Какие свойства растворов называют коллигативными

Какие свойства растворов называют коллигативными thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июля 2017;
проверки требуют 4 правки.

Коллигативные свойства растворов — это свойства растворов, обусловленные только самопроизвольным движением молекул, то есть они определяются не химическим составом, а числом кинетических единиц — молекул в единице объёма или массы[1]. К таким коллигативным свойствам относятся:

  • Понижение упругости растворителя над раствором,
  • Повышение температуры кипения растворов (в сравнении с чистыми растворителями),
  • Понижение температуры замерзания растворов (в сравнении с чистыми растворителями),
  • Возникновение осмотического давления,
  • Диффузия.

Законы Рауля[править | править код]

Первый закон Рауля[править | править код]

Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя.

В 1886 (1887) году Ф. М. Рауль сформулировал закон:

Давление насыщенного пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p = p0 · χр-ль, где
p — давление пара над раствором, Па;
p0 — давление пара над чистым растворителем;
χр-ль —— мольная доля растворителя.

Для растворов электролитов используют несколько другую форму уравнения, позволяющую добавить в неё изотонический коэффициент:

Δp = i · p0 · χв-ва, где
Δp — собственно изменение давления по сравнению с чистым растворителем;
χв-ва — мольная доля вещества в растворе.

Второй закон Рауля[править | править код]

Также Рауль экспериментально доказал, что

повышение температуры кипения раствора по сравнению с температурой кипения растворителя равно и понижение температуры замерзания раствора по сравнению с аналогичным характеризующей величиной для растворителя прямо пропорциональна моляльности раствора, то есть,

ΔTкип/зам= Kэб/кр · mв-ва, где
Kэб/кр — соответственно эбуллиоскопическая (от лат. ebullire — «кипеть» и др.-греч. σκοπέω — «наблюдаю») и криоскопическая (относится к замерзанию) константы, характерные для данного растворителя;
mв-ва — моляльность вещества в растворе.

Осмотическое давление[править | править код]

Рассмотрим ситуацию, при которой частично проницаемая мембрана (то есть, такая, через которую могут проходить лишь мелкие объекты, например, молекулы растворителя, но не крупные — например, молекулы растворённого вещества) разделяет чистый растворитель и раствор (или два раствора с разными концентрациями). Тогда молекулы растворителя находятся практически в равных физических условиях по обе стороны мембраны, однако в более насыщенном растворе некоего вещества их концентрация, разумеется, меньше, чем в более разбавленном (в котором меньше места в растворе занимают молекулы растворённого вещества). Следовательно, со стороны менее насыщенного раствора через мембрану диффундирует большее число молекул, чем с противоположной стороны. А это значит, что растворитель попросту переходит из менее насыщенного раствора в более насыщенный, разбавляя его (выравнивая концентрации обоих растворов) и создавая давление на мембрану. Процесс этот (он называется осмосом) можно прекратить, оказав определённое давление на более насыщенный раствор (например, при помощи поршня) —— это давление и называется осмотическим давлением.

Растворы с одинаковым осмотическим давлением называются изотоническими.

Определить осмотическое давление раствора можно по формуле, полученной в 1886 году Я. Х. Вант-Гоффом:

π = CMв-ва · R · T, где
CMв-ва — молярная концентрация раствора, выраженная в , а не в , как обычно;
R — универсальная газовая постоянная;
T — термодинамическая температура системы.

См. также[править | править код]

  • Осмос

Примечания[править | править код]

  1. Д.А.Фридрихсберг. Курс коллоидной химии. — Ленинград «Химия», 1984. — С. 368.

Литература[править | править код]

  1. Ершов Ю.А. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое,стериотипное. — Москва: Высшая школа, 2010. — 559 с.

Источник

После изучения этой темы вы должны:

— иметь представления о следующих понятиях и явлениях:

— осмос, осмотическое давление (закон Вант-Гоффа), его роль.

— закон Рауля о давлении паров растворителя над раствором и изменении температур кипения и замерзания растворов (следствия закона Рауля).

Коллигативные свойства – это свойства, которые не зависят от природы частиц растворенного вещества, а зависят только от концентрации частиц в растворе.

Коллигативными свойствами разбавленных растворов являются:

— скорость диффузии

— осмотическое давление (Закон Вант-Гоффа)

— давление насыщенного пара растворителя над раствором (Закон Рауля)

— температура кипения раствора (1следствие из закона Рауля)

— температура кристаллизации раствора (2 следствие из закона Рауля)

Читайте также:  Какими физическими свойствами обладает нефть

Свойства неэлектролитов

Осмосом называется самопроизвольное перемещение молекул растворителя через полупроницаемую мембрану из раствора меньшей концентрации в раствор большей концентрации. В результате протекания осмоса возникает осмотическое давление раствора. Гипертоническим раствором называют тот раствор, у которого осмотическое давление больше. Гипотоническим раствором – раствор с меньшим осмотическим давлением. Изотоничные растворы – это растворы с одинаковой величиной осмотического давления.

Растительная клетка (С >) (внутриклеточный раствор)

Внешняя среда (С <) (межклеточный раствор)

Н2О Н2О

Вант-Гофф, изучая зависимость осмотического давления от внешних факторов установил, что оно не зависит от природы растворенного вещества, а зависит только от числа частиц в растворе и от температуры:

Росм = СмRT, где Росм [кПа], T [K] — абсолютная температура, R = 8,32 кДж/моль — универсальная газовая постоянная, См — молярная концентрация раствора [моль/л].

Осмотическое давление раствора, содержащего несколько веществ, равно сумме осмотических давлений, вызываемых каждым из них.

Давление насыщенного пара растворителя над раствором (Закон Рауля):

Относительное понижение давления насыщенного пара над раствором прямо пропорционально мольной доле растворенного вещества: где — давление насыщенного пара над чистым растворителем; РА-давление насыщенного пара растворителя над раствором; NB — мольная доля растворенного вещества: , где na, nb – число молей растворителя (а) и растворенного вещества (b).

Набольшее практическое значение получили I, II следствие закона Рауля.

I следствие закона Рауля: Повышение температуры кипения раствора прямо пропорционально молярной концентрации растворенного вещества: Dtкип = Kэб.Сm , где Dtкип = t кип р-ра – t кип н2o, 0С ; Kэб – эбулиоскопическая константа растворителя (Kэб н2о ); Сm- моляльная концентрация растворенного вещества, моль/1000г растворителя.

II следствие закона Рауля: Понижение температуры замерзания раствора прямо пропорционально молярной концентрации растворенного вещества: Dtзам = Kкр.Сm , где Dt = t зам.н2о – t зам р-ра, 0С; Kкр — криоскопическая константа растворителя (Ккр н2о =1,86); Сm- моляльная концентрация растворенного вещества, моль/1000г растворителя.

Росм = См R T Dtкип = Кэб Cm Dtзам = Ккр CmßКоллигативные свойства для молекулярных растворов

Примечание: см. приложение 7 – «Криоскопические константы некоторых растворителей», приложение 8 – «Эбулиоскопические константы некоторых растворителей».

Эти уравнения справедливы только для растворов, в которых отсутствует взаимодействие частиц, т.е. для идеальных растворов. В реальных растворах имеют место межмолекулярные взаимодействия между молекулами вещества и растворителя, которые могут приводить либо к процессам диссоциации, либо к процессам ассоциации молекул. Диссоциация молекул вещества в водном растворе характерна для сильных электролитов. В результате диссоциации число частиц увеличивается.

Доля (i) образовавшихся частиц определяется как отношение общего числа частиц к первоначальному числу молекул. Она зависит от степени диссоциации электролита и от числа частиц, на которые распадается молекула:

i = (n -1)a + 1, i – получил название изотонический коэффициент, n – число частиц (ионов), на которые распадается молекула, a – степень диссоциации (в долях).

Росм = iСМ R Т Dt кип = i Кэб Сm Dtзам = i Ккр СmßКоллигативные свойства для растворов электролитов

Примеры расчетов температур кипения, замерзания, осмотического давления растворов различных концентраций.

Пример 1. Вычислить температуру замерзания, кипения раствора этилового спирта с процентной концентрацией (w), равной 40 %.

Решение: Вычислим температуру замерзания раствора исходя из II следствия закона Рауля: Dtзам = Kкр.Сm, однако для решения необходимо перейти от одного вида концентрации к другому:

w [m в-ва, г 100г р-ра] ® Сm[ n молей 1000 г р-ля ]

1. Перейдем от массы вещ-ва (m) к молям (n) через пропорцию:

1 моль С2Н5ОН содержит ——- 46 г

х моль //——//——-//——-//——40 г

или по формуле х(n) = = моль/100р-ра,

где m(с2н5он) = 40г, M(с2н5он) = 46г/моль

2. Перейдем от массы раствора к массе растворителя:

m р-ля = m р-ра — m в-ва = 100 – 40 = 60г р-ля

2. Через пропорцию выразим Сm :

0,87 молей С2Н5ОН содержит в 60 г растворителя

х (Сm) -//——//——//——//——/- 1000 г

х (Сm) = = 14,5 молей/1000г р-ля

4. По формуле Dtзам = Kкр.Сm найдем Dt: Dt = 1,86.14,5 = 26,97 0C

5. Dt = tзам н2о – tзамр-ра Þ tзам р-ра = tзам н2о – Dt = 0 — 26,97 = -26,97 0C — температура замерзания 40 % раствора этилового спирта.

Вычислим температуру кипения раствора исходя из I следствия закона Рауля: Dtкип = Kэб. Сm, Сm = 14,5 моль/1000р-ля (см. выше)

Читайте также:  Какими свойствами обладали коацерваты рост обмен веществ размножение

Из формулы найдем Dt: Dt = 0,516 . 14,5 = 7,48 0C

Dt = tкипр-ра – tкип н2о Þ tкип р-ра = tкип н2о + Dtкип = 100 + 7,48 = 107,48 0C- температура кипения 40% раствора этилового спирта.

Пример 2. Вычислить концентрацию физиологического раствора (NaCl) изотоничного с осмотическим давлением крови равное » 800 Кпа. Степень диссоциации NaCl принять за 90%.

Решение: Для растворов электролитов Росм(NaCl ) = i·См·R·T Þ

См = (1)

Условие изотоничности означает, что Росм(NaCl ) = Росм крови = 800 кПа,

i = (n-1)·a + 1= (2 — 1) ·0,9 = 1,9

NaCl Û Na++Cl-, где n = 2, a = 0,9

Подставим найденные значения в формулу (1) См = 0,17 моль/л – концентрация хлорида натрия, которая создает осмотическое давление 800 кПа.

Источник

Коллигативные свойства растворов — это свойства растворов, обусловленные только самопроизвольным движением молекул, то есть они определяются не химическим составом, а числом кинетических единиц — молекул в единице объёма или массы[1]. К таким коллигативным свойствам относятся:

  • Понижение упругости растворителя над раствором,
  • Повышение температуры кипения растворов (в сравнении с чистыми растворителями),
  • Понижение температуры замерзания растворов (в сравнении с чистыми растворителями),
  • Возникновение осмотического давления,
  • Диффузия.

Законы Рауля

Первый закон Рауля

Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя.

В 1886 (1887) году Ф. М. Рауль сформулировал закон:

Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p = p0 · χр-ль, где
p — давление пара над раствором, Па;
p0 — давление пара над чистым растворителем;
χр-ль —— мольная доля растворителя.

Для растворов электролитов используют несколько другую форму уравнения, позволяющую добавить в неё изотонический коэффициент:

Δp = i · p0 · χв-ва, где
Δp — собственно изменение давления по сравнению с чистым растворителем;
χв-ва — мольная доля вещества в растворе.

Второй закон Рауля

Также Рауль экспериментально доказал, что

повышение температуры кипения раствора по сравнению с температурой кипения растворителя равно и понижение температуры замерзания раствора по сравнению с аналогичным характеризующей величиной для растворителя прямо пропорциональна моляльности раствора, то есть,

ΔTкип/зам= Kэб/кр · mв-ва, где
Kэб/кр — соответственно эбуллиоскопическая (от лат. ebullire — «кипеть» и др.-греч. σκοπέω — «наблюдаю») и криоскопическая (относится к замерзанию) константы, характерные для данного растворителя;
mв-ва — моляльность вещества в растворе.

Осмотическое давление

Рассмотрим ситуацию, при которой частично проницаемая мембрана (то есть, такая, через которую могут проходить лишь мелкие объекты, например, молекулы растворителя, но не крупные — например, молекулы растворённого вещества) разделяет чистый растворитель и раствор (или два раствора с разными концентрациями). Тогда молекулы растворителя находятся практически в равных физических условиях по обе стороны мембраны, однако в более насыщенном растворе некоего вещества их концентрация, разумеется, меньше, чем в более разбавленном (в котором меньше места в растворе занимают молекулы растворённого вещества). Следовательно, со стороны менее насыщенного раствора через мембрану диффундирует большее число молекул, чем с противоположной стороны. А это значит, что растворитель попросту переходит из менее насыщенного раствора в более насыщенный, разбавляя его (выравнивая концентрации обоих растворов) и создавая давление на мембрану. Процесс этот (он называется осмосом) можно прекратить, оказав определённое давление на более насыщенный раствор (например, при помощи поршня) —— это давление и называется осмотическим давлением.

Растворы с одинаковым осмотическим давлением называются изотоническими.

Определить осмотическое давление раствора можно по формуле, полученной в 1886 году Я. Х. Вант-Гоффом:

π = CMв-ва · R · T, где
CMв-ва — молярная концентрация раствора, выраженная в , а не в , как обычно;
R — универсальная газовая постоянная;
T — термодинамическая температура системы.

См. также

  • Осмос

Примечания

  1. Д.А.Фридрихсберг. Курс коллоидной химии. — Ленинград «Химия», 1984. — С. 368.

Литература

  1. Ершов Ю.А. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое,стериотипное. — Москва: Высшая школа, 2010. — 559 с.

