Какие свойства проявляют аминокислоты в растворах

Какие свойства проявляют аминокислоты в растворах thumbnail

Аминокислоты относятся к гетерофункциональным соединениям, т.е. вещества, проявляющим свойства двух классов соединений. В неорганической химии такие соединения называют амфотерными.

ФИЗИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений.

ХИМИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной. $alpha$-аминокислоты являются амфотерными электролитами. Имея как минимум две диссоциирующие и противоположно заряженные группировки, аминокислоты в растворах с нейтральным значением рН практически всегда находятся в виде биполярных ионов, или цвиттер-ионов, в которых противоположные заряды пространственно разделены, например $H_3^+N—CH_2—CH_2—COO^-$. 

Именно амфотерность аминокислот обуславливает их наиболее характерные свойства.

1. Кислотные свойства аминокислот проявляются по карбоксильной группе в их способности взаимодействовать, например, с щелочами:

Какие свойства проявляют аминокислоты в растворах

или вступать в реакцию этерификации со спиртами с образованием сложных эфиров:

Какие свойства проявляют аминокислоты в растворах

2. Основные свойства аминокислот проявляются по аминогруппе в их способности взаимодействовать с кислотами, образуя комплексные ионы по донорно-акцепторному механизму:

Какие свойства проявляют аминокислоты в растворах

3. Амфотерность аминокислот проявляется также в их способности  образовывать в растворе в результате диссоциации биполярный ион —  внутреннюю соль, а самое главное, за счет амфотерности аминокислоты могут вступать друг с другом в реакции поликонденсации. образуя полипептиды и белки:

Какие свойства проявляют аминокислоты в растворах

КАЧЕСТВЕННЫЕ (ЦВЕТНЫЕ) РЕАКЦИИ НА АМИНОКИСЛОТЫ И БЕЛКИ

Качественные цветные реакции можно подразделить на два типа: универсальные и специфические. К универсальным реакциям относятся те, которые дают окрашивание в присутствии любых белков.

Какие свойства проявляют аминокислоты в растворах

Специфические реакции доказывают наличие какой-то определенной аминокислоты. Все качественные реакции можно наблюдать на примере раствора яичного белка, представляющего собой многокомпонентную смесь аминокислот:

Какие свойства проявляют аминокислоты в растворах

УНИВЕРСАЛЬНЫЕ ЦВЕТНЫЕ РЕАКЦИИ

1Биуретовая реакция —  универсальная реакция на все белки и пептиды, так как является реакцией на пептидную связь. Представляет собой взаимодействие щелочного раствора биурета  ($(H_2NC(O))_2NH$ с раствором сульфата меди в присутствии гидроксида натрия (реактив Фелинга)

Какие свойства проявляют аминокислоты в растворах

В реакцию, подобную биуретовой, вступают многие вещества, содержащие в молекуле не менее двух амидных группировок, амиды и имиды аминокислот и некоторые другие соединения. Продукты реакции в этом случае имеют фиолетовую или синюю окраску.

Какие свойства проявляют аминокислоты в растворахКакие свойства проявляют аминокислоты в растворах

В условиях биуретовой реакции белки дают фиолетовую окраску, что используется для их качественного и количественного анализа. Биуретовая реакция обусловлена присутствием в белках пептидных связей, которые в щелочной среде образуют с сульфатом меди (ІІ) окрашенные солеобразные комплексы меди. 

2. Нингидриновая реакция — цветная реакция на α-аминокислоты, которую осуществляют нагреванием последних в избытке щелочного раствора нингидрина (гидрата 1,2,3-индантриона). 

Какие свойства проявляют аминокислоты в растворах

Какие свойства проявляют аминокислоты в растворах

Образующееся в результате реакции соединение (дикетогидринимин — на рисунке самый левый продукт реакции) имеет фиолетово-синюю окраску. Данную используют для колориметрического количественного определения $alpha$-аминокислот, в том числе в автоматических аминокислотных анализаторах. 

СПЕЦИФИЧЕСКИЕ ЦВЕТНЫЕ РЕАКЦИИ

1. Реакция  Щульца-Распайли (аналогично проводится реакция Адамкевича, только с добавлением глиоксиловой кислоты) — является специфической реакцией на аминокислоту триптофан — взаимодействие раствора яичного белка с 10% раствором сахарозы и  равным объемом концентрированной $H_2SO_4$. На границе двух жидкостей образуется красно-фиолетовое кольцо (при нагревании на водяной бане реакция идет быстрее — главное не смешивать жидкости).

