Какие свойства проявляют аминокислоты кислотные основные

Какие свойства проявляют аминокислоты кислотные основные thumbnail

Аминокислоты относятся к гетерофункциональным соединениям, т.е. вещества, проявляющим свойства двух классов соединений. В неорганической химии такие соединения называют амфотерными.

ФИЗИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений.

ХИМИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной. $alpha$-аминокислоты являются амфотерными электролитами. Имея как минимум две диссоциирующие и противоположно заряженные группировки, аминокислоты в растворах с нейтральным значением рН практически всегда находятся в виде биполярных ионов, или цвиттер-ионов, в которых противоположные заряды пространственно разделены, например $H_3^+N—CH_2—CH_2—COO^-$. 

Именно амфотерность аминокислот обуславливает их наиболее характерные свойства.

1. Кислотные свойства аминокислот проявляются по карбоксильной группе в их способности взаимодействовать, например, с щелочами:

Какие свойства проявляют аминокислоты кислотные основные

или вступать в реакцию этерификации со спиртами с образованием сложных эфиров:

Какие свойства проявляют аминокислоты кислотные основные

2. Основные свойства аминокислот проявляются по аминогруппе в их способности взаимодействовать с кислотами, образуя комплексные ионы по донорно-акцепторному механизму:

Какие свойства проявляют аминокислоты кислотные основные

3. Амфотерность аминокислот проявляется также в их способности  образовывать в растворе в результате диссоциации биполярный ион —  внутреннюю соль, а самое главное, за счет амфотерности аминокислоты могут вступать друг с другом в реакции поликонденсации. образуя полипептиды и белки:

Какие свойства проявляют аминокислоты кислотные основные

КАЧЕСТВЕННЫЕ (ЦВЕТНЫЕ) РЕАКЦИИ НА АМИНОКИСЛОТЫ И БЕЛКИ

Качественные цветные реакции можно подразделить на два типа: универсальные и специфические. К универсальным реакциям относятся те, которые дают окрашивание в присутствии любых белков.

Какие свойства проявляют аминокислоты кислотные основные

Специфические реакции доказывают наличие какой-то определенной аминокислоты. Все качественные реакции можно наблюдать на примере раствора яичного белка, представляющего собой многокомпонентную смесь аминокислот:

Какие свойства проявляют аминокислоты кислотные основные

УНИВЕРСАЛЬНЫЕ ЦВЕТНЫЕ РЕАКЦИИ

1Биуретовая реакция —  универсальная реакция на все белки и пептиды, так как является реакцией на пептидную связь. Представляет собой взаимодействие щелочного раствора биурета  ($(H_2NC(O))_2NH$ с раствором сульфата меди в присутствии гидроксида натрия (реактив Фелинга)

Какие свойства проявляют аминокислоты кислотные основные

В реакцию, подобную биуретовой, вступают многие вещества, содержащие в молекуле не менее двух амидных группировок, амиды и имиды аминокислот и некоторые другие соединения. Продукты реакции в этом случае имеют фиолетовую или синюю окраску.

Какие свойства проявляют аминокислоты кислотные основныеКакие свойства проявляют аминокислоты кислотные основные

В условиях биуретовой реакции белки дают фиолетовую окраску, что используется для их качественного и количественного анализа. Биуретовая реакция обусловлена присутствием в белках пептидных связей, которые в щелочной среде образуют с сульфатом меди (ІІ) окрашенные солеобразные комплексы меди. 

2. Нингидриновая реакция — цветная реакция на α-аминокислоты, которую осуществляют нагреванием последних в избытке щелочного раствора нингидрина (гидрата 1,2,3-индантриона). 

Какие свойства проявляют аминокислоты кислотные основные

Какие свойства проявляют аминокислоты кислотные основные

Образующееся в результате реакции соединение (дикетогидринимин — на рисунке самый левый продукт реакции) имеет фиолетово-синюю окраску. Данную используют для колориметрического количественного определения $alpha$-аминокислот, в том числе в автоматических аминокислотных анализаторах. 

