Какие свойства сложения применялись
Математика, 2 класс
Урок № 16. Свойства сложения. Применение переместительного и сочетательного свойств сложения
Перечень вопросов, рассматриваемых в теме:
— Что такое сочетательное свойство сложения?
-В каких случаях можно использовать свойства сложения?
Глоссарий по теме:
Переместительное свойство сложения: слагаемые можно переставлять местами, при этом значение суммы не изменится.
Сочетательное свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М.А.Бантова, Г.В.Бельтюкова и др. –8-е изд. – М.: Просвещение, 2017. – с.44-47
2. Математика. КИМы. 2 кл: учебное пособие для общеобразовательных организаций/ Глаголева Ю.И., Волкова А.Д.-М.: Просвещение, Учлит, 2017, с.18, 19
3. Математика. Проверочные работы. 2 кл: учебное пособие для общеобразовательных организаций/ Волкова С.И.-М.: Просвещение, 2017.- с.28, 29
Теоретический материал для самостоятельного изучения
Сравним выражения и их значения:
6+9 *9+6
45+5*5+45
Сумма чисел шесть и девять равна сумме чисел девять и шесть.
Сумма чисел сорок пять и пять равна сумме чисел пять и сорок пять.
6+9 =9+6
45+5=5+45
Что заметили?
Значения выражений равны, так как от перестановки слагаемых значение суммы не меняется. Вспомним, как в математике называется данное свойство сложения?
Правильно, оно называется переместительным свойством сложения.
Решим задачу.
В школьном спортзале 3 волейбольных мяча, 5 баскетбольных мячей и 4 футбольных мяча. Сколько всего мячей в спортзале?
Первый способ решения.
Сначала узнаем, сколько волейбольных и баскетбольных мячей, затем прибавим число футбольных мячей. Запишем: к сумме чисел три и пять прибавить четыре, получится двенадцать.
(3+5)+4=12 (м.)
Второй способ решения.
Прибавим к числу волейбольных мячей сумму баскетбольных и футбольных мячей. Запишем: к трем прибавить сумму чисел пять и четыре равно двенадцать.
3+(5+4)=12 (м.)
В обоих случаях получили одинаковый результат, значит, выражения равны между собой. Можем записать так: (3+5)+4=3+(5+4)
Теперь ты знаешь еще одно свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой. Это свойство называется сочетательным свойством сложения.
Знание этих двух свойств сложения позволит нам решать примеры на сложение удобным способом.
Решим выражение: 1+7+9+3=?
Мы знаем, что слагаемые можно менять местами и соседние слагаемые заменять их суммой. Воспользуемся свойствами сложения и найдем сумму.
1+7+9+3= (1+9)+(7+3)=10+10=20
В данном случае удобно сложить попарно 1 и 9, 7 и 3. А затем сложить полученные результаты. Получим 20.
Делаем вывод: используя переместительное и сочетательное свойства сложения можно складывать числа в любом порядке, как удобнее.
Тренировочные задания.
1. Вычислите суммы удобным способом
30 + 3 + 7 + 40 = _________ 4 + 10 + 6 + 70=_______________
Правильный ответ:
1. 30 + 3 + 7 + 40 = (3+7)+(30+40)=80 2. 4 + 10 + 6 + 70= (10+70)+(4+6)
2. Совместите название математического свойства с его значением и выражением
Результат сложения не изменится, если соседние слагаемые заменить их суммой.
Слагаемые можно переставлять местами, при этом значение суммы не изменится.
9+5+1+5 = (9+1) + (5+5)
9+6 = 6 + 9
Правильный ответ:
Результат сложения не изменится, если соседние слагаемые заменить их суммой.
Слагаемые можно переставлять местами, при этом значение суммы не изменится.
9+5+1+5 = (9+1) + (5+5)
9+6 = 6 + 9
Сложение натуральных чисел.
Прибавить одно число к другому довольно просто. Рассмотрим пример, 4+3=7. Это выражение означает, что к четырем единицам добавили три единицы и в итоге получили семь единиц.
Числа 3 и 4, которые мы сложили называется слагаемыми. А результат сложение число 7 называется суммой.