Какие свойства проявляют аминокислоты в растворахКакие свойства проявляют аминокислоты в растворах

2Реакция Милона — используется для обнаружения тирозина, в составе которого имеется фенольный гидроксил. При добавлении к раствору белка реактива Милона (раствор $HgNO_3$ и $Hg(NO_3)_2$ в разбавленной азотной кислоты $HNO_3$, содержащей примесь азотистой кислоты $HNO_2$) образуется осадок, сначала окрашенный в розовый, а затем в пурпурно-красный цвет. Нагревание до $50^circ C$ ускоряет эту реакцию.

Какие свойства проявляют аминокислоты в растворахКакие свойства проявляют аминокислоты в растворах

3. Ксантопротеиновая реакция — является специфической реакцией и используется для обнаружения $alpha$-аминокислот, содержащих в радикале ароматический цикл, например фенилаланина. Для ее осуществления к раствору белка прибавляют концентрированную азотную кислоту $HNO_3$ до тех пор, пока не прекратится образование осадка, который при нагревании окрашивается в желтый цвет. Окраска возникает в результате нитрования ароматических колец аминокислотных остатков белка (тирозина и триптофана). При добавлении к охлажденной жидкости избытка щелочи появляется оранжевое окрашивание, обусловленное образованием солей нитроновых кислот.

Читайте также:  Какими свойствами обладает ихтиоловая мазь

Какие свойства проявляют аминокислоты в растворахКакие свойства проявляют аминокислоты в растворахКакие свойства проявляют аминокислоты в растворах

4. Реакция Фоля на серосодержащие аминокислоты (цистеин, метионин) — взаимодействие раствора яичного белка с 30% раствором NaOH и 5% раствором уксуснокислого свинца — $Pb(CH_3COO)_2$. При длительном нагревании жидкость буреет, выпадает черный осадок сульфида свинца. 

Какие свойства проявляют аминокислоты в растворахКакие свойства проявляют аминокислоты в растворах

Источник

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы –NH2.

Природные аминокислоты можно разделить на следующие основные группы:

1) Алифатические предельные аминокислоты (глицин, аланин)NH2-CH2-COOH глицин

NH2-CH(CH3)-COOH аланин

2) Серосодержащие аминокислоты (цистеин) Какие свойства проявляют аминокислоты в растворах

цистеин

3) Аминокислоты с алифатической гидроксильной группой (серин)NH2-CH(CH2OH)-COOH серин
4) Ароматические аминокислоты (фенилаланин, тирозин) Какие свойства проявляют аминокислоты в растворах

фенилаланин

Какие свойства проявляют аминокислоты в растворах

тирозин

5) Аминокислоты с двумя карбоксильными группами (глутаминовая кислота)HOOC-CH(NH2)-CH2-CH2-COOH

глутаминовая кислота

6) Аминокислоты с двумя аминогруппами (лизин)CH2(NH2)-CH2-CH2-CH2-CH(NH2)-COOH

лизин

  • Для природных α-аминокислот R-CH(NH2)COOH применяются тривиальные названия: глицин, аланин, серин и т. д.
  • По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе:
  • Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы хорошо проводят электрический ток.

  • Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

Какие свойства проявляют аминокислоты в растворах

  • Восстановление нитрозамещенных карбоновых кислот (применяется для получения ароматических аминокислот):

Какие свойства проявляют аминокислоты в растворах

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

Какие свойства проявляют аминокислоты в растворах

1. Кислотно-основные свойства аминокислот

 Аминокислоты — это амфотерные соединения.

Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами.

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп.

Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH2), лизин — щелочной (одна группа -СООН, две -NH2).

1.1. Взаимодействие с металлами и щелочами

Как кислоты (по карбоксильной группе), аминокислоты могут реагировать с металлами, щелочами, образуя соли:

Какие свойства проявляют аминокислоты в растворах

1.2. Взаимодействие с кислотами

По аминогруппе аминокислоты реагируют с основаниями:

Какие свойства проявляют аминокислоты в растворах

2. Взаимодействие с азотистой кислотой

Аминокислоты способны реагировать с азотистой кислотой.