СПЕЦИФИЧЕСКИЕ ЦВЕТНЫЕ РЕАКЦИИ

1. Реакция  Щульца-Распайли (аналогично проводится реакция Адамкевича, только с добавлением глиоксиловой кислоты) — является специфической реакцией на аминокислоту триптофан — взаимодействие раствора яичного белка с 10% раствором сахарозы и  равным объемом концентрированной $H_2SO_4$. На границе двух жидкостей образуется красно-фиолетовое кольцо (при нагревании на водяной бане реакция идет быстрее — главное не смешивать жидкости).

Какие свойства проявляют аминокислоты кислотные основныеКакие свойства проявляют аминокислоты кислотные основные

2Реакция Милона — используется для обнаружения тирозина, в составе которого имеется фенольный гидроксил. При добавлении к раствору белка реактива Милона (раствор $HgNO_3$ и $Hg(NO_3)_2$ в разбавленной азотной кислоты $HNO_3$, содержащей примесь азотистой кислоты $HNO_2$) образуется осадок, сначала окрашенный в розовый, а затем в пурпурно-красный цвет. Нагревание до $50^circ C$ ускоряет эту реакцию.

Какие свойства проявляют аминокислоты кислотные основныеКакие свойства проявляют аминокислоты кислотные основные

3. Ксантопротеиновая реакция — является специфической реакцией и используется для обнаружения $alpha$-аминокислот, содержащих в радикале ароматический цикл, например фенилаланина. Для ее осуществления к раствору белка прибавляют концентрированную азотную кислоту $HNO_3$ до тех пор, пока не прекратится образование осадка, который при нагревании окрашивается в желтый цвет. Окраска возникает в результате нитрования ароматических колец аминокислотных остатков белка (тирозина и триптофана). При добавлении к охлажденной жидкости избытка щелочи появляется оранжевое окрашивание, обусловленное образованием солей нитроновых кислот.

Какие свойства проявляют аминокислоты кислотные основныеКакие свойства проявляют аминокислоты кислотные основныеКакие свойства проявляют аминокислоты кислотные основные

4. Реакция Фоля на серосодержащие аминокислоты (цистеин, метионин) — взаимодействие раствора яичного белка с 30% раствором NaOH и 5% раствором уксуснокислого свинца — $Pb(CH_3COO)_2$. При длительном нагревании жидкость буреет, выпадает черный осадок сульфида свинца. 

Какие свойства проявляют аминокислоты кислотные основныеКакие свойства проявляют аминокислоты кислотные основные

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июня 2020;
проверки требует 1 правка.

Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O) и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде).
[1]
Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

История[править | править код]

Большинство из около 500 известных аминокислот были открыты после 1953 года, в том числе во время поиска новых антибиотиков в среде микроорганизмов, грибов, семян, растений, фруктов и жидкостях животных. Примерно 240 из них встречаются в природе в свободном виде, а остальные только как промежуточные элементы обмена веществ.[1]

Открытие аминокислот в составе белков[править | править код]

АминокислотаАббревиатураГодИсточникВпервые выделен[2]
ГлицинGly, G1820ЖелатинА. Браконно
ЛейцинLeu, L1820Мышечные волокнаА. Браконно
ТирозинTyr, Y1848КазеинЮ. фон Либих
СеринSer, S1865ШёлкЭ. Крамер
Глутаминовая кислотаGlu, E1866Растительные белкиГ. Риттхаузен[de]
ГлутаминGln, Q
Аспарагиновая кислотаAsp, D1868Конглутин, легумин (ростки спаржи)Г. Риттхаузен[en]
АспарагинAsn, N1806Сок спаржиЛ.-Н. Воклен и П. Ж. Робике
ФенилаланинPhe, F1881Ростки люпинаЭ. Шульце, Й. Барбьери
АланинAla, A1888Фиброин шёлкаА. Штреккер, Т. Вейль
ЛизинLys, K1889КазеинЭ. Дрексель
АргининArg, R1895Вещество рогаС. Гедин
ГистидинHis, H1896Стурин, гистоныА. Коссель[3], С. Гедин
ЦистеинCys, C1899Вещество рогаК. Мёрнер
ВалинVal, V1901КазеинЭ. Фишер
ПролинPro, P1901КазеинЭ. Фишер
ГидроксипролинHyp, hP1902ЖелатинЭ. Фишер
ТриптофанTrp, W1902КазеинФ. Хопкинс, Д. Кол
ИзолейцинIle, I1904ФибринФ. Эрлих
МетионинMet, M1922КазеинД. Мёллер
ТреонинThr, T1925Белки овсаС. Шрайвер и другие
ГидроксилизинHyl, hK1925Белки рыбС. Шрайвер и другие
Читайте также:  Какими свойствами обладают реляционные модели

Жирным шрифтом выделены незаменимые аминокислоты.

Физические свойства[править | править код]

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной.

Общие химические свойства[править | править код]

Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы  —COOH, так и основные свойства, обусловленные аминогруппой  —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl HCl • NH2 —CH2 —COOH (Хлороводородная соль глицина)
NH2 —CH2 —COOH + NaOH H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.

NH2 —CH2COOH N+H3 —CH2COO-

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOC —CH2 —NH —H + HOOC —CH2 —NH2 HOOC —CH2 —NH —CO —CH2 —NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO−. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Получение[править | править код]

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

CH3COOH + Cl2 + (катализатор) CH2ClCOOH + HCl; CH2ClCOOH + 2NH3 NH2 —CH2COOH + NH4Cl

Оптическая изомерия[править | править код]

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белка, синтезируемых на рибосомах.

D-Аминокислоты в живых организмах[править | править код]

Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год[4], что может быть использовано для определения возраста млекопитающих. Рацемизация аспартата также отмечена при старении коллагена; предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счёт образования сукцинимидного кольца при внутримолекулярном ацилировании атома азота пептидной связи свободной карбоксильной группой аспарагиновой кислоты[5].

С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов.[6] Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих[7].

В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.[8]

Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путём нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.

Протеиногенные аминокислоты[править | править код]

Основная статья: Белки

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O).[9][10] Это так называемые 21-я и 22-я аминокислоты.[11]

Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся нерешённым[12]. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.

Читайте также:  Каким свойством обладают силовые линии магнитного поля

Структурные формулы 20 протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

Классификация[править | править код]

Аминокислота3-буквы[13]1-буква[13]аминокислотмнемоническое

правило[14]

Полярность[15]радикалуMr Vw

(Å3)

pIшкала гидрофобности[16]частота в белках (%)[17]
ГлицинGlyGGGU, GGC, GGA, GGG GlycineНеполярныеАлифатические75,067486,06−0,47,03
АланинAlaAGCU, GCC, GCA, GCG AlanineНеполярныеАлифатические89,094676,011,88,76
ВалинValVGUU, GUC, GUA, GUG ValineНеполярныеАлифатические117,1481056,004,26,73
ИзолейцинIleIAUU, AUC, AUA IsoleucineНеполярныеАлифатические131,1751246,054,55,49
ЛейцинLeuLUUA, UUG, CUU, CUC, CUA, CUG LeucineНеполярныеАлифатические131,1751246,013,89,68
ПролинProPCCU, CCC, CCA, CCG ProlineНеполярныеГетероциклические115.132906,30−1,65,02
СеринSerSUCU, UCC, UCA, UCG, AGU, AGC SerineПолярныеОксимоноаминокарбоновые105,093735,68−0,87,14
ТреонинThrTACU, ACC, ACA, ACG ThreonineПолярныеОксимоноаминокарбоновые119,119935,60−0,75,53
ЦистеинCysCUGU, UGC CysteineПолярныеСеросодержащие121,154865,052,51,38
МетионинMetMAUG MethionineНеполярныеСеросодержащие149,2081245,741,92,32
Аспарагиновая

кислота

AspDGAU, GACasparDic acidПолярные

заряженные

отрицательно

заряженные отрицательно133,104912,85−3,55,49
АспарагинAsnNAAU, AACasparagiNeПолярныеАмиды132,119965,41−3,53,93
Глутаминовая

кислота

GluEGAA, GAGgluEtamic acidПолярные

заряженные

отрицательно

заряженные отрицательно147,1311093,15−3,56,32
ГлутаминGlnQCAA, CAG Q-tamineПолярныеАмиды146,1461145,65−3,53,9
ЛизинLysKAAA, AAGbefore LПолярныезаряженные положительно146,1891359,60−3,95,19
АргининArgRCGU, CGC, CGA, CGG, AGA, AGGaRginineПолярныезаряженные положительно174.20314810,76−4,55,78
ГистидинHisHCAU, CAC HistidineПолярные

заряженные

положительно

Гетероциклические155,1561187,60−3,22,26
ФенилаланинPheFUUU, UUC FenylalanineНеполярныеАроматические165,1921355,492,83,87
ТирозинTyrYUAU, UACtYrosineПолярныеАроматические181,1911415,64−1,32,91
ТриптофанTrpWUGGtWo ringsНеполярныеАроматические,

Гетероциклические

204,2281635,89−0,96,73

По радикалу[править | править код]

  • Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин
  • Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, метионин, аспарагин, глутамин
  • Ароматические: фенилаланин, триптофан, тирозин
  • Полярные заряженные отрицательно при pH=7: аспартат, глутамат
  • Полярные заряженные положительно при pH=7: лизин, аргинин, гистидин[15]

По функциональным группам[править | править код]

  • Алифатические
    • Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
    • Оксимоноаминокарбоновые: серин, треонин
    • Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
    • Амиды моноаминодикарбоновых: аспарагин, глутамин
    • Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
    • Серосодержащие: цистеин, метионин
  • Ароматические: фенилаланин, тирозин, триптофан,
  • Гетероциклические: триптофан, гистидин, пролин
  • Иминокислоты: пролин

По классам аминоацил-тРНК-синтетаз[править | править код]

  • Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
  • Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

По путям биосинтеза[править | править код]

Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:

  • Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
  • Семейство глутамата: глутамат, глутамин, аргинин, пролин.
  • Семейство пирувата: аланин, валин, лейцин.
  • Семейство серина: серин, цистеин, глицин.
  • Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.

Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

По способности организма синтезировать из предшественников[править | править код]

  • Незаменимые
    Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.
  • Заменимые
    Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

По характеру катаболизма у животных[править | править код]

Биодеградация аминокислот может идти разными путями.

По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы:

  • Глюкогенные — при распаде дают метаболиты, не повышающие уровень кетоновых тел, способные относительно легко становиться субстратом для глюконеогенеза: пируват, α-кетоглутарат, сукцинил-KoA, фумарат, оксалоацетат
  • Кетогенные — распадаются до ацетил-KoA и ацетоацетил-KoA, повышающие уровень кетоновых тел в крови животных и человека и преобразующиеся в первую очередь в липиды
  • Глюко-кетогенные — при распаде образуются метаболиты обоих типов

Аминокислоты:

  • Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.
  • Кетогенные: лейцин, лизин.
  • Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.
Читайте также:  Какой из перечисленных оксидов проявляет основные свойства

«Миллеровские» аминокислоты[править | править код]

«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат

Родственные соединения[править | править код]

В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:

  • Таурин

Применение[править | править код]

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.[18]

Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты.[19]

См. также[править | править код]

  • Аминокислотный фонд
  • Триарангукарикалитин
  • Кодон
  • Пептидная связь
  • Трансляция (биология)
  • Незаменимые аминокислоты

Примечания[править | править код]

  1. 1 2 Wagner I., Musso H. New Naturally Occurring Amino Acids (нем.) // Angewandte Chemie International Edition in English : magazin. — 1983. — November (Bd. 22, Nr. 11). — S. 816—828. — doi:10.1002/anie.198308161.
  2. ↑ Овчинников Ю. А. «Биоорганическая химия» М:Просвещение, 1987. — 815 с., стр. 25.
  3. Карпов В. Л. От чего зависит судьба гена (рус.) // Природа. — Наука, 2005. — № 3. — С. 34—43.
  4. Helfman, P M; J L Bada. Aspartic acid racemization in tooth enamel from living humans (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1975. — Vol. 72, no. 8. — P. 2891 —2894.

  5. CLOOS P; FLEDELIUS C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential (1 февраля 2000). Дата обращения 5 сентября 2011. Архивировано 2 февраля 2012 года.
  6. J. van Heijenoort. Formation of the glycan chains in the synthesis of bacterial peptidoglycan // Glycobiology. — 2001-3. — Т. 11, вып. 3. — С. 25R—36R. — ISSN 0959-6658.
  7. Herman Wolosker, Elena Dumin, Livia Balan, Veronika N. Foltyn. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration // The FEBS journal. — 2008-7. — Т. 275, вып. 14. — С. 3514—3526. — ISSN 1742-464X. — doi:10.1111/j.1742-4658.2008.06515.x.
  8. H. Brötz, M. Josten, I. Wiedemann, U. Schneider, F. Götz. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics // Molecular Microbiology. — 1998-10. — Т. 30, вып. 2. — С. 317—327. — ISSN 0950-382X.
  9. Linda Johansson, Guro Gafvelin, Elias S.J. Arnér. Selenocysteine in proteins—properties and biotechnological use // Biochimica et Biophysica Acta (BBA) — General Subjects. — 2005-10. — Т. 1726, вып. 1. — С. 1—13. — ISSN 0304-4165. — doi:10.1016/j.bbagen.2005.05.010.
  10. Joseph A. Krzycki. The direct genetic encoding of pyrrolysine // Current Opinion in Microbiology. — 2005-12. — Т. 8, вып. 6. — С. 706—712. — ISSN 1369-5274. — doi:10.1016/j.mib.2005.10.009.
  11. Alexandre Ambrogelly, Sotiria Palioura, Dieter Söll. Natural expansion of the genetic code // Nature Chemical Biology. — 2007-1. — Т. 3, вып. 1. — С. 29—35. — ISSN 1552-4450. — doi:10.1038/nchembio847.
  12. Andrei S. Rodin, Eörs Szathmáry, Sergei N. Rodin. On origin of genetic code and tRNA before translation // Biology Direct. — 2011-02-22. — Т. 6. — С. 14. — ISSN 1745-6150. — doi:10.1186/1745-6150-6-14.
  13. 1 2 Cooper, Geoffrey M. The cell : a molecular approach. — 3rd ed. — Washington, D.C.: ASM Press, 2004. — xx, 713 pages с. — ISBN 0878932143, 9780878932146, 0878930760, 9780878930760.
  14. Р. Б. Соловьев, учитель биологии. Несколько мнемонических правил
  15. 1 2 Березов Т.Т., Коровкин Б.Ф. Классификация аминокислот // Биологическая химия. — 3-е изд., перераб. и доп.. — М.: Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.
  16. J. Kyte, R. F. Doolittle. A simple method for displaying the hydropathic character of a protein // Journal of Molecular Biology. — 1982-05-05. — Т. 157, вып. 1. — С. 105—132. — ISSN 0022-2836.
  17. Lukasz P. Kozlowski. Proteome-pI: proteome isoelectric point database // Nucleic Acids Research. — 2017-01-04. — Т. 45, вып. D1. — С. D1112—D1116. — ISSN 1362-4962. — doi:10.1093/nar/gkw978.
  18. Fumio Sanda, Takeshi Endo. Syntheses and functions of polymers based on amino acids (англ.) // Macromolecular Chemistry and Physics. — Vol. 200, iss. 12. — ISSN 1521-3935. — doi:10.1002/(sici)1521-3935(19991201)200:12%3C2651::aid-macp2651%3E3.0.co;2-p.
  19. ↑ Садовникова М. С., Беликов В. М. Пути применения аминокислот в промышленности. //Успехи химии. 1978. Т. 47. Вып. 2. С. 357―383.

Литература[править | править код]

  • Эксперименты Миллера-Юри и обсуждения:
    • Miller S. L. Production of amino acids under possible primitive earth conditions. Science, v. 117, May 15, 1953
    • Miller S. L. and H. C. Urey. Organic compound synthesis on the primitive earth. Science, v. 130, July 31, 1959
    • Miller Stanley L. and Leslie E. Orgel. The origins of life on the earth. Englewood Cliffs, NJ, Prentice-Hall, 1974.
  • Общая биология. Учебник для 9 — 10 классов средней школы. Под ред. Ю. И. Полянского. Изд. 17-е, перераб. — М.: Просвещение, 1987. — 288с.
  • Аминокислоты, пептиды, белки. Под ред. Ю. В. Митина

Ссылки[править | править код]

  • Аминокислоты // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Аминокислоты в химии
  • Н. С. Энтелис Аминоацил-тРНК-синтетазы: два класса ферментов // Соросовский образовательный журнал, 1998, № 9, с. 14-21

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

  • www.xumuk.ru/biologhim/010.html

Источник