Какие свойства света подтверждает явление интерференции

Какие свойства света подтверждает явление интерференции thumbnail

У этого термина существуют и другие значения, см. Интерференция.

Интерфере́нция све́та (лат. interferens, от inter — между + -ferens — несущий, переносящий) — интерференция электромагнитных волн (в узком смысле — прежде всего, видимого света) — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной.

Поскольку явление интерференции прямо зависит от длины волны, то при интерференции света, содержащего различные спектральные составляющие (цвета), например, белого света, происходит разделение этих спектральных составляющих, глазом видимые в случае белого света как радужные полосы.

История открытия[править | править код]

Впервые явление интерференции было независимо обнаружено Гримальди (для луча, прошедшего через два близких отверстия), Робертом Бойлем и Робертом Гуком (для интерференции в тонких слоях прозрачных сред, таких как мыльные плёнки, тонкие стенки стеклянных шаров, тонкие листки слюды; они наблюдали при этом возникновение разноцветной окраски; при этом Гук заметил и периодическую зависимость цвета от толщины слоя). Гримальди впервые и связал явление интерференции с идеей волновых свойств света, хотя ещё в довольно туманном и неразвитом виде.

В 1801 году Томас Юнг (1773—1829 гг.), введя «принцип суперпозиции», первым дал достаточно детальное и, по сути, не отличающееся от современного объяснение этого явления и ввёл в научный обиход термин «интерференция» (1803). Он также выполнил демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света (1802); позднее этот опыт Юнга стал классическим.

Интерференция света в тонких плёнках[править | править код]

Интерференция в тонкой плёнке. Альфа — угол падения, бета — угол преломления, жёлтый луч отстанет от оранжевого, они сводятся глазом в один и интерферируют.

Получить устойчивую интерференционную картину для света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источников волн на воде. Атомы испускают свет цугами очень малой продолжительности, и когерентность нарушается. Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга[1]. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света длиной волны , падая перпендикулярно к поверхности плёнки толщиной , отразится дважды — от внутренней и наружной её поверхностей. Если плёнка достаточно тонка, так что её толщина не превышает длину цуга волн падающего света, то на верхней границе раздела сред отражённые лучи будут когерентны и поэтому смогут интерферировать.

Изменение фазы проходящего через плёнку луча, в общем случае, зависит от показателя преломления плёнки и окружающих её сред. Кроме того, надо учитывать, что свет при отражении от оптически более плотной среды меняет свою фазу на половину периода. Так, например, в случае для воздуха ( ≈ ), окружающего тонкую масляную плёнку ( ≈ ), луч, отражённый от внешней поверхности будет иметь сдвиг фазы , а от внутренней — не будет. Интерференция будет конструктивной, если итоговая разница между пройденными этими лучами путями на поверхности плёнки будет составлять полуцелое число длин волн в плёнке .

То есть

Для деструктивной интерференции в данном примере необходимо, чтобы разность фаз между лучами была кратна .

То есть

Полное гашение лучей произойдет для толщин плёнки:

Если  нм, то длина этой волны в масляной плёнке нм.

Интерференция света на мыльном пузыре

При формула даёт результат нм — и это минимальная толщина плёнки для данных условий для образования деструктивной интерференции.

Лучи соседних участков спектра по обе стороны от  нм интерферируют не полностью и только ослабляются. Результирующее усиление одних частей спектра и ослабление других меняет окраску плёнки. Причем малейшие изменения толщины плёнки сразу же выражаются в смещении спектра наблюдаемого цвета — этот эффект легко продемонстрировать на примере с мыльным пузырём.

Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т. д.

Кольца Ньютона[править | править код]

Другим методом получения устойчивой интерференционной картины для света служит использование воздушных прослоек, основанное на одинаковой разности хода двух частей волны: одной — сразу отраженной от внутренней поверхности линзы и другой — прошедшей воздушную прослойку под ней и лишь затем отразившейся. Её можно получить, если положить плосковыпуклую линзу на стеклянную пластину выпуклостью вниз. При освещении линзы сверху монохроматическим светом образуется тёмное пятно в месте достаточно плотного соприкосновения линзы и пластинки, окружённое чередующимися тёмными и светлыми концентрическими кольцами разной интенсивности. Тёмные кольца соответствуют интерференционным минимумам, а светлые — максимумам, одновременно тёмные и светлые кольца являются изолиниями равной толщины воздушной прослойки. Измерив радиус светлого или тёмного кольца и определив его порядковый номер от центра, можно определить длину волны монохроматического света. Чем круче поверхность линзы, особенно ближе к краям, тем меньше расстояние между соседними светлыми или тёмными кольцами[2].