Например, глицин взаимодействует с азотистой кислотой:

Какие свойства проявляют аминокислоты в растворах

3. Взаимодействие с аминами

Аминокислоты способны реагировать с аминами, образуя соли или амиды.

Какие свойства проявляют аминокислоты в растворах

4. Этерификация

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

Например, глицин взаимодействует с этиловым спиртом:

Какие свойства проявляют аминокислоты в растворах

5. Декарбоксилирование

Протекает при нагревании аминокислот с щелочами или при нагревании.

Например, глицин взаимодействует с гидроксидом бария при нагревании:

Какие свойства проявляют аминокислоты в растворах

Например, глицин разлагается при нагревании:

Какие свойства проявляют аминокислоты в растворах

6. Межмолекулярное взаимодействие аминокислот

 При взаимодействии аминокислот образуются пептиды.  При взаимодействии двух α-аминокислот образуется дипептид.

Например, глицин реагирует с аланином с образованием дипептида (глицилаланин):

Какие свойства проявляют аминокислоты в растворах

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Источник

Àìèíû – ýòî îðãàíè÷åñêèå ñîåäèíåíèÿ, â êîòîðûõ àòîì âîäîðîäà (ìîæåò è íå îäèí) çàìåùåí íà óãëåâîäîðîäíûé ðàäèêàë. Âñå àìèíû äåëÿò íà:

  • ïåðâè÷íûå àìèíû;
  • âòîðè÷íûå àìèíû;
  • òðåòè÷íûå àìèíû.

Àìèíû Ñâîéñòâà àìèíîâ

Åñòü åùå àíàëîãè ñîëåé àììîíèÿ – ÷åòâåðòè÷íûå ñîëè òèïà [R4N]+Cl-.

 çàâèñèìîñòè îò òèïà ðàäèêàëà àìèíû ìîãóò áûòü:

  • àëèôàòè÷åñêèå àìèíû;
  • àðîìàòè÷åñêèå (ñìåøàííûå) àìèíû.

Àëèôàòè÷åñêèå ïðåäåëüíûå àìèíû.

Îáùàÿ ôîðìóëà CnH2n+3N.

Ñòðîåíèå àìèíîâ.

Àòîì àçîòà íàõîäèòñÿ â sp3-ãèáðèäèçàöèè. Íà 4-îé íåãèáðèäíîé îðáèòàëè íàõîäèòñÿ íåïîäåëåííàÿ ïàðà ýëåêòðîíîâ, êîòîðàÿ îáóñëàâëèâàåò îñíîâíûå ñâîéñòâà àìèíîâ:

Àìèíû Ñâîéñòâà àìèíîâ

Ýëåêðîíîäîíîðíûå çàìåñòèòåëè ïîâûøàþò ýëåêòðîííóþ ïëîòíîñòü íà àòîìå àçîòà è óñèëèâàþò îñíîâíûå ñâîéñòâà àìèíîâ, ïî ýòîé ïðè÷èí âòîðè÷íûå àìèíû ÿâëÿþòñÿ áîëåå ñèëüíûìè îñíîâàíèÿìè, ÷åì ïåðâè÷íûå, ò.ê. 2 ðàäèêàëà ó àòîìà àçîòà ñîçäàþò áîëüøóþ ýëåêòðîííóþ ïëîòíîñòü, ÷åì 1.

 òðåòè÷íûõ àòîìàõ èãðàåò âàæíóþ ðîëü ïðîñòðàíñòâåííûé ôàêòîð: ò.ê. 3 ðàäèêàëà çàñëîíÿþò íåïîäåëåííóþ ïàðó àçîòà, ê êîòîðîé ñëîæíî «ïîäñòóïèòüñÿ» äðóãèì ðåàãåíòàì, îñíîâíîñòü òàêèõ àìèíîâ ìåíüøå, ÷åì ïåðâè÷íûõ èëè âòîðè÷íûõ.

Читайте также:  В какую сторону металлические свойства

Èçîìåðèÿ àìèíîâ.

Äëÿ àìèíîâ ñâîéñòâåííà èçîìåðèÿ óãëåðîäíîãî ñêåëåòà, èçîìåðèÿ ïîëîæåíèÿ àìèíîãðóïïû:

Àìèíû Ñâîéñòâà àìèíîâ

Àìèíû Ñâîéñòâà àìèíîâ

Êàê íàçûâàòü àìèíû?

