Какие свойства проявляют металлы при взаимодействии с кислотами

С разбавленными кислотами, которые проявляют
окислительные свойства за счет ионов водорода (разбавленные серная,
фосфорная, сернистая, все бескислородные и органические кислоты и др.)
реагируют металлы:
• расположенные в ряду напряжений до водорода (эти металлы способны
вытеснять водород из кислоты);
• образующие с этими кислотами растворимые соли (на поверхности этих металлов
не образуется защитная солевая
пленка).
В результате реакции образуются растворимые соли и выделяется водород:
2А1 + 6НСI = 2А1С13 + ЗН2↑
Мg
+ Н2SO4 =
МgSО4
+ Н2↑
разб.
Сu
+ Н2SO4 →X(так
как Сu
стоит после Н2)
разб.
РЬ + Н2SO4 →X(так
как РЬSO4
нерастворим
в воде)
разб.
Некоторые кислоты являются окислителями за счет элемента, образующего кислотный
остаток, К ним относятся концентрированная серная, а также азотная кислота
любой концентрации. Такие кислоты называют кислотами-окислителями.
Анионы
данных кислот содержат атомы серы и азота в высших степенях окисления
Окислительные свойства кислотных остатков и
значительно сильнее, чем нона водорода Н, поэтому азотная и концентрированная
серная кислоты взаимодействуют практически со всеми металлами, расположенными в
ряду напряжений как до водорода, так и после него, кроме золота и платины.
Так как окислителями в этих случаях являются ноны кислотных остатков (за
счет атомов серы и азота в высших степенях окисления), а не ноны водорода Н, то
при взаимодействии азотной, а концентрированной серной кислот с металлами
не выделяется водород. Металл под действием данных кислот окисляется до характерной
(устойчивой) степени окисления и образует соль, а продукт восстановления
кислоты зависит от активности металла и степени разбавления кислоты
Взаимодействие серной кислоты с металлами
Разбавленная и концентрированная серные кислоты ведут
себя по-разному. Разбавленная серная кислота ведет себя, как обычная
кислота. Активные металлы, стоящие в
ряду напряжений левее водорода
Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H2, Cu,
Hg, Ag, Au
вытесняют водород из разбавленной серной кислоты. Мы
видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с
цинком.
H2SO4
+ Zn = Zn SO4 + H2 ↑
Медь стоит в ряду напряжений после водорода – поэтому
разбавленная серная кислота не действует на медь. А в концентрированной серной
кислоты, цинк и медь, ведут себя таким образом…
Цинк, как активный металл, может образовывать с
концентрированной серной кислотой сернистый газ, элементарную серу, и даже
сероводород.
2H2SO4 + Zn = SO2↑
+ZnSO4 + 2H2O
Медь — менее активный металл. При взаимодействии с
концентрированно серной кислотой восстанавливает ее до сернистого газа.
2H2SO4
конц. + Cu = SO2↑ + CuSO4 + 2H2O
В пробирках с концентрированной серной кислотой
выделяется сернистый газа.
Следует иметь в виду, что на схемах указаны продукты,
содержание которых максимально среди возможных продуктов восстановления кислот.
На основании
приведенных схем составим уравнения конкретных реакций — взаимодействия меди и
магния с концентрированной серной кислотой:
0 +6
+2 +4
Сu
+ 2Н2SO4
= СuSO4
+ SO2
+ 2Н2O
конц.
0 +6 +2 -2
4Мg
+ 5Н2SO4
= 4МgSO4
+ Н2S
+ 4Н2O
конц.
Некоторые металлы (Fe.
АI, Сr)
не взаимодействуют с концентрированной серной и азотной кислотами при обычной
температуре, так как происходит пассивации металла.
Это явление связано с образованием на поверхности металла тонкой, но очень
плотной оксидной пленки, которая и защищает металл. По этой причине азотную и концентрированную
серную кислоты транспортируют в железных емкостях.