Сумма — это сложение чисел. Знак плюс “+”.
В буквенном виде этот пример будет выглядеть так:
a+b=c
Компоненты сложения:
a — слагаемое, b — слагаемые, c – сумма.
Если мы к 3 единицам добавим 4 единицы, то в результате сложения получим тот же результат он будет равен 7.
Из этого примера делаем вывод, что как бы мы не меняли местами слагаемые ответ остается неизменным:
4+3=3+4
Называется такое свойство слагаемых переместительным законом сложения.
Переместительный закон сложения.
От перемены мест слагаемых сумма не меняется.
В буквенной записи переместительный закон выглядит так:
a+b=b+a
Если мы рассмотрим три слагаемых, например, возьмем числа 1, 2 и 4. И выполним сложение в таком порядке, сначала прибавим 1+2, а потом выполним сложение к получившейся сумме 4, то получим выражение:
(1+2)+4=7
Можем сделать наоборот, сначала сложить 2+4, а потом к полученной сумме прибавить 1. У нас пример будет выглядеть так:
1+(2+4)=7
Ответ остался прежним. У обоих видов сложения одного и того же примера ответ одинаковый. Делаем вывод:
(1+2)+4=1+(2+4)
Это свойство сложения называется сочетательным законом сложения.
Переместительный и сочетательный закон сложения работает для всех неотрицательных чисел.
Сочетательный закон сложения.
Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.
(a+b)+c=a+(b+c)
Сочетательный закон работает для любого количества слагаемых. Этот закон мы используем, когда нам нужно сложить числа в удобном нам порядке. Например, сложим три числа 12, 6, 8 и 4. Удобнее будет сначала сложить 12 и 8, а потом прибавить к полученной сумме сумму двух чисел 6 и 4.
(12+8)+(6+4)=30
Свойство сложения с нулем.
При сложении числа с нулем, в результате сумма будет тем же самым числом.
3+0=3
0+3=3
3+0=0+3
В буквенном выражение сложение с нулем будет выглядеть так:
a+0=a
0+a=a
Вопросы по теме сложение натуральных чисел:
Таблица сложения, составьте и посмотрите как работает свойство переместительного закона?
Таблица сложения от 1 до 10 может выглядеть так:
Второй вариант таблицы сложения.
Если посмотрим на таблицы сложения, видно как работает переместительный закон.
В выражении a+b=c суммой, что будет являться?
Ответ: сумма — это результат сложения слагаемых. a+b и с.
В выражении a+b=c слагаемыми, что будет являться?
Ответ: a и b. Слагаемые – это числа, которые мы складываем.
Что произойдет с числом если к нему прибавить 0?
Ответ: ничего, число не поменяется. При сложении с нулем, число остается прежнем, потому что нуль это отсутствие единиц.
Сколько слагаемых должно быть в примере, чтобы было можно применить сочетательный закон сложения?
Ответ: от трех слагаемых и больше.
Запишите переместительный закон в буквенном выражении?
Ответ: a+b=b+a
Примеры на задачи.
Пример №1:
Запишите ответ у представленных выражений: а) 15+7 б) 7+15
Ответ: а) 22 б) 22
Пример №2:
Примените сочетательный закон к слагаемым: 1+3+5+2+9
1+3+5+2+9=(1+9)+(5+2)+3=10+7+3=10+(7+3)=10+10=20
Ответ: 20.
Пример №3:
Решите выражение:
а) 5921+0 б) 0+5921
Решение:
а) 5921+0 =5921
б) 0+5921=5921
Ñëîæåíèå íàòóðàëüíûõ ÷èñåë îñíîâûâàåòñÿ íà ñëîæåíèè 2-õ íàòóðàëüíûõ ÷èñåë. Ñëîæåíèå 3-õ è áîëüøå ÷èñåë âûãëÿäèò êàê ïîñëåäîâàòåëüíîå ñëîæåíèå 2-õ ÷èñåë. Êðîìå òîãî, â ñèëó ïåðåìåñòèòåëüíîãî è ñî÷åòàòåëüíîãî ñâîéñòâà ñëîæåíèÿ, ÷èñëà, êîòîðûå ñêëàäûâàþòñÿ ìîæíî ìåíÿòü ìåñòàìè è çàìåíÿòü ëþáûå 2 èç ñêëàäûâàåìûõ ÷èñåë èõ ñóììîé.