 íàçâàíèè îáû÷íî ïåðå÷èñëÿþò óãëåâîäîðîäíûå ðàäèêàëû (â àëôàâèòíîì ïîðÿäêå) è äîáàâëÿþò îêîí÷àíèå –àìèí:

Àìèíû Ñâîéñòâà àìèíîâ

Ôèçè÷åñêèå ñâîéñòâà àìèíîâ.

Ïåðâûå 3 àìèíà – ãàçû, ñðåäíèå ÷ëåíû àëèôàòè÷åñêîãî ðÿäà – æèäêîñòè, à âûñøèå – òâåðäûå âåùåñòâà. Òåìïåðàòóðà êèïåíèÿ ó àìèíîâ âûøå, ÷åì ó ñîîòâåòñòâóþùèõ óãëåâîäîðîäîâ, ò.ê. â æèäêîé ôàçå â ìîëåêóëå îáðàçóþòñÿ âîäîðîäíûå ñâÿçè.

Àìèíû õîðîøî ðàñòâîðèìû â âîäå, ïî ìåðå ðîñòà óãëåâîäîðîäíîãî ðàäèêàëà ðàñòâîðèìîñòü ïàäàåò.

Ïîëó÷åíèå àìèíîâ.

1. Àëêèëèðîâàíèå àììèàêà (îñíîâíîé ñïîñîá), êîòîðûé ïðîèñõîäèò ïðè íàãðåâàíèè àëêèëãàëîãåíèäà ñ àììèàêîì:

Àìèíû Ñâîéñòâà àìèíîâ

Åñëè àëêèëãàëîãåíèä â èçáûòêå, òî ïåðâè÷íûé àìèí ìîæåò âñòóïàòü â ðåàêöèþ àëêèëèðîâàíèÿ, ïðåâðàùàÿñü âî âòîðè÷íûé èëè òðåòè÷íûé àìèí:

Àìèíû Ñâîéñòâà àìèíîâ

2. Âîññòàíîâëåíèå íèòðîñîåäèíåíèé:

Àìèíû Ñâîéñòâà àìèíîâ

Èñïîëüçóþò ñóëüôèä àììîíèÿ (ðåàêöèÿ Çèíèíà), öèíê èëè æåëåçî â êèñëîé ñðåäå, àëþìèíèé â ùåëî÷íîé ñðåäå èëè âîäîðîä â ãàçîâîé ôàçå.

3. Âîññòàíîâëåíèå íèòðèëîâ. Èñïîëüçóþò LiAlH4:

Àìèíû Ñâîéñòâà àìèíîâ

4. Ôåðìåíòàòè÷íîå äåêàðáîêñèëèðîâàíèå àìèíîêèñëîò:

Àìèíû Ñâîéñòâà àìèíîâ

Õèìè÷åñêèå ñâîéñòâà àìèíîâ.

Âñå àìèíû – ñèëüíûå îñíîâàíèÿ, ïðè÷åì àëèôàòè÷åñêèå áîëåå ñèëüíûå, ÷åì àììèàê.

Àìèíû Ñâîéñòâà àìèíîâ

Âîäíûå ðàñòâîðû èìåþò ùåëî÷íîé õàðàêòåð:

Àìèíû Ñâîéñòâà àìèíîâ

Àìèíû ðåàãèðóþò ñ êèñëîòàìè, îáðàçóÿ ñîëè:

Àìèíû Ñâîéñòâà àìèíîâ

Ñîëè – òâåðäûå âåùåñòâà, õîðîøî ðàñòâîðèìû â âîäå è ïëîõî ðàñòâîðèìû â íåïîëÿðíûõ æèäêîñòÿõ. Ïðè ðåàêöèè ñ ùåëî÷àìè âûäåëÿþòñÿ ñâîáîäíûå àìèíû:

Àìèíû Ñâîéñòâà àìèíîâ

2. Îáðàçîâàíèå êîìïëåêñíûõ ñîåäèíåíèé ñ ïåðåõîäíûìè ìåòàëëàìè:

Àìèíû Ñâîéñòâà àìèíîâ

3. Ðåàêöèÿ ñ àçîòèñòîé êèñëîòîé, êîòîðàÿ îáðàçóåòñÿ ïî ñëåäóþùåé ñõåìå:

Àìèíû Ñâîéñòâà àìèíîâ

Àìèíû Ñâîéñòâà àìèíîâ

4. Ñãîðàíèå àìèíîâ. Â ðåçóëüòàòå îáðàçóåòñÿ óãëåêèñëûé ãàç, àçîò è âîäà:

Àìèíû Ñâîéñòâà àìèíîâ

Ïðèìåíåíèå àìèíîâ.

