная (гармоническая) электромагнитная волна. Векторы Какие свойства у электромагнитной волны , Какие свойства у электромагнитной волны   и  Какие свойства у электромагнитной волнывзаимно перпендикулярны

2. Электромагнитные волны распространяются в веществе с конечной скоростью

Какие свойства у электромагнитной волны

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные:

ε0 = 8,85419·10–12 Ф/м,

μ0 = 1,25664·10–6 Гн/м.

Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Какие свойства у электромагнитной волны

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Какие свойства у электромагнитной волны

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля Какие свойства у электромагнитной волны и напряженности электрического поля Какие свойства у электромагнитной волны  в каждой точке пространства связаны соотношением

Какие свойства у электромагнитной волны

4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Какие свойства у электромагнитной волны

Подставляя сюда выражения для wэ, wм и υ, можно получить:

Какие свойства у электромагнитной волны

Поток энергии в электромагнитной волне можно задавать с помощью вектораКакие свойства у электромагнитной волны, направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ0. Этот вектор называют вектором Пойнтинга.

В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно

Какие свойства у электромагнитной волны

где E0 – амплитуда колебаний напряженности электрического поля.

Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м2).

5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены Петром Николаевичем Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

Какие свойства у электромагнитной волны

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.

Для поля в единичном объеме

Какие свойства у электромагнитной волны

Отсюда следует:

Какие свойства у электромагнитной волны

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности (СТО), оно справедливо для любых тел независимо от их природы и внутреннего строения.

Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Генриха Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.

Читайте также:  Какие химические свойства для глюкозы и глицерина являются общими

Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А.С. Попов, 1895 г.).

7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).

Какие свойства у электромагнитной волны

Рисунок 2.6.4.

Элементарный диполь, совершающий гармонические колебания

Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.

Какие свойства у электромагнитной волны

Рисунок 2.6.5.

Излучение элементарного диполя

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Источник

Глава 1

ОСНОВНЫЕ ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380…780 нм (рис. 1.1). В области видимого спектра глаз ощушает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн — провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Электромагнитные волны имеют следующие основные характеристики.

1. Длина волны lв, — кратчайшее расстояние между двумя точками в пространстве, на котором фаза гармонической электромагнитной волны меняется на 360°. Фаза — это состояние (стадия) периодического процесса (рис. 1.2).

11.jpg

В наземном телевизионном вешании используются метровые (MB) и дециметровые волны (ДМВ), в спутниковом — сантиметровые волны (СМ). По мере заполнения частотного диапазона СМ будет осваиваться диапазон миллиметровых волн (Ка-bаnd).

2. Период колебания волны Т— время, в течение которого происходит одно полное изменение напряженности поля, т. е. время, за которое точка радиоволны, имеющая какую-то фиксированную фазу, проходит путь, равный длине волны lв.

3. Частота колебаний электромагнитного поля F (число колебаний поля в секунду) определяется по формуле

F=1/T, a T=1/F

Единицей измерения частоты является герц (Гц) — частота, при которой совершается одно колебание в секунд . В спутниковом вещании приходится иметь дело с очень высокими частотами электромагнитных колебаний измеряемых в гигагерцах.

Для спутникового непосредственного телевизионного вещания (СНТВ) по линии Космос — Земля используются диапазон C-band low и часть диапазона Кu (10,7…12,75 ГГи). Верхняя часть этих диапазонов применяется для передачи информации по линии Земля — Космос (табл. 1.1).

12.jpg

4. Скорость распространения волны Сскорость последовательного распространения волны от источника энергии (антенны).

Скорость распространения радиоволн в свободном пространстве (вакууме) постоянна и равна скорости света С= 300 000 км/с. Несмотря на такую высокую скорость, электромагнитная волна по линии Земля — Космос — Земля проносится за время 0,24 с. На земле радиотелевизионные передачи можно практически мгновенно принимать в любой точке. При распространении в реальном пространстве, например -в воздухе, скорость движения радиоволны зависит от свойств среды, она обычно меньше С на величину коэффициента преломления среды.

Читайте также:  Какие признаки являются отличительными для свойств личности

Частота электромагнитных волн F, скорость их распространения С и длина волны л связаны соотношением

lв=C/F, а так как F=1/T , то lв=С*T.

Подставляя значение скорости С= 300 000 км/с в последнюю формулу, получаем

lв(м)=3*10^8/F(м/c*1/Гц)

Для больших значений частот длину волны электромагнитного колебания можно определить по формуле lв(м)=300/F(МГц) Зная длину волны электромагнитного колебания, частоту определяют по формуле F(МГц)=300/lв(м)

5. Поляризация радиоволн. Электрическая и магнитная составляющие электромагнитного поля соответственно характеризуются векторами Е и Н, которые показывают значение напряженностей полей и их направление. Поляризацией называется ориентировка вектора электрического поля Е волны относительно поверхности земли (рис. 1.2).

Вид поляризации радиоволн определяется ориентировкой (положением) передающей антенны относительно поверхности земли. Как в наземном, так и в спутниковом телевидении применяется линейная поляризация, т. е. горизонтальная Н и вертикальная V (рис. 1.3).

Радиоволны с горизонтальным вектором электрического поля называют горизонтально поляризованными, а с вертикальным — вертикально поляризованными. Плоскость поляризации у последних волн вертикальна, а вектор Н (см. рис. 1.2) находится в горизонтальной плоскости.

Если передающая антенна установлена горизонтально над поверхностью земли, то электрические силовые линии поля также будут расположены горизонтально. В этом случае поле наведет наибольшую электродвижущую силу (ЭДС) в гори-

Рис 1.4. Круговая поляризация радиоволн:

LZ— левая; RZ— правая

зонтально расположенной приемной антенне. Следовательно, при Н поляризации радиоволн приемную антенну необходимо ориентировать горизонтально. При этом приема радиоволн на вертикально расположенную антенну теоретически не будет, так как наведенная в антенне ЭДС равна нулю. И наоборот, при вертикальном положении передающей антенны приемную антенну также необходимо расположить вертикально, что позволит получить в ней наибольшую ЭДС.

При телевизионном вещании с искусственных спутников Земли (ИСЗ) кроме линейных поляризаций широко используется круговая поляризация. Связано это, как ни странно, с теснотой в эфире, так как на орбитах находится большое количество спутников связи и ИСЗ непосредственного (прямого) телевизионного вещания.

Часто в таблицах параметров спутников дают сокращенное обозначение вида круговой поляризации — L и R. Круговую поляризацию радиоволн создает, например, коническая спираль на облучателе передающей антенны. В зависимости от направления намотки спирали круговая поляризация оказывается левой или правой (рис. 1.4).

Соответственно в облучателе наземной антенны спутникового телевидения должен быть установлен поляризатор, который реагирует на круговую поляризацию радиоволн, излучаемых передающей антенной ИСЗ.

Рассмотрим вопросы модуляции высокочастотных колебаний и их спектр при передаче с ИСЗ. Целесообразно это сделать в сравнении с наземными вещательными системами.

Разнос между несущими частотами сигналов изображения и звукового сопровождения составляет 6,5 МГц, остаток нижней боковой полосы (слева от несущей изображения) — 1,25 МГц, а ширина канала звукового сопровождения — 0,5 МГц

(рис. 1.5). С учетом этого суммарная ширина телевизионного канала принята равной 8,0 МГц (по стандартам D и К, принятым в странах СНГ).

Передающая телевизионная станция имеет в своем составе два передатчика. Один из них передает электрические сигналы изображения, а другой — звуковое сопровождение соответственно на разных несущих частотах. Изменение какого-то параметра несущего высокочастотного колебания (мощности, частоты, фазы и др.) под воздействием колебаний низкой частоты называется модуляцией. Используются два основных вида модуляции: амплитудная (AM) и частотная (ЧМ). В телевидении сигналы изображения передаются с AM, а звуковое сопровождение — с ЧМ. После модуляции электрические колебания усиливаются по мощности, затем поступают в передающую антенну и излучаются ею в пространство (эфир) в виде радиоволн.

8 наземном телевизионном вещании по ряду причин невозможно применить ЧМ для передачи сигналов изображения. На СМ места в эфире значительно больше и такая возможность существует. В результате спутниковый канал (транспондер) занимает полосу частот в 27 МГц.

Преимущества частотной модуляции сигнала поднесущей:

меньшая по сравнению с AM чувствительность к помехам и шумам, низкая чувствительность к нелинейности динамических характеристик каналов передачи сигналов, а также стабильность передачи на далекие расстояния. Данные характеристики объясняются постоянством уровня сигнала в каналах передачи, возможностью проведения частотной коррекции предыскажений, благоприятно влияющих на отношение сигнал/шум, благодаря чему ЧМ можно значительно снизить мощность передатчика при передаче информации на одно и то же расстояние. Например, в наземных вещательных системах для передачи сигналов изображения на одной и той же телевизионной станции используются передатчики в 5 раз большей мощности, чем для передачи сигналов звукового сопровождения.

14.jpg

Источник