Источник

Тот же Рауль экспериментально доказал, что

повышение температуры кипения раствора по сравнению с температурой кипения растворителя, а равно и понижение температуры замерзания раствора по сравнению с аналогичным характеризующей величиной для растворителя прямо пропорциональна моляльности раствора, то есть,

ΔTкип/зам= Kэб/кр · mв-ва, где
Kэб/кр — соответственно эбулиоскопическая (от лат. ebullire — «кипеть» и др.-греч. σκοπέω — «наблюдаю») и криоскопическая (относится к замерзанию) константы, характерные для данного растворителя;
mв-ва — моляльность вещества в растворе.

Осмотическое давление

Osmose.svg

Какие свойства растворов называют коллигативными

Рассмотрим ситуацию, при которой частично проницаемая мембрана (т. е., такая, через которую могут проходить лишь мелкие объекты, например, молекулы растворителя, но не крупные — например, молекулы растворённого вещества) разделяет чистый растворитель и раствор (или два раствора с разными концентрациями). Тогда молекулы растворителя находятся практически в равных физических условиях по обе стороны мембраны, однако в более насыщенном растворе некоего вещества их концентрация, разумеется, меньше, чем в более разбавленном (в котором меньше места в растворе занимают молекулы растворённого вещества). Следовательно, со стороны менее насыщенного раствора через мембрану диффундирует большее число молекул, чем с противоположной стороны. А это значит, что растворитель попросту переходит из менее насыщенного раствора в более насыщенный, разбавляя его (выравнивая концентрации обоих растворов) и создавая давление на мембрану. Процесс этот (он называется осмосом) можно прекратить, оказав определённое давление на более насыщенный раствор (например, при помощи поршня) —— это давление и называется осмотическим давлением.

Читайте также:  Какое свойство характеризующее атомы элемента не изменяется периодически

Растворы с одинаковым осмотическим давлением называются изотоническими.

Определить осмотическое давление раствора можно по формуле, полученной в 1886 году Я. Х. Вант-Гоффом:

π = CMв-ва · R · T, где
CMв-ва — молярная концентрация раствора, выраженная в  frac {mol} {m^3} , а не в  frac {mol} {l} , как обычно;
R — универсальная газовая постоянная;
T — термодинамическая температура системы.

См. также

  • Осмос

Примечания

  1. 1 2 3 относится к законам Рауля

Wikimedia Foundation.
2010.

Смотреть что такое «Коллигативные свойства растворов» в других словарях:

  • коллигативные свойства растворов — – свойства растворов (понижение давления паров, понижение температуры затвердевания, повышение температуры кипения, осмотическое давление), которые зависят от концентрации частиц растворенного вещества в растворе. Общая химия : учебник / А. В.… …   Химические термины

  • коллигативные свойства — (растворов, зависящие от концентрации растворённых частиц) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN colligative properties …   Справочник технического переводчика

  • Коллигативные свойства — В этом разделе будут рассмотрены изменения термодинамических свойств растворов относительно свойств растворителя: понижение давления пара, повышение температуры кипения, понижение температуры замерзания, осмотическое давление. Коллигативные… …   Википедия

  • коллигативные свойства — – свойства разбавленных растворов, зависящие только от концентрации растворенного вещества. Словарь по аналитической химии [3] …   Химические термины

  • Коллигативные свойства — (хим.) так называет В. Оствальд, по предложению Вундта, те свойства, которые при данных условиях и для данной группы тел оказываются равными и независимыми от их химической природы и большей или меньшей элементарной сложности. Таковы, напр.:… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Осмотическое давление — (обозначается π)  избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации… …   Википедия

  • Осмотическая концентрация — Осмотическая концентрация  суммарная концентрация всех растворённых частиц. Может выражаться как осмолярность (осмоль на литр раствора) и как осмоляльность (осмоль на кг растворителя). Осмоль  единица осмотической концентрации, равная… …   Википедия

  • Осмоль — Осмотическая концентрация суммарная концентрация всех растворённых частиц. Может выражаться как осмолярность (осмоль на литр раствора) и как осмоляльность (осмоль на кг. растворителя). Осмоль единица осмотической концентрации, равная… …   Википедия

  • Осмоляльность — Осмотическая концентрация суммарная концентрация всех растворённых частиц. Может выражаться как осмолярность (осмоль на литр раствора) и как осмоляльность (осмоль на кг. растворителя). Осмоль единица осмотической концентрации, равная… …   Википедия

  • Осмолярность — Осмотическая концентрация суммарная концентрация всех растворённых частиц. Может выражаться как осмолярность (осмоль на литр раствора) и как осмоляльность (осмоль на кг. растворителя). Осмоль единица осмотической концентрации, равная… …   Википедия

Источник