Íèçøèå àëèôàòè÷åñêèå àìèíû èñïîëüçóþò äëÿ ñèíòåçà ëåêàðñòâåííûõ ñðåäñòâ, ïëàñòìàññ è ïåñòèöèäîâ.

Источник

α-Аминокислоты в силу своего химического строения проявляют кислотно-основные (амфотерные) свойства, которые определяют многие физико-химические и биологические свойства белков. На этих свойствах основаны, почти все методы выделения и идентификации аминокислот и белков.

При нейтральном значении рН аминокислоты в растворах нахо­дятся в виде биполярного иона (цвиттер-иона), при этом аминогруппа протонирована (-NH3+), а карбоксильная группа — диссоциирована (-СОО-):

 
(рН ≈7)

Ионизация аминокислоты зависит от рН среды: в кислых раство­рах ионизирована аминогруппа, а в щелочных — карбоксильная группа:

В кислой среде α-аминокислоты выступают как основания (по аминогруппе), а в щелочной — как кислоты (по карбоксильной группе). У некоторых аминокислот может ионизироваться также радикал (R), в связи, с чем все аминокислоты можно разделить на заряженные и незаря­женные (при физиологическом значении рН=6,0 — 8,0) (см. табл. 4). В качестве примера первых можно привести аспарагиновую кислоту и ли­зин:

Если радикалы аминокислот нейтральные, то они не оказывают влияния на диссоциацию α-карбоксильной или α-аминогруппы, и вели­чинырК (отрицательный логарифм, показывающий значение рН, при котором эти группы наполовину диссоциированы) остаются относительно постоянными.

Величины рК для α-карбоксилыюй (pK1) и α-аминогруппы (рК2) сильно различаются. При рН < pK1 почти все молекулы аминокислоты протежированы и заряжены положительно. Напротив, при рН > рК2 прак­тически все молекулы аминокислоты являются отрицательно за­ряженными, так как α-карбоксильная группа находится в диссоции­рованном состоянии.

Следовательно, в зависимости от рН среды аминокислоты имеют суммарный нулевой положительный или отрицательный заряд. Значение рН, при котором суммарный заряд молекулы равен нулю, и она не перемещается в электрическом поле ни к катоду, ни к аноду, называется изоэлектрической точкой и обозначается pI.

Для нейтральных α-аминокислот значение pI находят как сред­нее арифметическое между двумя значениями рК:

При рН раствора меньше pI аминокислоты протонируются и, за­ряжаясь положительно, перемещаются в электрическом поле к катоду. Обратная картина наблюдается при рН > pI.

Для аминокислот, содержащих заряженные (кислотные или ос­новные) радикалы, изоэлектрическая точка зависит от кислотности или основности этих радикалов и их рК (рК3). Значение pI для них находят по следующим формулам:

для кислых аминокислот:

для основных аминокислот:

В клетках и межклеточной жидкости организма человека и жи­вотных рН среды близко к нейтральному, поэтому основные аминокисло­ты (лизин, аргинин) имеют положительный заряд (катионы), кислые ами­нокислоты (аспарагиновая, глутаминовая) имеют отрицательный заряд (анионы), а остальные существуют в виде биполярного цвиттер-иона.

Читайте также:  Какие свойства воды знаешь

Стереохимия аминокислот

Важной особенностью белковых α-аминокислот является их оп­тическая активность. За исключением глицина все они построены асим­метрично, в связи с чем, будучи растворены в воде или в соляной кисло­те, способны вращать плоскость поляризации света. Аминокислоты суще­ствуют в виде пространственных изомеров, относящихся к D- или L-ряду. L- или D-конфигурация определяется типом строения соединения относительно асимметрического атома углерода (атом углерода, свя­занный с четырьмя различными атомами или группами атомов). В фор­мулах асимметрический атом углерода обозначают звездочкой. На рис.3 показаны проекционные модели L- и D- конфигураций аминокислот, ко­торые являются как бы зеркальным отображением друг друга. Все 18 оптически активных белковых аминокислот относятся к L -ряду. Однако в клетках многих микроорганизмов и в антибиотиках, продуцируемых некоторыми из них, обнаружены D-аминокислоты.