Äåéñòâèå ñëîæåíèÿ ìàëåíüêèõ íàòóðàëüíûõ ÷èñåë ìîæíî ïðîèçâîäèòü â óìå ëèáî íà áóìàãå ïî ðàçðÿäàì ñëàãàåìûõ, ó÷èòûâàÿ òî, ÷òî êàæäûé ïîëíûé äåñÿòîê ðàçðÿäà ýòî 1 åäèíèöà ñëåäóþùåãî (áîëåå âûñîêîãî) ðàçðÿäà.
Íàïðèìåð: 235 + 672 = (200 + 600) + (30 + 70) + (5 + 2) = 907.
Ñêëàäûâàòü áîëüøèå (ìíîãîçíà÷íûå) íàòóðàëüíûå ÷èñëà ëó÷øå ìåòîäîì ñëîæåíèÿ â ñòîëáèê.
Ñî÷åòàòåëüíîå ñâîéñòâî ñëîæåíèÿ äîêàçûâàåò, ÷òî ðåçóëüòàò ñëîæåíèÿ 3-õ ÷èñåë a, b è c íå çàâèñèò îò ìåñòà ñêîáîê. Ò.î., ñóììû a+(b+c) è (a+b)+c ìîæíî çàïèñàòü êàê a+b+c. Ýòî âûðàæåíèå íàçûâàåòñÿ ñóììîé, à ÷èñëà a, b è c – ñëàãàåìûìè.
Àíàëîãè÷íî, â ñèëó ñî÷åòàòåëüíîãî ñâîéñòâà ñëîæåíèÿ, ðàâíû ñóììû (a+b)+(c+d), (a+(b+c))+d, ((a+b)+c)+d, a+(b+(c+d)) è a+((b+c)+d). Ò.å., èòîã ñëîæåíèÿ 4-õ íàòóðàëüíûõ ÷èñåë a, b, c è d íå çàâèñèò îò ìåñòà ðàñïîëîæåíèÿ ñêîáîê.  àêîì ñëó÷àå ñóììó çàïèñûâàþò êàê: a+b+c+d.
Åñëè â âûðàæåíèè íå ðàññòàâëåíû ñêîáêè, à îíî ñîñòîèò èç áîëåå,÷åì äâóõ ñëàãàåìûõ, âû ñàìè ìîæåòå ðàññòàâèòü ñêîáêè êàê âàì áîëüøå íðàâèòñÿ è, ïîñëåäîâàòåëüíî ñëîæèòü ïî 2 ÷èñëà, ïîëó÷èâ îòâåò. Ò.å., ïðîöåññ ñëîæåíèÿ 3-õ è áîëåå ÷èñåë ñâîäèòñÿ ê ïîñëåäîâàòåëüíîé çàìåíå 2-õ ñîñåäíèõ ñëàãàåìûõ èõ ñóììîé.
Äëÿ ïðèìåðà âû÷èñëèì ñóììó 1+3+2+1+5. Ðàññìîòðèì 2 ñïîñîáà èç áîëüøîãî êîëè÷åñòâà ñóùåñòâóþùèõ.
Ïåðâûé ñïîñîá. Íà êàæäîì øàãå çàìåíÿåì ïåðâûå 2 ñëàãàåìûõ ñóììîé.
Ò.ê. ñóììà ÷èñåë 1 è 3 ðàâíà 4, çíà÷èò:
1+3+2+1+5=4+2+1+5 (ìû çàìåíèëè ñóììó 1+3 ÷èñëîì 4).
Ò.ê. ñóììà 4 + 2 ðàâíà 6, òî:
4+2+1+5=6+1+5.
Ò.ê. ñóììà ÷èñåë 6 è 1 ðàâíà 7, òî:
6+1+5=7+5
È ïîñëåäíèé øàã, 7+5=12. Ò.î.:
1+3+2+1+5=12
Ìû ïðîèçâåëè ñëîæåíèå, ðàññòàâèâ ñêîáêè ñëåäóþùèì îáðàçîì: (((1+3)+2)+1)+5.
Âòîðîé ñïîñîá. Ðàññòàâèì ñêîáêè òàêèì îáðàçîì: ((1+3)+(2+1))+5.
Òàê êàê 1+3=4, à 2+1=3, òî:
((1+3)+(2+1))+5=(4+3)+5
Ñóììà 4-õ è 3-õ ðàâíà 7, çíà÷èò:
(4+3)+5=7+5.
È ïîñëåäíèé øàã: 7+5=12.
Íà ðåçóëüòàò ñëîæåíèÿ 2-õ, 3-õ, 4-õ è ò.ä. ÷èñåë íå âëèÿåò íå òîëüêî ðàññòàíîâêà ñêîáîê, íî è ïîðÿäîê, çàïèñûâàíèÿ ñëàãàåìûõ. Ò.î., ïðè ñóììèðîâàíèè íàòóðàëüíûõ ÷èñåë ìîæíî èçìåíÿòü ìåñòà ñëàãàåìûõ. Èíîãäà ýòî äàåò áîëåå ðàöèîíàëüíûé ïðîöåññ ðåøåíèÿ.
Ñâîéñòâà ñëîæåíèÿ íàòóðàëüíûõ ÷èñåë.
- ×òîáû ïîëó÷èòü ÷èñëî, ñëåäóþùåå çà íàòóðàëüíûì íàäî ïðèáàâèòü ê íåìó åäèíèöó.
Íàïðèìåð: 3 + 1 = 4; 39 + 1 = 40.
- Ïðè ïåðåñòàíîâêå ìåñò ñëàãàåìûõ ñóììà íå ìåíÿåòñÿ:
3 + 4 = 4 + 3 = 7 .
Ýòî ñâîéñòâî ñëîæåíèÿ íàçûâàåòñÿ ïåðåìåñòèòåëüíûì çàêîíîì.
- Ñóììà 3-õ è áîëåå ñëàãàåìûõ íå èçìåíèòñÿ îò èçìåíåíèÿ ïîðÿäêà ñëîæåíèÿ ÷èñåë.
Íàïðèìåð: 3 + ( 7 + 2 ) = ( 3 + 7 ) + 2 = 12 ;
çíà÷èò: a + ( b + c ) = ( a + b ) + c .
Ïîýòîìó âìåñòî 3 + ( 7 + 2 ) ïèøóò 3 + 7 + 2 è ñêëàäûâàþò ÷èñëà ïî ïîðÿäêó, ñëåâà íà ïðàâî.
Ýòî ñâîéñòâî ñëîæåíèÿ íàçûâàþò ñî÷åòàòåëüíûì çàêîíîì ñëîæåíèÿ.
- Ïðè ïðèáàâëåíèè ê ÷èñëó ñóììà ðàâíà ñàìîìó ÷èñëó.
3 + 0 = 3 .
È íàîáîðîò, ïðè ïðèáàâëåíèè ÷èñëà ê íóëþ, ñóììà ðàâíà ÷èñëó.
0 + 3 = 3;
çíà÷èò: a + 0 = a ; 0 + a = a .
- Åñëè òî÷êà C ðàçäåëÿåò îòðåçîê ÀÂ, òî ñóììà äëèí îòðåçêîâ AC è CB ðàâíà äëèíå îòðåçêà AB.
AB = AC + CB.
Åñëè AC = 2 ñì à CB = 3 ñì ,
òî AB = 2 + 3 = 5 ñì.
Конспект урока по математике
Тема: Свойства сложения
Цель: повторить и закрепить переместительное свойство сложения, ознакомить с сочетательным свойством сложения.
Задачи:
- Учить использовать свойства сложения для упрощения вычислений.
- Тренировать вычислительные навыки.
- Повторить знания о прямом угле.
- Развивать интерес к математике.
Ход урока:
- Организационный момент.
- Устный счет.
Найти сумму 138 и 22 (160)
485 увеличить на 15 (500)
К 333 прибавить 67 (400)
Первое число равно 78. второе больше его на 22. Чему равно второе число? (100)
Один ученик зачитывает правильные ответы, остальные исправляют у себя ошибки.
- Постановка учебной задачи. Открытие нового знания.
Ребята, давайте решим такой пример:
30+18=48
А теперь решите такой пример:
18+30=48
Сколько получится?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одно и то же действие, одинаковый результат; отличаются: порядок следования слагаемых)
Что можно заметить? (30+18=18+30)
Решим еще одну пару примеров
78+8=86
8+78=86
Сколько получилось в первом примере?
Сколько во втором?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одно и то же действие, одинаковый результат; отличаются: порядок следования слагаемых)
Какой можем сделать вывод? (78+8=8+78)
Мы решили две пары примеров? Что заметили? (результат не изменился от порядка следования слагаемых)
А если будем складывать другие числа, то что-нибудь изменится?
Записать на доске равенство
(a+b)=(a+b)
Почему я записала здесь буквами А и В?
Как мы можем сформулировать это свойство? (От перестановки мест слагаемых сумма не меняется)
Это, ребята, переместительное свойство действия сложения.
Сейчас мы решим еще несколько примеров.
(18+19)+1=38
Какое действие первое? (в скобках)
Какое второе?
18+(19+1)=38
Какое действие первое?
Какое второе?
Сколько получилось?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одни и те же действия, одинаковый результат, порядок следования слагаемых; отличаются: порядок выполнения действий)
Какой пример было легче вычислять? Почему? (второй, потому что к круглому числу прибавлять проще)
23+(17+46)=86
Какое действие первое?
Какое второе?
(23+17)+46=86
Какое действие первое?
Какое второе?
Сколько получилось?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одни и те же действия, одинаковый результат, порядок следования слагаемых; отличаются: порядок выполнения действий)
Какой пример было легче вычислять? (второй, потому что к круглому числу прибавлять проще)
Нарушали ли мы порядок следования слагаемых? (нет)
Как вы думаете, всегда ли это так? Для любых ли чисел?
Как мы можем сформулировать это свойство? (от изменения порядка действий сложения сумма не меняется)
Что можно заметить? (23+(17+46)=(23+17)+46)
(a+b)+c=a+(b+c)
Это свойство называется сочетательным.
Откройте учебник на странице … и прочитайте, как наука математика формулирует только что изученные нами свойства сложения.
- Первичное закрепление.
Упражнение № 2. работа детей у доски.
(11+74)+18+(89+26) (34+166)+(18+72)=290 (П и С)
34+18+166+72 (97+3)+95=195 (С)
798+15+2 (11+89)+(74+26)+18=218 (П и С)
97+(3+95) (21+29)+(23+27)+25=125 (П и С)
21+23+25+27+29 (798+2)+15=815 ()
- Итог урока:
Что нового сегодня мы узнали?
О свойствах какого действия мы узнали?
В чем заключается переместительное свойство сложения?
В чем заключается сочетательное свойство сложения?
Для чего нужны эти свойства?
- Домашнее задание.
Упражнение № 4 (2, 3), упражнение № 5
Числа, действия с числами
Имея общее представление о сложении натуральных чисел, можно отметить ряд результатов, присущих этому действию. Эти результаты называют свойствами сложения натуральных чисел. В этой статье мы подробно разберем свойства сложения натуральных чисел, запишем их при помощи букв и приведем поясняющие примеры.
Переместительное свойство сложения двух натуральных чисел.
Начнем с самого очевидного свойства сложения двух натуральных чисел – переместительного свойства. Чтобы хорошо понять переместительное свойство сложения натуральных чисел, рассмотрим следующий пример.
Представим такую ситуацию: с яблони упали 2 яблока и еще 3 яблока. А теперь представим такую ситуацию: с яблони упали 3 яблока и еще 2 яблока. И в первом и во втором случае мы увидим на земле одинаковое количество яблок. То есть, если мы сложим 2 и 3 яблока, то получим такой же результат, как и при сложении 3 и 2 яблок.
В принятых нами обозначениях в первом случае имеем сумму 2+3, а во втором — сумму 3+2. Эти суммы равны, то есть, 2+3=3+2 (подобные записи представляют собой равенство двух числовых выражений, и означают равенство значений этих выражений), а их записи отличаются тем, что в них переставлены местами слагаемые.
Рассмотренный пример позволяет сформулировать переместительное свойство сложения: сумма двух чисел не меняется от перемены мест слагаемых. С помощью букв переместительное свойство сложения можно записать так: a+b=b+a, где a и b – произвольные натуральные числа (при необходимости обратитесь к теории из раздела буквенные выражения).
Сочетательное свойство сложения натуральных чисел.
Теперь приведем пример, иллюстрирующий сочетательное свойство сложения натуральных чисел.
Представим ситуацию: с первой яблони упало 1 яблоко, а со второй яблони — 2 яблока и еще 4 яблока. А теперь рассмотрим такую ситуацию: с первой яблони упало 1 яблоко и еще 2 яблока, а со второй яблони упало 4 яблока. Понятно, что на земле и в первом и во втором случае окажется одинаковое количество яблок (что можно проверить пересчетом). То есть, результат сложения числа 1 с суммой чисел 2 и 4 равен результату сложения суммы чисел 1 и 2 с числом 4.
Рассмотренный пример позволяет нам сформулировать сочетательное свойство сложения натуральных чисел: чтобы прибавить к данному числу данную сумму двух чисел, можно к этому числу прибавить первое слагаемое данной суммы и к полученному результату прибавить второе слагаемое данной суммы. Это свойство с помощью букв можно записать так: a+(b+c)=(a+b)+c, где a, b и c – произвольные натуральные числа.
Обратите внимание, что в равенстве a+(b+c)=(a+b)+c присутствуют круглые скобки «(» и «)». Скобки используются в выражениях для указания порядка выполнения действий – сначала выполняются действия в скобках (подробнее об этом написано в разделе порядок выполнения действий). Иными словами, в скобки заключаются выражения, значения которых вычисляются в первую очередь.
В заключении этого пункта отметим, что сочетательное свойство сложения позволяет однозначно определить сложение трех, четырех и большего количества натуральных чисел.
Свойство сложения нуля и натурального числа, свойство сложения нуля с нулем.
Мы знаем, что нуль НЕ является натуральным числом. Так почему же мы решили рассмотреть свойство сложения нуля и натурального числа в этой статье? На это есть три причины. Первая: это свойство используется при сложении натуральных чисел столбиком. Вторая: это свойство используется при вычитании натуральных чисел. Третья: если считать, что нуль означает отсутствие чего-либо, то смысл сложения нуля и натурального числа совпадает со смыслом сложения двух натуральных чисел.
Проведем рассуждения, которые помогут нам сформулировать свойство сложения нуля и натурального числа. Представим, что в ящике нет ни одного предмета (иными словами, в ящике находится 0 предметов), и в него помещают a предметов, где a – любое натуральное число. То есть, сложили 0 и a предметов. Понятно, что после этого действия в ящике стало a предметов. Следовательно, справедливо равенство 0+a=a.
Аналогично, если в ящике находится a предметов и в него добавляют 0 предметов (то есть, не добавляют ни одного предмета), то после этого действия в ящике окажутся a предметов. Таким образом, a+0=a.
Теперь мы можем привести формулировку свойства сложения нуля и натурального числа: сумма двух чисел, одно из которых равно нулю, равна второму числу. Математически это свойство можно записать в виде следующего равенства: 0+a=a или a+0=a, где a – произвольное натуральное число.
Отдельно обратим внимание на то, что при сложении натурального числа и нуля остается верным переместительное свойство сложения, то есть, a+0=0+a.
Наконец, сформулируем свойство сложения нуля с нулем (оно достаточно очевидно и не нуждается в дополнительных комментариях): сумма двух чисел, каждое из которых равно нулю, равна нулю. То есть, 0+0=0.
Теперь пришло время разобраться с тем, как выполняется сложение натуральных чисел.
Список литературы.
- Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
- Математика. Любые учебники для 5 классов общеобразовательных учреждений.
Некогда разбираться?
Закажите решение