Математическое описание[править | править код]

Интерференция двух плоских волн[править | править код]

Пусть имеются две плоские волны:
  и  

По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой:

Интенсивность задается соотношением:

Откуда с учётом:
 :

Для простоты рассмотрим одномерный случай   и сонаправленность поляризаций волн,
тогда выражение для интенсивности можно переписать в более простом виде:

Интерференционная картина представляет собой чередование светлых и темных полос, шаг которых равен:

Примером этого случая является интерференционная картина в отраженном от поверхностей плоскопараллельной пластинки свете.

Случай неравных частот[править | править код]

В некоторых учебниках и пособиях говорится о том, что интерференция света возможна только для волн, образованных от одного источника света путём амплитудного либо полевого деления волновых фронтов. Это утверждение является неверным. С точки зрения принципа суперпозиции интерференция существует всегда, даже когда интерферируют волны от двух разных источников света. Правильно было бы говорить о наблюдении или возможности наблюдения интерференционной картины. Последняя может быть нестационарна во времени, что приводит к замазыванию и исчезновению интерференционных полос.
Рассмотрим две плоские волны с разными частотами:

  и  

По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой:

Пусть некоторый прибор, обладающий некоторым характерным временем регистрации (экспозиции), фотографирует интерференционную картину. В физической оптике интенсивностью называют усредненный по времени поток световой энергии через единичную площадку ортогональную направлению распространения волны. Время усреднения определяется временем интегрирования фотоприемника, а для устройств, работающих в режиме накопления сигнала (фотокамеры, фотоплёнка и т. п.), временем экспозиции. Поэтому приемники излучения оптического диапазона реагируют на среднее значение потока энергии. То есть сигнал с фотоприемника пропорционален:

Читайте также:  Какие следующие свойства не присущи точному математическому доказательству

где под <> подразумевается усреднение. Во многих научно технических приложениях данное понятие обобщается на любые, в том числе и не плоские волны. Так как в большинстве случаев, например в задачах связанных с интерференцией и дифракцией света, исследуется в основном пространственное положение максимумов и минимумов и их относительная интенсивность, постоянные множители, не зависящие от пространственных координат, часто не учитываются. По этой причине часто полагают:

Квадрат модуля амплитуды задается соотношением:

Откуда, подставляя напряженность электрического поля, получим:

,   где ,   ,  

С учётом определения интенсивности можно перейти к следующему выражению:

[1] ,   где   — интенсивности волн

Взятие интеграла по времени и применение формулы разности синусов даёт следующие выражения для распределения интенсивности:

В итоговом соотношении слагаемое, содержащее тригонометрические множители, называется интерференционным членом. Оно отвечает за модуляцию интенсивности интерференционными полосами. Степень различимости полос на фоне средней интенсивности называется видностью или контрастом интерференционных полос:

Условия наблюдения интерференции[править | править код]

Рассмотрим несколько характерных случаев:

1. Ортогональность поляризаций волн.

При этом  и  . Интерференционные полосы отсутствуют, а контраст равен 0.
Далее, без потери общности, можно положить, что поляризации волн одинаковы.

2. В случае равенства частот волн и контраст полос не зависит от времени экспозиции .

3. В случае   (радиан) значение функции    и интерференционная картина не наблюдается.
Контраст полос, как и в случае ортогональных поляризаций, равен 0

4. В случае   контраст полос существенным образом зависит от разности частот и времени экспозиции.

Общий случай интерференции[править | править код]

При взятии интеграла в соотношении [1] полагалось, что разность фаз не зависит от времени. Реальные же источники света излучают с постоянной фазой лишь в течение некоторого характерного времени, называемого временем когерентности. По этой причине, при рассмотрении вопросов интерференции оперируют понятием когерентности волн. Волны называют когерентными, если разность фаз этих волн не зависит от времени. В общем случае говорят, что волны частично когерентны. При этом поскольку существует некоторая зависимость от времени, интерференционная картина изменяется во времени, что приводит к ухудшению контраста либо к исчезновению полос вовсе. При этом в рассмотрении задачи интерференции, вообще говоря и не монохроматического (полихроматического) излучения, вводят понятие комплексной степени когерентности . Интерференционное соотношение принимает вид

Оно называется общим законом интерференции стационарных оптических полей.

Интерференция отдельных фотонов[править | править код]

Интерференция света происходит не в результате сложения разных фотонов, а в результате интерференции фотона самого с собой.[3] При этом временная когерентность не требуется для формирования статистической интерференционной картины — фотоны могут проходить один за одним с неограниченным периодом следования.[3][4]
В 1909 году английский учёный Джеффри Тейлор провёл опыт с использованием чрезвычайно слабого источника света и установил, что волновое поведение присуще отдельным фотонам.

См. также[править | править код]

  • Дисперсия света
  • Дифракция света
  • Интерференция волн — общее описание интерференции как волнового процесса.
  • Каустика
  • Поляризация волн
  • Цуг волн

Примечания[править | править код]

Литература[править | править код]

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты, — Изд. 4-е, сокр. — М.: «Искусство», 1977.
  • Сивухин Д. В. Общий курс физики. — М.. — Т. IV. Оптика.

Ссылки[править | править код]

  • Интерференция света // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Интерференция света — статья из Физической энциклопедии
  • Flex приложение, демонстрирующее принципы работы интерферометра Фабри-Перо
  • Энергия электромагнитных волн. Интенсивность света
  • Свойства источника света и материала. Типы источников света. Суммарное освещение

Источник

Свет — это электромагнитные волны в интервале частот , воспринимаемых человеческим глазом, т. е. длин волн в интервале 380 — 770 нм.

Свету присущи все свойства электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация. Свет может оказывать давление на вещество, поглощаться средой, вызывать явление фотоэффекта. Имеет конечную скорость распространения в вакууме 300 000 км/с, а в среде скорость убывает.
Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции. Интерференцией света называют пространственное перераспределение светового потока при наложении двух (или нескольких) когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина). Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны. Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее. На второй границе пленки вновь происходит частичное отражение волны (рис. 46). Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути. При разности хода I, кратной целому числу длин волн,
При разности хода, кратной нечетному числу полуволн, , наблюдается интерференционный минимум. Когда выполняется условие максимума для одной длины световой волны, то оно не выполняется для других волн. Поэтому освещенная

белым светом тонкая цветная прозрачная пленка кажется окрашенной. Явление интерференции в тонких пленках применяется для контроля качества обработки поверхностей просветления оптики.
При прохождении света через малое круглое отверстие на экране вокруг центрального светлого пятна наблюдаются чередующиеся темные и светлые кольца; если свет проходит через узкую щель, то получается картина из чередующихся светлых и темных полос.
Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света. Дифракция объясняется тем, что световые волны, приходящие в результате отклонения из разных точек отверстия в одну точку на экране, интерферируют между собой. Дифракция света используется в спектральных приборах, основным элементом которых является дифракционная решетка. Дифракционная решетка представляет собой прозрачную пластинку с нанесенной на ней системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях друг от друга.

Пусть на решетку (рис. 47) падает монохроматический (определенной длины волны) свет. В результате дифракции на каждой щели свет распространяется не только в первоначальном направлении, но и по всем другим направлениям. Если за решеткой поставить собирающую линзу, то на экране в

фокальной плоскости все лучи будут собираться в одну полоску.
Параллельные лучи, идущие от краев соседних щелей, имеют разность хода I = d sin ф, где d — постоянная решетки — расстояние между соответствующими краями соседних щелей, называемое периодом решетки, ср — угол отклонения световых лучей от перпендикуляра к плоскости решетки. При разности хода, равной целому числу длин волн , наблюдается интерференционный максимум для данной длины волны. Условие интерференционного максимума выполняется для каждой длины волны при своем значении дифракционного угла ф. В результате при прохождении через дифракционную решетку пучок белого света разлагается в спектр. Угол дифракции имеет наибольшее значение для красного света, так как длина волны красного света больше всех остальных в области видимого света. Наименьшее значение угла дифракции для фиолетового света.
Опыт показывает, что интенсивность светового пучка, проходящего через некоторые кристаллы, например исландского шпата, зависит от взаимной ориентации двух кристаллов. При одинаковой ориентации кристаллов свет проходит через второй кристалл без ослабления.
Если же второй кристалл повернут на 90°, то свет через него не проходит. Происходит явление поляризации, т. е. кристалл пропускает только такие волны, в которых колебания вектора напряженности электрического поля совершаются в одной плоскости — плоскости поляризации. Явление поляризации доказывает волновую природу света и поперечность световых волн.
Узкий параллельный пучок белого света при прохождении через стеклянную призму разлагается на пучки света разного цвета, при этом наибольшее отклонение к основанию призмы имеют лучи фиолетового цвета. Объясняется разложение белого света тем, что белый свет состоит из электромагнитных волн с разной длиной волны, а показатель преломления света зависит от длины его волны. Показатель преломления связан со скоростью света в среде, следовательно, скорость света в среде зависит от длины волны. Это явление и называют дисперсией света.
На основании совпадения экспериментально измеренного значения скорости электромагнитных волн Максвелл высказал предположение, что свет — это электромагнитная волна. Эта гипотеза подтверждена свойствами, которыми обладает свет.

Читайте также:  Какими свойствами обладает камень оникс

Билет №15

  1. Механические колебания: основные характеристики гармонических колебаний: частота, период, амплитуда; уравнение гармонических колебаний; свободные и вынужденные колебания; резонанс; превращение энергии при колебательном движении.
  2. Дифракция света: явление дифракции света; явления, наблюдаемые при пропускании света через отверстия малых размеров; дифракция на малом отверстии и от круглого экрана. Дифракционная решетка.
  3. Экспериментальное задание: «Измерение влажности воздуха».

Вопрос 1. Колебательное движение. Гармонические колебания. Амплитуда, период, частота и фаза колебаний.

Колебаниями называются любые повторяющиеся движения.

Примеры: ветка дерева на ветру, маятник в часах, поршень в цилиндре двигателя внутреннего сгорания, струна гитары, волны на поверхности моря и т.д.

Свободными называются колебания, возникающие после выведения системы из положения равновесия при последующем отсутствиии внешних воздействий. Эти колебания затухающие.

Например, колебания груза на нити.

Основными характеристиками механических колебаний являются амплитуда, период, частота и фаза колебаний.

Амплитуда – это модуль максимального отклонения тела от положения равновесия.

Период – это время одного полного колебания. (Т, секунды)

Частота – число полных колебаний, совершаемых за единицу времени.(ν, Герцы)

Период и частота связаны формулой:

Простейший вид колебательного движения – гармонические колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса.

Уравнение гармонических колебаний: ,

где амплитуда,

Величина, стоящая под знаком косинуса (угол), называется фазой.

Фаза равна: .

Вынужденные колебания. Резонанс. Зависимость амплитуды колебаний от частоты вынуждающей силы.

Вынужденными называются колебания, происходящие под действием внешней постоянной периодической силы. Они незатухающие.

Примеры: поршень в цилиндре двигателя автомобиля, игла в швейной машине, качели, если их постоянно раскачивают.

При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называется резонансом.

Если плавно увеличивать частоту внешней силы, то амплитуда колебаний тела растёт. Она достигает максимума, когда внешняя сила действует в такт со свободными колебаниями тела. При дальнейшем увеличении амплитуда установившихся колебаний опять уменьшается. При очень больших частотах внешней силы амплитуда стремится к нулю, т.к. тело вследствие своей инертности не успевает заметно смещаться за малые промежутки времени и «дрожит на месте».

Явление резонанса может быть причиной разрушения машин, зданий, мостов. Поэтому двигатели в машинах устанавливают на специальных амортизаторах, а воинским подразделениям при движении по мосту запрещается идти «в ногу».

Резонанс – это явление резкого увеличения амплитуды колебания при совпадении собственной частоты колеблющегося тела и внешней периодической силы. (Например: можно с помощью резонанса вытащить машину из ямы. Несколько человек сначала раскачивают её, а потом в нужный момент по команде выталкивают). Явление резонанса учитывается в технике. При строительстве мостов и других сооружений, которые подвержены механическим колебаниям и действию вешней силы. Например: при переходе подвесного моста солдатам дается команда –«Вольно!» Существует несколько колебательных систем – математический маятник (шарик на тонкой длинной нити) и пружинный маятник (тело на пружине).

Вопрос 2. Волновые свойства света.

Свет – это электромагнитные волны с длиной волны от 4٠10-7 м до 8٠10-7 м.

Скорость света в вакууме равна 3٠108 м/с.

Основные волновые свойства света: интерференция и дифракция.

Интерференция – это сложение двух световых волн, в результате которого в одних точках пространства происходит усиление амплитуды результирующей волны, а в других – гашение волн.

Усиление света произойдёт в том случае, если одна световая волна отстанет от другой на целое число длин волн (условие максимумов). или ,

где ,

Если же вторая волна отстанет от первой на половину длины волны или на нечётное число полуволн, то произойдёт ослабление света (условие минимумов).

где

Для наблюдения интерференции необходимо, чтобы волны были когерентными, т.е. имели одинаковую частоту и постоянную разность фаз.

Когерентные волны образуются при прохождении света через тонкие плёнки или стеклянные пластинки. Этим объясняется окраска мыльных пузырей и масляных плёнок на воде, хотя мыльный раствор и масло бесцветны.

Дифракция – это отклонение света от прямолинейного распространения и огибание волнами препятствий.

Дифракция проявляется особенно отчётливо, если размеры препятствий меньше длины волны или сравнимы с ней. Т.к. длина световой волны очень мала (~10-7 м), то размеры препятствий тоже должны быть маленькими.

Поэтому для наблюдения дифракции света используют дифракционную решётку.

Дифракционная решётка – прозрачная пластинка с нанесёнными на неё непрозрачными полосками. На 1 мм может быть нанесено сотни и даже тысячи штрихов.

С помощью дифракционной решётки проводят очень точные измерения длины волны.

Читайте также:  Каким свойством обладают высоты треугольника

Билет №16

  1. Механические волны: распространение колебаний в упругих средах; поперечные или продольные волны; длина волны; связь длины волны со скоростью ее распространения и периодом (частотой); свойства волн; звуковые волны.
  2. Гипотеза Планка о квантах; фотоэффект; опыты А. Г. Столетова; уравнение Эйнштейна для фотоэффекта; фотон.
  3. Задача на применение графиков изопроцесов.

Вопрос 1. Механические волны. Продольные и поперечные волны. Длина волны, её связь со скоростью распространения волны и частотой колебаний.

Волной называют колебания, распространяющиеся в пространстве с течением времени.

Например, волны на поверхности воды, звуковые волны, волны, волны землетрясений, пробегающие по резиновому шнуру и т. д.

Волны переносят энергию из одной точки пространства в другую. Энергия поступает от источника, возбуждающего колебания.

Если колебания происходят вдоль направления распространения волны, то волна называется продольной. Пример: звуковые волны.

Если колебания происходят перпендикулярно направлению распространения волны, то волна называется поперечной. Пример: волны на поверхности воды.

Длина волны – это расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

Длина волны обозначается буквой λ, измеряется в метрах.

Связь между длиной волны λ, скоростью волны υ и периодом колебаний T определяется формулой: .

Т.к. , то скорость волны связана с частотой колебаний уравнением: .

Вопрос 2. Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Кванты света. Применение фотоэффекта в технике.

Фотоэффект – это вырывание электронов из вещества под действием света.

Фотоэффект был открыт в 1887 г. немецким физиком Герцем и изучался экспериментально русским учёным Столетовым.

Столетов в опытах использовал стеклянный вакуумный баллон с впаянными в него двумя электродами. На электроды подавалось напряжение, а отрицательный электрод освещался светом. Под действием света из электрода вырывались электроны, которые двигались ко второму электроду. Т.е. создавался электрический ток.

В результате опытов Столетов получил следующие законы:

1. Количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны.

2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.

Объяснение фотоэффекта было дано в 1905 г. Эйнштейном.

Он использовал гипотезу немецкого физика Планка: свет излучается и поглощается отдельными порциями – квантами.

Уравнение Эйнштейна: энергия порции света идёт на совершение работы выхода электрона из металла и на сообщение электрону кинетической энергии .

Приборы, в основе действия которых лежит фотоэффект, называются фотоэлементами.

Они используются в кино для воспроизведения звука, в фотометрии для измерения освещённости, в калькуляторах, в солнечных батареях и т.д.

Билет №17

  1. Атомистическая гипотеза строение вещества и ее экспериментальные доказательства. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии теплого движения частиц.
  2. Законы отражения и преломления света; полное внутреннее отражение; линзы; формула тонкой линзы; оптические приборы.
  3. Задача на определение работы газа с помощью графика зависимости давления газа от его объема.

Вопрос 1. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Использование свойств газов в технике.

Идеальный газ – это газ, взаимодействие между молекулами которого пренебрежимо мало, т.к. молекулы находятся далеко друг от друга.

В реальности к идеальному газу приближены разреженные газы.

Основными параметрами идеального газа являются давление, объём и температура.

Давление газа создаётся ударами молекул о стенки сосуда и растёт с увеличением температуры.

Для расчёта давления было получено следующее уравнение:

основное уравнение МКТ идеального газа.

Данное уравнение можно переписать в виде: где .

Свойства газов легко сжиматься и расширяться используются во многих технических устройствах: двигателе внутреннего сгорания, паровой турбине, насосах, при проектировании судов и др.

17.Температура и её физический смысл. Измерение температуры.

Температура – это макроскопический параметр, характеризующий состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Если температуры тел различны, то при их соприкосновении будет происходить обмен энергией. Тело с большей температурой будет отдавать энергию телу с меньшей температурой. Разность температур тел указывает направление теплообмена между ними.

Для измерения температуры используют термометры. В термометрах используется зависимость объёма жидкости (ртути или спирта) от температуры.

При градуировке термометра обычно за начало отсчёта (0) принимают температуру тающего льда; второй постоянной точкой (100) считают температуру кипения воды при нормальном атмосферном давлении. Отрезок между 0 и 100 делят на 100 равных частей, называемых градусами. На этом основана шкала Цельсия.

Температура, измеряемая в 0С, обозначается буквой t.

Существует также другая шкала – шкала Кельвина (абсолютная шкала температур).

Нулевая температура по этой шкале соответствует абсолютному нулю, а каждая единица температуры равна градусу по шкале Цельсия.

Абсолютный нуль – это предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объёме или объём идеального газа стремится к нулю при неизменном давлении.

Абсолютному нулю соответствует температура

Температура, измеряемая в Кельвинах (К), обозначается буквой T.

Вопрос 2. Природа света. Законы отражения и преломления света.

Первые научные гипотезы о природе света были высказаны в XVII в.

Ньютон в 1672 г. высказывал предположение о корпускулярной природе света (свет – поток частиц).

Против корпускулярной теории света выступали современники Ньютона Гук и Гюйгенс, разработавшие волновую теорию света (свет – волны).

В настоящее время говорят, что свет имеет двойственную природу. В одних опытах обнаруживаются его волновые свойства, а в других – корпускулярные.

Закон отражения света. Падающий луч, отражённый луч и перпендикуляр, проведённый в точку падения, лежат в одной плоскости. Угол падения равен углу отражения (α=β).

Закон преломления света. Падающий луч, преломлённый луч и перпендикуляр, проведённый в точку падения, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.

, где

Если обозначить — скорость света в первой среде, а — скорость света во второй среде, то .

При переходе из оптически более плотной среды в оптически менее плотную среду угол преломления β оказывается больше угла падения α. И наоборот.

Билет №18

  1. Связь между давлением идеального газа и средней кинетической энергией теплового движения молекул. Уравнение состояния идеального газа. Изопроцессы.
  2. Постулаты специальной теории относительности (СТО). Полная энергия. Энергия покоя. Релятивистский импульс.
  3. Задача на определение модуля Юнга материала, из которого изготовлена проволока.

Источник