Рис. 3. Конфигурация L- и D- аминокислот

Строение белков

Исходя из результатов изучения продуктов гидролиза белков и выдвинутых А.Я. Данилевским идей о роли пептидных связей -CO-NH- в построении белковой молекулы, немецкий ученый Э.Фишер предложил в начале XX века пептидную теорию строения белков. Согласно этой тео­рии, белки представляют собой линейные полимеры α-аминокислот, свя­занных пептиднойсвязью — полипептиды:

В каждом пептиде один концевой аминокислотный остаток имеет свободную α-аминогруппу (N-конец), а другой — свободную α-карбок­сильную группу (С-конец). Структуру пептидов принято изображать, на­чиная с N-концевой аминокислоты. При этом аминокислотные остатки обозначаются символами. Например: Ala-Tyr-Leu-Ser-Tyr- •••Cys. Этой записью обозначен пептид, в котором N-концевой α-аминокислотой яв­ляется аланин, а С-концевой цистеин. При чтении такой записи окончания названий всех кислот, кроме последних меняются на — «ил»: аланил-тирозил-лейцил-серил-тирозил-••• -цистеин. Длина пептидной цепи в пептидах и белках, встречающихся в организме, колеблется от двух до сотен и тысяч аминокислотных остатков.

Для определения аминокислотного состава белки (пептиды) подвергают гидролизу:

В нейтральной среде эта реакция протекает очень медленно, но ускоряется в присутствии кислот или щелочей. Обычно гидролиз белков проводят в запаянной ампуле в 6М растворе соляной кислоты при 105 °С; в таких условиях полный распад происходит примерно за сутки. В неко­торых случаях белок гидролизуют в более мягких условиях (при темпера­туре 37-40 °С) под действием биологических катализаторов-ферментов в течение нескольких часов.

Затем аминокислоты гидролизата разделяют методом хромато­графии на ионообменных смолах (сульфополистирольный катионит), вы­деляя отдельно фракцию каждой аминокислоты. Для вымывания аминокис­лот с ионнообменной колонки используют буферы с возрастающим зна­чением рН. Первым снимается аспартат, имеющий кислотную боковую цепь; аргинин с основной боковой цепью вымывается последним. После­довательность снятия аминокислот с колонки определяют по профилю вымывания стандартных аминокислот. Фракционированные аминокислоты определяют по окраске, образующейся при нагревании с нингидрином:

В этой реакции бесцветный нингидрин превращается; в синефиолетовый продукт, интенсивность окраски которого (при 570 нм) пропорциональна количеству аминокислоты (только пролин дает желтое окрашивание). Измерив, интенсивность окрашивания, можно рассчитать концентрацию каждой аминокислоты в гидролизате и число остатков каждой из них в исследуемом белке.

В настоящее время такой анализ проводят с помощью автомати­ческих приборов — аминокислотных анализаторов (см. ниже рис. Схемы прибора). Результат ана­лиза прибор выдаёт в виде графика концентраций отдельных аминокис­лот. Этот метод нашел широкое применение в исследовании состава пищевых веществ , клинической практике; с его помощью за 2-3 часа можно получить полную картину качественного состава амино­кислот продуктов и биологических жидкостей.

Рис. Схема аминокислотного анализатора: 1 — вымывающий раствор (буфер с переменным рН); 2 — хроматогрифическая колонка (в верхнюю часть колонки вносят гидролизат белка, затем начинают вымывание); 3 — раствор нингидрина; 4 — водяная баня (подогревание необходимо для ускорения реакции нингидрина с аминокислотами); 5 — спектрофотометр и записывающее устройство; 6 — хроматограмма, каждый пик которой соответствует одной ами­нокислоте, а площадь пика пропорциональна концентрации аминокислоты в гидролизате.

Дата добавления: 2016-11-12; просмотров: 3946 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник