Какие свойства света проявляются в явлении дифракция

Дифракция первого и второго порядка как интерференция волн, образованных при падении плоской волны на непрозрачный экран с парой щелей. Стрелками показаны линии, проходящие через линии интерференционных максимумов

Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн (интерференция вторичных волн). Общим свойством всех явлений дифракции является зависимость степени её проявления от соотношения между длиной волны λ и размером ширины волнового фронта d, либо непрозрачного экрана на пути его распространения, либо неоднородностей структуры самой волны.

Поскольку в большинстве случаев, имеющих практическое значение, это ограничение ширины волнового фронта имеет место всегда, явление дифракции сопровождает любой процесс распространения волн.

Так, именно явлением дифракции задаётся предел разрешающей способности любого оптического прибора, создающего изображение, который невозможно преступить принципиально при заданной ширине спектра излучения, используемого для построения изображения[1].

В ряде случаев, в особенности при изготовлении оптических систем, разрешающая способность ограничивается не дифракцией, а аберрациями, как правило, возрастающими при увеличении диаметра объектива. Отсюда происходит известное фотографам явление увеличения до определённых пределов качества изображения при диафрагмировании объектива.

При распространении излучения в оптически неоднородных средах дифракционные эффекты заметно проявляются при размерах неоднородностей, сравнимых с длиной волны. При размерах неоднородностей, существенно превышающих длину волны (на 3—4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики. С другой стороны, если размер неоднородностей среды сравним с длиной волны, в таком случае дифракция проявляет себя в виде явления рассеяния волн[2].

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

  • в преобразовании пространственного строения волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;
  • в разложении волн по их частотному спектру;
  • в преобразовании поляризации волн;
  • в изменении фазового строения волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и звуковых волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Тонкости в толковании термина «дифракция»[править | править код]

В явлении дифракции важную роль играют исходные размеры области волнового поля и исходное строение волнового поля, которое подвержено существенной трансформации в случае, если его элементы сравнимы с длиной волны или меньше её.

Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).

Исходное ограничение волнового поля в пространстве и его определённая структура могут возникнуть не только за счёт присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.

Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика, градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции.

Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия (но всегда обусловлена его наличием). Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых, структурах.

Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то наблюдается тенденция понимать её проявление как любое отступление от законов геометрической оптики.

При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде, которое дифракцией не является.

Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.

Ещё один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).

Раздел оптики «Оптика кристаллов», имеющей дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции. В то же самое время он нуждается в корректировке используемых представлений геометрической оптики. Это связано с различием в понятии луча (как направления распространения света) и распространения волнового фронта (то есть направления нормали к нему)

Читайте также:  Какие свойства песка позволили их использовать

Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции.

Частные случаи дифракции[править | править код]

Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с отверстием) сферической волны и это была дифракция Френеля, либо плоской волны на щели или системе отверстий — дифракция Фраунгофера

Дифракция на щели[править | править код]

Распределение интенсивности света при дифракции на щели

В качестве примера рассмотрим дифракционную картину, возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса.

Рассмотрим монохроматическую плоскую волну с амплитудой с длиной волны , падающую на экран с щелью ширины .

Будем считать, что щель находится в плоскости x′ − y′ с центром в начале координат. Тогда может предполагаться, что дифракция производит волну ψ, которая расходится радиально. Вдали от разреза можно записать

Пусть (x′, y′, 0) — точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x, 0, z). Щель имеет конечный размер в x направлении (от до ) и бесконечна в y направлении ([]).

Расстояние r от щели определяется как:

Предполагая случай дифракции Фраунгофера, получим условие Другими словами, расстояние до точки наблюдения много больше характерного размера щели (ширины).

Используя биномиальное разложение и пренебрегая слагаемыми второго и выше порядков малости, можно записать расстояние в виде:

Видно, что 1/r перед уравнением не осциллирует, то есть даёт малый вклад в интенсивность по сравнению с экспоненциальным множителем. Тогда его можно записать приближённо как z.

Здесь мы введём некую константу C, которой обозначим все постоянные множители в предыдущем уравнении. Она в общем случае может быть комплексной, но это не важно, так как в конце нас будет интересовать только интенсивность, и нам будет интересен только квадрат модуля.

В случае дифракции Фраунгофера мало, поэтому Такое же приближение верно и для Таким образом, считая приходим к выражению:

Используя формулу Эйлера и её производную: и

где ненормированная функция sinc(x) определена как

Подставляя в последнее выражение для амплитуды, можно получить ответ для интенсивности в виде волны в зависимости от угла θ:

См. также Дифракция на N-щелях.

Дифракция на отверстии[править | править код]

Дифракция лазерного луча с длиной волны 650 нм, прошедшего через отверстие диаметром 0,2 мм

Дифракция звука и ультразвуковая локация[править | править код]

Дифракция радиоволн и радиолокация[править | править код]

Исследованием дифракции радиоволн занимается геометрическая теория дифракции[3]

Дифракционная решётка[править | править код]

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

Дифракция рентгеновских лучей[править | править код]

Дифракцию рентгеновских лучей можно наблюдать, направив их на кристалл, она используется в рентгеноструктурном анализе для определения структуры кристалла. Кроме того, дифракцию рентгеновских лучей можно получить, направив их на обычную дифракционную решётку (то есть, используемую для наблюдения дифракции видимого излучения) так, чтобы угол падения был достаточно близок к 90 градусам, этим способом можно измерить длину волны рентгеновских лучей[4].

Дифракция света на ультразвуке[править | править код]

Одним из наглядных примеров дифракции света на ультразвуке является дифракция света на ультразвуке в жидкости. В одной из постановок такого эксперимента в оптически-прозрачной ванночке в форме прямоугольного параллелепипеда с оптически-прозрачной жидкостью с помощью пластинки из пьезоматериала на частоте ультразвука возбуждается стоячая волна. В её узлах плотность воды ниже, и как следствие ниже её оптическая плотность, в пучностях — выше. Таким образом, при этих условиях ванночка с водой становится для световой волны фазовой дифракционной решёткой, на которой осуществляется дифракция в виде изменения фазовой структуры волн, что можно наблюдать в оптический микроскоп методом фазового контраста или методом тёмного поля.

Дифракция электронов[править | править код]

Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет свойства, аналогичные свойствам волны. При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала.
Процесс дифракции электронов получил широкое применение в аналитических исследованиях кристаллических структур металлов, сплавов, полупроводниковых материалов.

Брегговская дифракция[править | править код]

Согласно Закону Брэгга каждая точка (или отражение) в этой дифракционной картине формируется конструктивной интерференцией рентгеновских лучей, проходящих через кристалл. Эти данные могут быть использованы для определения атомной структуры кристаллов.

Дифракция от трехмерной периодической структуры, такой как атомы в кристалле называется дифракцией Брегга. Это похоже на то, что происходит, когда волны рассеиваются на дифракционной решётке. Брегговская дифракция является следствием интерференции между волнами, отражёнными от кристаллических плоскостей. Условие возникновения интерференции определяется законом Вульфа-Брегга:

,

где

d — расстояние между кристаллическими плоскостями,
θ угол скольжения — дополнительный угол к углу падения,
λ — длина волны,
n (n = 1,2…) — целое число называемое порядком дифракции.

Брегговская дифракция может осуществляться при использовании света с очень маленькой длиной волны, такого как рентгеновское излучение, либо волны материи, такие как нейтроны и электроны, длины волн которых сравнимы или много меньше, чем межатомное расстояние[5].
Получаемые данные дают информацию о межплоскостных расстояниях, что позволяет вывести кристаллическую структуру. Дифракционный контраст, в электронных микроскопах и рентгеновских топографических устройствах, в частности, также является мощным инструментом для изучения отдельных дефектов и локальных полей деформации в кристаллах.

Читайте также:  Какие свойства светового луча используются

Дифракция частиц (нейтронов, атомов, молекул)[править | править код]

История исследований[править | править код]

Основы теории дифракции были заложены при изучении дифракции света в первой половине XIX века в трудах Юнга и Френеля. Среди других учёных, которые внесли значительный вклад в изучение дифракции: Гримальди, Гюйгенс, Араго, Пуассон, Гаусс, Фраунгофер, Бабине, Кирхгоф, Аббе, У. Г. Брэгг и У. Л. Брэгг, фон Лауэ, Роуланд, Зоммерфельд, Леонтович, Фок, ван Циттерт, Цернике (см. История оптики).

Обнаружение дифракции частиц (электронов) в 1927 году (опыт Дэвиссона и Джермера) сыграло большую роль в подтверждении существования волн де Бройля и в подтверждении концепции корпускулярно-волнового дуализма (идеи двойственной природы волн и частиц). В XX и XXI веках продолжились исследования дифракции волн на сложных структурах.

Дифракционные методы[править | править код]

Дифракционные методы — это совокупность методов исследования атомного строения вещества, использующих дифракцию пучка фотонов, электронов или нейтронов, рассеиваемого исследуемым объектом.

В дифракционных методах измеряют зависимость интенсивности рассеянного излучения от направления, то есть функцию I (φ,θ). При этом длина волны после рассеяния не изменяется. Имеет место так называемое упругое рассеяние. В основе дифракционных методов лежит простое соотношение для длины волны и расстояния между рассеивающими атомами.

  • Рентгеноструктурный анализ позволяет определять координаты атомов в трёхмерном пространстве кристаллических веществ от простейших соединений до сложных белков.
  • Дифракция электронов
    • Дифракция медленных электронов
    • Дифракция быстрых электронов
    • С помощью газовой электронографии определяют геометрию свободных молекул в газах, то есть молекул, не подверженных влиянию соседних молекул, как это имеет место в кристаллах.
    • Дифракция отражённых электронов — кристаллографический метод, применяемый в растровом электронном микроскопе.
  • Дифракционным методом является также нейтронография, в основе которой лежит рассеяние нейтронов на ядрах атомов, в отличие от первых двух методов, где используется рассеяние на электронных оболочках.

Дифракция в фотографии[править | править код]

Дифракцию можно наблюдать в фотографии: образование оптической системой пятна рассеяния, диска Эйри, боке, закрытие диафрагмы (относительного отверстия) приводит к увеличению глубины резкости (ГРИП). Нужно отметить, что для каждой фотокамеры существует своя граница, до которой можно регулировать диафрагму, не опасаясь отрицательного эффекта дифракции, а так же дифракционный предел[6][7].

См. также[править | править код]

  • Интерференция
  • Рефракция
  • Рассеяние волн

Примечания[править | править код]

  1. Ландсберг Г. С. Оптика. — М. : Наука, 1976. — С. 346.
  2. ↑ В явлении рассеяния на мелких неоднородностях среды сказывается не только экранирование фронта волны, но и свойства самой неоднородности (скажем, водяной капли), определяющие индикатрису рассеяния (эффект Ми), что рассматривается, например, в научной дисциплине «Оптика атмосферы» в разделе, связанном с аэрозолем.
  3. ↑ Боровиков В. А., Кинбер Б. Е. Геометрическая теория дифракции. М.: Связь, 1978, 247 с.
  4. Ландсберг Г. С. §138. Дифракция при косом падении света на решётку // Элементарный учебник физики. — 13-е изд. — М.: Физматлит, 2003. — Т. 3. Колебания и волны. Оптика. Атомная и ядерная физика. — С. 347—348. — 656 с. — ISBN 5922103512.
  5. ↑ John M. Cowley (1975) Diffraction physics (North-Holland, Amsterdam) ISBN 0-444-10791-6
  6. ↑ Lens Diffraction & Photography // Cambridge in Colour
  7. ↑ Таблица характеристик матриц цифровых фотоаппаратов Архивная копия от 18 августа 2013 на Wayback Machine

Литература[править | править код]

  • Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
  • Сивухин Д. В. Общий курс физики. — М.. — Т. IV. Оптика.
  • И. Г. Кондратьев, Г. Д. Малюжинец. Дифракция волн // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия (т. 1—2); Большая Российская энциклопедия (т. 3—5), 1988—1999. — ISBN 5-85270-034-7.

Ссылки[править | править код]

  •  Учебный фильм «Дифракция света»

Источник

Определение 1

Дифракция света – это явление отклонения света от прямолинейного направления его распространения во время прохождения рядом с препятствиями.

Из опыта видно, что определенные условия влияют на захождение геометрической тени на область.

Когда на пути встречается препятствие в виде диска, шарика или круглого отверстия, тогда экран, расположенный на большом расстоянии, покажет дифракционную картину, то есть систему чередующихся светлых и темных колец. При отверстии линейного характера (щели или нити) экран показывает параллельные дифракционные полосы.

Принцип Гюйгенса-Френеля

Существование дифракционных явлений было задолго до времен Ньютона. Объяснение, основанное на корпускулярной теории, не давало должных результатов. Одним из первых объяснений явления дифракции, основанное на волновых представлениях, было дано Т. Юнгом. Еще в 1818 году была известна и развита количественная теория дифракционных явлений О. Френеля. Принцип Гюйгенса был заложен в основу. Он только дополнил при помощи идеи об интерференции вторичных волн.

Первоначальный вид данного принципа давал возможность нахождения положения фронтов в последующие моменты времени, иначе говоря, определял направление распространения волны. Это и есть принцип геометрической оптики. Впоследствии гипотеза Гюйгенса об огибающих вторичных волнах были заменены Френелем с помощью физически ясного положения, тогда вторичные волны в точке наблюдения интерферировали друг с другом.

Принципом Гюйгенса-Френеля считалась гипотеза, которая была со временем подтверждена. При решении задач, где необходимо использовать данный принцип, получение результата достаточно точное. На иллюстрации изображен принцип Гюйгенса-Френеля.

Рисунок 3.8.1 Принцип Гюйгенса-Френеля. ∆S1 и ∆S2– элементы волнового фронта, n1→ и n2→ — заданные нормали.

Предположим, что поверхность S – положение волнового фронта в некоторый момент. Из теории волн известно, что он является поверхностью, где в заданных точках происходит колебание с одинаковым значением фазы. Волновыми фронтами плоской волны считают семейством параллельных плоскостей, которые перпендикулярно направлены относительно распространения волны. Волновые фронты сферической волны, которые испускаются при помощи точечного источника, относят к концентрическим сферам.

Читайте также:  Какими свойствами обладает pn переход

Для определения колебания в заданной точке P, которое вызвано волной, используя принцип Френеля, находят колебания, которые вызваны в этой точке с помощью отдельных вторичных волн, которые приходят от элементов поверхности S (∆S1, ∆S2 и так далее). Далее следует произвести сложение колебаний, учитывая амплитуды и фазы. Элементы, загороженные препятствиями, не учитываются при решении.

Для примера ниже приведена дифракционная задача прохождения плоской монохроматической волны, которая исходит от удаленного источника через отверстие с радиусом R непрозрачного экрана.

Рисунок 3.8.2 Дифракция плоской волны на экране, содержащем круглое отверстие.

Р – точка наблюдения, находящаяся на оси симметрии, располагаемого на L расстоянии относительно экрана. По принципу Гюйгенса-Френеля распределить на волновой поверхности вторичные источники, совпадающие с плоскостью отверстия, где волны достигают точки Р. Интерференция волн в этой точке является причиной возникновения результирующего колебания, квадрат амплитуды которого определяется при наличии значений длин волн λ, амплитуды A0падающей волны и расположением элементов.

Чтобы расчеты были облегченными, волновая поверхность падающей волны разбивается на кольцевые зоны, называемыми зонами Френеля, исходя из правила: расстояния от границ соседних зон к точке Р имеют отличие на половину волны.

Иначе говоря, r1=L+λ2, r2=L+2λ2, r3=L+3λ2…

При рассмотрении волновой поверхности исходя из точки Р, тогда получим, что границы зон Френеля будут иметь вид концентрических окружностей. Наглядно это изображено на рисунке.

Рисунок 3.8.3 Границы зон Френеля в плоскости отверстия.

По рисунку 3.8.2 определяем радиусы ρmзон по формуле: ρm=ρm2-L2=mλL+m2λ24≈mλL.

Зоны Френеля. Интерференционный максимум

Из определений раздела оптики имеем, что λ<<L, тогда при решении можно пренебречь вторым подкоренным выражением. Для определения количества зон Френеля, которые укладываются на отверстии, используется формула, включающая в себя значение радиуса R: m=R2λL.

Значение m может быть любым числом. От него зависит результат интерференции вторичных волн, проходящих точку Р. Такие открытые зоны Френеля обладают одинаковым значением площади:

Sm=πρm2-πρm-21=πλL=S1.

По теории равные площади возбуждают колебания с одинаковой амплитудой в точке наблюдения. Но каждая последующая зона угла α, располагаемая между лучом, проводимым к точке наблюдения, и нормалью относительно волновой поверхности, возрастает. Предположения Френеля говорит о том, что при увеличении угла α происходит незначительное уменьшение колебаний, то есть:

A1>A2>A3>…>A1, где Amобозначает амплитуду колебаний, которые были вызваны при помощи m-ой зоны.

Используя приближение, видно, что амплитуда колебаний, которая вызвана определенной зоной, равняется среднему арифметическому соседних зон. Иначе это запишем как Am=Am-1+Am+12.

Отличие от двух соседних точек расстоянием λ2 говорит о том, что колебания, возбуждаемые этими зонами в состоянии противофазы. Соседние волны начинают гасить друг друга, а это приводит к тому, что суммарная амплитуда в точке запишется как:

A=A1–A2+A3–A4+…=A1–(A2–A3)–(A4–A5)–…<A1.

Отсюда делаем вывод, что суммарная амплитуда в точке меньше колебаний, вызванных только при помощи одной зоны Френеля. Если все имеющиеся зоны Френеля являлись открытыми, тогда к точке наблюдения двигалась волна с амплитудой A0, невозмущенная препятствием. Тогда запись принимает вид:

A=A0+A12-A2+A32+A32-A4+A52+…=A12.

Выражения в скобках равняются нулю, значит, амплитуда, вызванная волновым фронтом, равняется половине действий первой зоны.

Когда отверстие непрозрачного экрана дает возможность только одной зоне Френеля быть открытой, тогда наблюдается возрастание амплитуды колебаний в количестве 3 раз, а интенсивности – 4 раз. При открытии двух зон действие становится равным нулю. При наличии непрозрачного экрана с несколькими нечетными открытыми зонами, очевидно, что произойдет резкое возрастание амплитуды. При открытии 1, 3, 5 зон получим, что A=6·A0, I=36·I0.

Определение 2

Полученные пластинки обладают свойством фокусировки света, поэтому их называют зонными пластинками.

Круглый диск дает понять, что при дифракции зоны Френеля от 1 до m будут в закрытом состоянии. Отсюда получаем, что формула амплитуды колебаний примет вид:

A=Am+1-Am+2+Am+3-…=Am+12+Am+12-Am+2-Am+32+…

Иначе можно записать как A=Am+1 2, ибо выражения в скобках будут равняться нулю.

Определение 3

Когда диск может закрыть небольшие зоны, тогда Am + 1≈2A0 и A≈A0, можно наблюдать интерференционный максимум. Иначе его называют пятном Пуассона,которое окружается дифракционными кольцами светлого и темного цвета.

Пример 1

Чтобы углубиться в понятие, необходимо оценить зоны Френеля. Имеется дифракционная картина на экране с расстоянием равным L=1м, а значение длины волны света λ=600нм (красный). Отсюда получим, что радиусом первой зоны является ρ1=Lλ≈0,77мм.

Определение 4

Так как оптический диапазон имеет короткую волну, тогда соответственно зона Френеля также мала. Отчетливее проявление дифракционных явлений заметно при небольшом количестве зон на препятствии.

Получим формулы вида:

m=R2Lλ≥1 или R2≥Lλ.

Название данного соотношения — критерий наблюдения дифракции.

Когда количество зон Френеля из препятствия увеличивается, тогда дифракционные явления становятся незаметными:

m=R2Lλ>>1 или R2>>Lλ.

Определение границы применимости геометрической оптики возможно при помощи заданного неравенства. При выполнении данного условия узкий пучок света может быть сформирован.

Определение 5

Отсюда следует вывод, что волновая оптика – это предельный случай геометрической.

Выше рассмотренный случай относится к дифракции света с удаленным источником, располагаемом на препятствиях округлой формы. При расположении точечного источника света на конечном расстоянии сферически расходящаяся волна должна падать на препятствие. Данный случай усложняет задачу. Тогда построение зон Френеля необходимо выполнять на поверхности сферической формы, показанное на рисунке 3.8.4.

Рисунок 3.8.4Зоны Френеля на сферическом фронте волны.

При расчете видно, что радиусы ρmзон Френеля на волне сферического фронта запишется, как

ρm=aba+bλ.

Выводы по теории Френеля справедливы.

Дифракция и интерференция света применима к любым волнам, так как имеется общность закономерностей. Начало XIX века – это было время, когда ученые только начинали изучать волны, а физическая природа света еще не была раскрыта.

Зоны Френеля. Интерференционный максимум

Рисунок 3.8.5 Модель дифракции света.

Зоны Френеля. Интерференционный максимум

Рисунок 3.8.6 Модель зоны Френеля.

Источник