Если металл проявляет переменные степени окисления, то с кислотами, являющимися
окислителями за счет ионов Н+, он образует соли, в которых его
степень окисления ниже устойчивой, а с кислотами-окислителями — соли, в которых
его степень окисления более устойчива:
0 +2
Fе+Н2SO4=
FеSO4+Н2
0 разб. +3
Fе+Н2SO4=
Fе2(SO4)3 + 3SO2 + 6Н2O
конц
И.И.Новошинский
Н.С.Новошинская
Химия
не забудь….) поделиться с друзьями
В химических реакциях металлы выступают в роли восстановителей и повышают степень окисления, превращаясь из простых веществ в катионы.
Химические свойства металлов различаются в зависимости от химической активности металла. По активности в водных растворах металлы расположены в ряд напряжений.
В этот ряд, составленный русским химиком Н.Н. Бекетовым, включен также неметалл водород. Активность металлов убывает слева направо:
Запомнить! Металлы, стоящие в ЭХ ряду после водорода, называют неактивными металлами.
Металлы, расположенные в ЭХ ряду до алюминия называют сильноактивными или активными металлами.
Общие химические свойства металлов
1) Многие металлы вступают в реакцию с типичными неметаллами – галогенами, кислородом, серой. При этом образуются соответственно хлориды, оксиды, сульфиды и другие бинарные соединения:
с азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании;
с серой металлы образуют сульфиды – соли сероводородной кислоты;
с водородом самые активные металлы образуют ионные гидриды (бинарные соединения, в которых водород имеет степень окисления -1);
с кислородом большинство металлов образует оксиды – амфотерные и основные. Основной продукт горения натрия — пероксид $Na_2O_2$; а калий и цезий горят с образованием надпероксидов $MeO_2$.
2) Следует обратить внимание на особенности взаимодействие металлов с водой:
Активные металлы, находящиеся в ряду активности металлов до Mg (включительно), реагируют с водой с образованием щелочей и водорода:$Ca + 2H_2O = Ca(OH)_2 + H_2uparrow$
Активные металлы (например, натрий и литий), взаимодействуют с водой со взрывом.
Металлы средней активности окисляются водой при нагревании до оксида:
$6Cr + 6H_2O xrightarrow[]{t, ^circ C} 2Cr_2O_3 + 3H_2uparrow$
Неактивные металлы (Au, Ag, Pt) — не реагируют с водой.
$hspace{1.5cm} xrightarrow []{[Li……Mg]} MOH +H_2uparrow$ активные металлы (до Al)
$H_2O + M xrightarrow []{[Al……Pb} M_xO_y +H_2uparrow$ среднеактивные металлы (от Al до H), только при нагревании
$hspace{1.5cm} xrightarrow []{[Bi……Au]} hspace{1cm} ne hspace{1cm}$ неактивные металлы (после Н)
Более подробно взаимодействие металлов с водой рассмотрено в темах, посвященных химии отдельных групп.
3) С разбавленными кислотами реагируют металлы, стоящие в ЭХР до водорода: происходит реакция замещения с образованием соли и газообразного водорода. При этом кислота проявляет окислительные свойства за счет наличия катиона водорода:
$mathrm{Mg} + 2mathrm{HCl} = mathrm{MgCl}_2 + mathrm{H}_2$
4) Взаимодействие азотной кислоты (любой концентрации) и концентрированной серной кислоты протекает с образованием других продуктов: кроме соли в этих реакциях образуется продукт восстановления серной (или азотной) кислоты. Подробнее см.тему «Взаимодействие азотной кислоты с металлами и неметаллами.
Запомнить! Все металлы, стоящие в ряду левее водорода, вытесняют его из разбавленных кислот, а металлы, расположенные справа от водорода, с растворами кислот не реагируют (азотная кислота – исключение).
5) Активность металлов также влияет на возможность протекания простого вещества металла с оксидом или солью другого металла. Металл вытесняет из солей менее активные металлы, стоящие правее его в ряду напряжений.
Запомнить! Для протекания реакции между металлом и солью другого требуется, чтобы соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде. Металл вытесняет из соли только более слабый металл.
Например, для вытеснения меди из водного раствора сульфата меди подходит железо,
$mathrm{CuSO}_4 + mathrm{Fe} = mathrm{FeSO}_4 + mathrm{Cu}$
но не подходят свинец – так как он образует нерастворимый сульфат. Если опустить кусочек свинца в раствор сульфата меди, то с поверхности металла покроется тонким слоем сульфата, и реакция прекратится
$mathrm{CuSO}_4 + mathrm{Pb} = mathrm{PbSO}_4downarrow + mathrm{Cu}$
Другой пример: цинк легко вытесняет серебро из раствора нитрата серебра, однако реакция цинка со взвесью сульфида серебра, нерастворимого в воде, практически не протекает.
Общие химические свойства металлов обобщены в таблице:
Уравнение реакции | Продукты реакции | Примечания |
---|---|---|
с простыми веществами — неметаллами | ||
с кислородом | ||
$4Li + O_2 = 2Li_2O$ | оксиды $O^{-2}$ | |
$2Na + O_2 = Na_2O_2$ | пероксиды $(O_2)^{-2}$ | только натрий |
$K + O_2 = KO_2$ | надпероксиды $(O_2)^{-2}$ | надпероксиды при горении образуют K, Rb, Cs |
с водородом | ||
$Ca + H_2 = CaH_2$ | гидриды | щелочные металлы 0 при комнатной температуре; остальные металлы — при нагревании |
с галогенами | ||
$2Fe + 3Cl_2 =2Fe^{+3}Cl_3$ | хлориды и др. | при взаимодействии с хлором и бромом (сильные окислители) железо и хром образуют хлориды в степени окисления +3 |
с серой | ||
$Fe + S = FeS$ | сульфиды | при взаимодействии с серой и иодом железо приобретает степень окисления +2 |
с азотом и фосфором | ||
$3Mg + N_2 = Mg_3N_2 $ | нитриды | * при комнатной температуре с азотом реагируют только литий и магний |
$3Ca + 2P = Ca_3P_2$ | фосфиды | |
с углеродом | ||
$4Al + 3C = Al_4C_3$ | карбиды | |
с водой | ||
$2Na^0 + 2H_2O = 2NaOH + H_2 $ | Основание + $H_2$ | щелочные металлы |
$ Zn^0 + H_2O = ZnO + H_2$ | Оксид + $H_2$ | среднеактивные металлы, при нагревании |
$Au, Ag, Pt+ H_2O /ne $ | не реагируют | неактивные металлы (после Н) |
с окисдами менее активных металлов | ||
$2Al + 3ZnO = Al_2O_3 + 2Zn$ | др оксид + др.металл | |
с солями менее активных металлов | ||
$Fe+ CuSO_4 = Cu + FeSO_4$ | Др. соль + др. металл |
|
$Cu + AlCl_3 ne$ | ||
с кислотами | ||
$Fe + 2HCl = FeCl_2 + H_2 $ $6Na + 2H_3PO_4 = 2Na_3PO_4 + 3H_2 $ | Др. соль +водород | Металлы, стоящие в электрохимическом ряду напряжений до H реагируют с разбавленными кислотами (кроме $HNO_3$) |
$Cu + 2H_3PO_4 ne$ |
ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ
Чаще всего в химической практике используются такие сильные кислоты как серная H2SO4, соляная HCl и азотная HNO3.
Соляная кислота (HCl)
Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl. Ввиду невысокой его растворимости в воде, концентрация соляной кислоты при обычных условиях не превышает 38%. Поэтому независимо от концентрации соляной кислоты процесс диссоциации ее молекул в водном растворе протекает активно:
HCl H+ + Cl-
Образующиеся в этом процессе ионы водорода H+ выполняют роль окислителя, окисляя металлы, расположенные в ряду активности левее водорода. Взаимодействие протекает по схеме:
Me + HCl соль + H2↑
При этом соль представляет собой хлорид металла (NiCl2, CaCl2, AlCl3), в котором число хлорид-ионов соответствует степени окисления металла.
Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления:
Fe0 → Fe2+
Co0 → Co2+
Ni0 → Ni2+
Cr0 → Cr2+
Mn0 → Mn2+ и др.
Пример:
2 Al + 6 HCl → 2 AlCl3 + 3 H2↑
2│Al0 – 3e- → Al3+ — окисление
3│2H+ + 2e- → H2 – восстановление
Соляная кислота пассивирует свинец (Pb). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца (II), который защищает металл от дальнейшего воздействия кислоты:
Pb + 2 HCl → PbCl2↓ + H2↑
Серная кислота (H2SO4)
В промышленности получают серную кислоту очень высокой концентрации (до 98%). Следует учитывать различие окислительных свойств разбавленного раствора и концентрированной серной кислоты по отношению к металлам.
Разбавленная серная кислота
В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:
H2SO4 H+ + HSO4-
HSO4- H+ + SO42-
Образующиеся ионы Н+ выполняют функцию окислителя.
Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).
Химическая реакция протекает по схеме:
Ме + H2SO4(разб.) → соль + H2↑
Пример:
2 Al + 3 H2SO4(разб.) → Al2(SO4)3 + 3 H2↑
1│2Al0 – 6e- → 2Al3+ — окисление
3│2H+ + 2e- → H2 – восстановление
Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления:
Fe0 → Fe2+
Co0 → Co2+
Ni0 → Ni2+
Cr0 → Cr2+
Mn0 → Mn2+ и др.
Свинец (Pb) не растворяется в серной кислоте (если ее концентрация ниже 80%), так как образующаяся соль PbSO4 нерастворима и создает на поверхности металла защитную пленку.
Концентрированная серная кислота
В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера, находящаяся в высшей степени окисления (S+6). Концентрированная H2SO4 окисляет все металлы, стандартный электродный потенциал которых меньше потенциала окислителя – сульфат-иона SO42- (0,36 В). В связи с этим, с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.
Процесс взаимодействия металлов с концентрированной серной кислотой в большинстве случаев протекает по схеме:
Me + H2SO4 (конц.) соль + вода + продукт восстановления H2SO4
Продуктами восстановления серной кислоты могут быть следующие соединения серы:
Практика показала, что при взаимодействии металла с концентрированной серной кислотой выделяется смесь продуктов восстановления, состоящая из H2S, S и SO2. Однако, один из этих продуктов образуется в преобладающем количестве. Природа основного продукта определяется активностью металла: чем выше активность, тем глубже процесс восстановления серы в серной кислоте.
Взаимодействие металлов различной активности с концентрированной серной кислотой можно представить схемой:
Алюминий (Al) и железо (Fe) не реагируют с холодной концентрированной H2SO4, покрываясь плотными оксидными пленками, однако при нагревании реакция протекает.
Ag, Au, Ru, Os, Rh, Ir, Pt не реагируют с серной кислотой.
Концентрированная серная кислота является сильным окислителем, поэтому при взаимодействии с ней металлов, обладающих переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты:
Fe0 → Fe3+,
Cr0 → Cr3+,
Mn0 → Mn4+,
Sn0 → Sn4+
Свинец (Pb) окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца Pb(HSO4)2.
Примеры:
Активный металл
8 A1 + 15 H2SO4(конц.)→4A12(SO4)3 + 12H2O + 3H2S
4│2Al0 – 6e- → 2Al3+ — окисление
3│ S6+ + 8e → S2-– восстановление
Металл средней активности
2Cr + 4 H2SO4(конц.)→ Cr2(SO4)3 + 4 H2O + S
1│ 2Cr0 – 6e →2Cr3+- окисление
1│ S6+ + 6e → S0 — восстановление
Металл малоактивный
2Bi + 6H2SO4(конц.)→ Bi2(SO4)3 + 6H2O + 3SO2
1│ 2Bi0 – 6e → 2Bi3+ – окисление
3│ S6+ + 2e →S4+ — восстановление
Азотная кислота (HNO3)
Особенностью азотной кислоты является то, что азот, входящий в состав NO3- имеет высшую степень окисления +5 и поэтому обладает сильными окислительными свойствами. Максимальное значение электродного потенциала для нитрат-иона равно 0,96 В, поэтому азотная кислота – более сильный окислитель, чем серная. Роль окислителя в реакциях взаимодействия металлов с азотной кислотой выполняет N5+. Следовательно, водород H2 никогда не выделяется при взаимодействии металлов с азотной кислотой (независимо от концентрации). Процесс протекает по схеме:
Me + HNO3 соль + вода + продукт восстановления HNO3
Продукты восстановления HNO3:
Обычно при взаимодействии азотной кислоты с металлом образуется смесь продуктов восстановления, но как правило, один из них является преобладающим. Какой из продуктов будет основным, зависит от концентрации кислоты и активности металла.
Концентрированная азотная кислота
Концентрированным считают раствор кислоты плотностью ρ > 1,25 кг/м3, что соответствует
концентрации > 40%. Независимо от активности металла реакция взаимодействия с HNO3 (конц.) протекает по схеме:
Me + HNO3(конц.) → соль + вода + NO2
С концентрированной азотной кислотой не взаимодействуют благородные металлы (Au, Ru, Os, Rh, Ir, Pt), а ряд металлов (Al, Ti, Cr, Fe, Co, Ni) при низкой температуре пассивируются концентрированной азотной кислотой. Реакция возможна при повышении температуры, она протекает по схеме, представленной выше.
Примеры
Активный металл
Al + 6HNO3(конц.) → Al(NO3)3 + 3H2O + 3NO2↑
1│ Al0 – 3e → Al3+ — окисление
3│ N5+ + e → N4+ — восстановление
Металл средней активности
Fe + 6HNO3(конц.) → Fe(NO3)3 + 3H2O + 3NO↑
1│ Fe0 – 3e → Fe3+ — окисление
3│ N5+ + e → N4+ — восстановление
Металл малоактивный
Ag + 2HNO3(конц.) → AgNO3 + H2O + NO2↑
1│ Ag0 – e →Ag+ — окисление
1│ N5+ + e → N4+ — восстановление
Разбавленная азотная кислота
Продукт восстановления азотной кислоты в разбавленном растворе зависит от активности металла, участвующего в реакции:
Примеры:
Активный металл
8Al + 30HNO3(разб.) → 8Al(NO3)3 + 9H2O + 3NH4NO3
8│ Al0 – 3e → Al3+ — окисление
3│ N5+ + 8e → N3- — восстановление
Выделяющийся в процессе восстановления азотной кислоты аммиак сразу взаимодействует с избытком азотной кислоты, образуя соль – нитрат аммония NH4NO3:
NH3 + HNO3 → NH4NO3.
Металл средней активности
10Cr + 36HNO3(разб.) → 10Cr(NO3)3 + 18H2O + 3N2
10│ Cr0 – 3e → Cr3+ — окисление
3│ 2N5+ + 10e → N20 — восстановление
Кроме молекулярного азота (N2) при взаимодействии металлов средней активности с разбавленной азотной кислотой образуется в равном количестве оксид азота (I) – N2O. В уравнении реакции нужно писать одно из этих веществ.
Металл малоактивный
3Ag + 4HNO3(разб.) → 3AgNO3 + 2H2O + NO
3│ Ag0 – e →Ag+ — окисление
1│ N5+ + 3e → N2+ — восстановление
«Царская водка»
«Царская водка» (ранее кислоты называли водками) представляет собой смесь одного объема азотной кислоты и трех-четырех объемов концентрированной соляной кислоты, обладающую очень высокой окислительной активностью. Такая смесь способна растворять некоторые малоактивные металлы, не взаимодействующие с азотной кислотой. Среди них и «царь металлов» — золото. Такое действие «царской водки» объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (III), или хлорида нитрозила – NOCl:
HNO3 + 3 HCl → Cl2 + 2 H2O + NOCl
Хлорид нитрозила далее разлагается по схеме:
2 NOCl → 2 NO + Cl2
Хлор в момент выделения состоит из атомов. Атомарный хлор является сильнейшим окислителем, что и позволяет «царской водке» воздействовать даже на самые инертные «благородные металлы».
Реакции окисления золота и платины протекают согласно следующим уравнениям:
Au + HNO3 + 4 HCl → H[AuCl4] + NO + 2H2O
3Pt + 4HNO3 + 18HCl → 3H2[PtCl6] + 4NO + 8H2O
На Ru, Os, Rh и Ir «царская водка» не действует.
Среди металлов традиционно выделяют несколько групп. Входящие в их состав представители характеризуются отличной от других металлов химической активностью. Такими группами являются:
- благородные металлы (серебро, золото, платина);
- щелочные металлы (металлы, образованные элементами (I)А группы периодической системы);
- щелочноземельные металлы (кальций, стронций, барий, радий).
Простые вещества, обладающие металлическими свойствами, в химических реакциях всегда являются восстановителями. Положение металла в ряду активности характеризует то, насколько активно данный металл способен вступать в химические реакции (т. е. то, насколько сильно у него проявляются свойства восстановителя).
Ряд активности металлов
(Li, K, Ba, Ca, Na, ) | (Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb) | H2 | (Cu, Hg, Ag, Pt, Au) |
активные металлы | металлы средней активности | неактивные металлы |
1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.
2. Каждый металл способен вытеснять из растворов солей те металлы, которые в ряду активности стоят после него (правее).
3. Металлы, находящиеся в ряду активности левее водорода, способны вытеснять его из растворов кислот.
4. Щелочные и щелочноземельные металлы в любых водных растворах взаимодействуют прежде всего с водой.
Общие химические свойства металлов
Взаимодействие с простыми веществами-неметаллами
1. Металлы взаимодействуют с кислородом, образуя оксиды.
Металл + кислород → оксид.
Например, при взаимодействии магния с кислородом образуется оксид магния:
2Mg0+O02→2Mg+2O−2.
Видеофрагмент:
Обрати внимание!
Серебро, золото и платина с кислородом не реагируют.
2. Металлы взаимодействуют с галогенами (фтором, хлором, бромом и иодом), образуя галогениды.
Металл + галоген → галогенид металла.
Например, при взаимодействии натрия с хлором образуется хлорид натрия:
2Na0+Cl02→2Na+1Cl−1.
3. Металлы взаимодействуют с серой, образуя сульфиды.
Металл + сера → сульфид металла.
Например, при взаимодействии цинка с серой образуется сульфид цинка:
Zn0+S0→Zn+2S−2.
Видеофрагмент:
Взаимодействие цинка с серой
4. Активные металлы при нагревании реагируют с азотом, фосфором и некоторыми другими неметаллами.
Например, при взаимодействии лития с азотом образуется нитрид лития:
6Li0+N02→2Li+13N−3.
При взаимодействии кальция с фосфором образуется фосфид кальция:
3Ca0+2P0→Ca+23P−32.
Взаимодействие со сложными веществами
1. Щелочные и щелочноземельные металлы взаимодействуют с водой при обычных условиях, образуя растворимое в воде основание (щёлочь) и водород.
Активный металл + вода → щёлочь + водород.
Например, при взаимодействии натрия с водой образуются гидроксид натрия и водород:
2Na0+2H+12O−2→2Na+1O−2H+1+H02.
Видеофрагмент:
Взаимодействие натрия с водой
Обрати внимание!
Некоторые металлы средней активности реагируют с водой при повышенной температуре, образуя оксид металла и водород.
Например, раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe_3O_4 и водород:
3Fe0+4H+12O−2→Fe+2O−2⋅Fe+32O−23+4H02.
2. Mеталлы, стоящие в ряду активности металлов левее водорода, взаимодействуют с растворами кислот, образуя соль и водород.
Металл + кислота → соль + водород.
Например, при взаимодействии алюминия с серной кислотой образуются сульфат алюминия и водород:
2Al0+3H+12S+6O−24→Al+32(S+6O−24)3+3H02.
Видеофрагмент:
Реакция алюминия с серной кислотой
3. Металлы реагируют с солями менее активных металлов в растворе, образуя соль более активного металла и менее активный металл в свободном виде.
Более активный металл + соль → соль более активного металла + менее активный металл.
Например, при взаимодействии железа с сульфатом меди((II)) образуются сульфат железа((II)) и медь:
Fe0+Cu+2S+6O−24→Fe+2S+6O−24+Cu0.
Видеофрагмент:
Взаимодействие железа с сульфатом меди