Какие свойства проявляет серная кислота в окислительно
29-Дек-2014 | комментариев 5 | Лолита Окольнова
ОВР в статье специально выделены цветом. Обратите на них особое внимание. Эти уравнения могут попасться в ЕГЭ.
Разбавленная серная ведет себя, как и остальные кислоты, окислительные свои возможности прячет:
Zn + H2SO4 → ZnSO4 + H2↑
Автор статьи — Саид Лутфуллин
И еще, что надо помнить про разбавленную серную кислоту: она не реагирует со свинцом. Кусок свинца, брошенный в разбавленную H2SO4 покрывается слоем нерастворимого (см. таблицу растворимости) сульфата свинца и реакция моментально прекращается.
Pb + H2SO4 ≠
Концентрированная серная кислота – тяжелая маслянистая жидкость, не летучая, не имеет вкуса и запаха
За счет серы в степени окисления +6(высшей) серная кислота приобретает сильные окислительные свойства.
Правило для задания 24 (по-старому А24) при приготовлении растворов серной кислоты никогда нельзя в нее лить воду. Концентрированую серную кислоту нужно тонкой струйкой вливать в воду, постоянно помешивая.
Взаимодействие концентрированной серной кислоты с металлами
Эти реакции строго стандартизированны и идут по схеме:
H2SO4(конц.) + металл → сульфат металла + H2O + продукт восстановленной серы.
Есть два нюанса:
1) Алюминий, железо и хром с H2SO4 (конц) в нормальных условиях не реагируют, из-за пассивации. Нужно нагреть.
2) С платиной и золотом H2SO4 (конц) не реагирует вообще.
Сера в концентрированной серной кислоте – окислитель
- значит, сама будет восстанавливаться;
- то, до какой степени окисления будет восстанавливаться сера, зависит от металла.
Рассмотрим диаграмму степеней окисления серы:
- До -2 серу могут восстановить только очень активные металлы — в ряду напряжений до алюминия включительно.
Реакции будут идти вот так:
8Li + 5H2SO4(конц.) → 4Li2SO4 + 4H2O + H2S↑
4Mg + 5H2SO4(конц.) → 4MgSO4 + 4H2O + H2S↑
8Al + 15H2SO4(конц.) (t)→ 4Al2(SO4)3 + 12H2O + 3H2S↑
- при взаимодействии H2SO4 (конц) с металлами в ряду напряжений после алюминия, но до железа, то есть с металлами со средней активностью сера восстанавливается до :
3Mn + 4H2SO4(конц.) → 3MnSO4 + 4H2O + S↓
2Cr + 4H2SO4(конц.) (t)→ Cr2(SO4)3 + 4H2O + S↓
3Zn + 4H2SO4(конц.) → 3ZnSO4 + 4H2O + S↓
- все остальные металлы, начиная с железа в ряду напряжений (включая те, что после водорода, кроме золота и платины, конечно), могут восстановить серу только до +4. Так как это малоактивные металлы:
2Fe + 6H2SO4(конц.) (t)→ Fe2(SO4)3 + 6H2O + 3SO2↑
(обратите внимание, что железо окисляется до +3, до максимально возможной, высшей степени окисления, так как оно имеет дело с сильным окислителем)
Cu + 2H2SO4(конц.) → CuSO4 + 2H2O + SO2↑
2Ag + 2H2SO4(конц.) → Ag2SO4 + 2H2O + SO2↑
Конечно, все относительно. Глубина восстановления будет зависеть от многих факторов: концентрации кислоты (90%, 80%, 60%), температуры и т.д. Поэтому совсем уж точно предсказать продукты нельзя. Приведенная выше таблица тоже имеет свой процент приблизительности, но пользоваться ей можно. Еще необходимо помнить, что в ЕГЭ, когда продукт восстановленной серы не указан, и металл не отличается особой активностью, то, скорее всего, составители имеют в виду SO2. Нужно смотреть по ситуации и искать зацепки в условиях.
SO2 – это вообще частый продукт ОВР с участием конц. серной кислоты.
H2SO4 (конц) окисляет некоторые неметаллы (которые проявляют восстановительные свойства), как правило, до максимальной — высшей степени окисления (образуется оксид этого неметалла). Сера при этом тоже восстанавливается до SO2:
C + 2H2SO4(конц.) → CO2↑ + 2H2O + 2SO2↑
2P + 5H2SO4(конц.) → P2O5 + 5H2O + 5SO2↑
Свежеобразованный оксид фосфора (V) реагирует с водой, получается ортофосфорная кислота. Поэтому реакцию записывают сразу:
2P + 5H2SO4(конц) → 2H3PO4 + 2H2O + 5SO2↑
То же самое с бором, он превращается в ортоборную кислоту:
2B + 3H2SO4(конц) → 2H3BO3 + 3SO2↑
Очень интересны взаимодействие серы со степенью окисления +6 (в серной кислоте) с «другой» серой (находящейся в другом соединении). В рамках ЕГЭ рассматривается взаимодействиеH2SO4 (конц) с серой (простым веществом) и сероводородом.
Начнем с взаимодействия серы (простого вещества) с концентрированной серной кислотой. В простом веществе степень окисления 0, в кислоте +6. В этой ОВР сера +6 будет окислять серу 0. Посмотрим на диаграмму степеней окисления серы:
Сера 0 будет окисляться, а сера +6 будет восстанавливаться, то есть понижать степень окисления. Будет выделяться сернистый газ:
2H2SO4(конц.) + S → 3SO2↑ + 2H2O
Но в случае с сероводородом:
Образуется и сера (простое вещество), и сернистый газ:
H2SO4(конц.) + H2S → S↓ + SO2↑ + 2H2O
Этот принцип часто может помочь в определении продукта ОВР, где окислитель и восстановитель – один и тот же элемент, в разных степенях окисления. Окислитель и восстановитель «идут навстречу друг другу» по диаграмме степеней окисления.
H2SO4 (конц) , так или иначе, взаимодействует с галогенидами. Только вот тут надо понимать, что фтор и хлор – «сами с усами» и с фторидами и хлоридами ОВР не протекает, проходит обычный ионно-обменный процесс, в ходе которого образуется газообразный галогеноводород:
CaCl2 + H2SO4(конц.) → CaSO4 + 2HCl↑
CaF2 + H2SO4(конц.) → CaSO4 + 2HF↑
А вот галогены в составе бромидов и иодидов (как и в составе соответствующих галогеноводородов) окисляются ей до свободных галогенов. Только вот сера восстанавливается по-разному: иодид является более cильным восстановителем, чем бромид. Поэтому иодид восстанавливает серу до сероводорода, а бромид до сернистого газа:
2H2SO4(конц.) + 2NaBr → Na2SO4 + 2H2O + SO2↑ + Br2
H2SO4(конц.) + 2HBr → 2H2O + SO2↑ + Br2
5H2SO4(конц.) + 8NaI → 4Na2SO4 + 4H2O + H2S↑ + 4I2↓
H2SO4(конц.) + 8HI → 4H2O + H2S↑ + 4I2↓
Хлороводород и фтороводород (как и их соли) устойчивы к окисляющему действию H2SO4 (конц).
И наконец, последнее: для концентрированной серной кислоты это уникально, больше никто так не может. Она обладает водоотнимающим свойством.
Это позволяет использовать концентрированную серную кислоту самым разным образом:
Во-первых, осушение веществ. Концентрированная серная кислота забирает воду от вещества и оно «становится сухим».
Во-вторых, катализатор в реакциях, в которых отщепляется вода (например, дегидратация и этерификация):
H3C–COOH + HO–CH3 (H2SO4(конц.))→ H3C–C(O)–O–CH3 + H2O
H3C–CH2–OH (H2SO4(конц.))→ H2C=CH2 + H2O
Обсуждение: «Окислительные свойства серной кислоты»
(Правила комментирования)
В сочинениях монаха-алхимика Василия Валентина, жившего в XV веке, которого многие историки химии считают мифической фигурой, было рекомендовано получать “дух из солей” ( “спиритус салис”) — прокаливанием смеси каменной соли и железного купороса. При этом отгонялась жидкость, которая поражала воображения алхимиков: она дымила на воздухе, вызывала кашель, разъедала ткань, бумагу, металл. О каком веществе идет речь? Какими еще интересными свойствами и почему обладает это вещество? Вот на эти вопросы нам предстоит ответить.
Серная кислота является сильной кислотой. Это объясняется строением ее молекулы так как, электронная плотность от атомов водорода смещается к атомам кислорода и серы, имеющих большую элекроотрицательность, что позволяет протонам водорода легко отщепляться.
Физические свойства серной кислоты
100%-ная H2SO4 (моногидрат, SO3×H2O) кристаллизуется при 10,45 С; t кип 296,2 С; плотность 1,9203 г/см3; теплоёмкость 1,62 Дж/г (К. H2SO4 смешивается с Н2О и SO3 в любых соотношениях, образуя соединения:
H2SO4×4H2O (t пл. — 28,36 С),
H2SO4×3H2O (t пл. — 36,31 С),
H2SO4×2H2O (t пл. — 39,60 С),
H2SO4×H2O (t пл. — 8,48 С),
При нагревании и кипении водных растворов С. к. , содержащих до 70% H2SO4, в паровую фазу выделяются только пары воды. Над более концентрированными растворами появляются и пары С. к. Раствор 98,3%-ной H2SO4 (азеотропная смесь) при кипении (336,5 0С) перегоняется полностью. Серная кислота, содержащая свыше 98,3% H2SO4, при нагревании выделяет пары SO3.
Химические свойства разбавленной серной кислоты а взаимодействие растворов серной кислоты с активными металлами.
Особенно активно идет процесс щелочными и щелочноземельными металлами. В 1808г. английский химик Гемфри Дэви наблюдал, как впервые полученный им металлический барий тонет в концентрированной серной кислоте, а затем всплывает, окруженный пузырьками выделяющегося газа.
Калий и натрий взаимодействует с разбавленной серной кислотой с взрывом. Даже при охлаждении до -50 С происходит воспламенение выделяющегося водорода. Лишь вблизи температуры замерзания кислоты (для 30%- ной Н2sО4 она ниже -70) реакция прекращается.
Нами проводились исследования взаимодействия разбавленной серной кислоты с литием и кальцием.
2Li + H2 SO4 = Li2SO4 + H2 ↑
Li 0 — 1 e → Li+ *2 восстановитель
2H + + 2e → H2 0 окислитель
Ca + H2 SO4 = CaSO4 + H2 ↑
Ca 0 — 2 e → Ca 2+ восстановитель
2H + + 2e → H2 0 окислитель
При взаимодействии серной кислоты с активными металлами продуктом реакции являлся водород.
б Реакции разбавленной серной кислоты с металлами средней активности
При взаимодействии серной кислоты с металлами средней активности продуктами реакции являлись водород и сероводород.
Zn + H2SO4 = ZnSO4 + H2 ↑
Zn0 — 2e → Zn 2+ восстановитель
2H+ + 2e → H2 окислитель
4Zn + 5H2SO4 = 4Zn SO4 + H2S ↑+ 4H2O
Zn0 — 2e → Zn 2+ восстановитель
SO4 2- +8e +8H+→S 2-+4H2O окислитель
Разбавленная серная кислота не реагирует со свинцом, даже при нагревании.
в Реакции разбавленной серной кислоты с алюминием и железом
При взаимодействии серной кислоты с алюминием и железом продуктами реакции являлись водород и сероводород.
2Al+3 H2 SO4 =Al2(SO4)3+3H2 ↑
Al0 – 3e →Al+3 *2 восстановитель
2H+ + 2e → H2 *3 окислитель
8Al+15 H2 SO4 =4 Al2(SO4)3+3H2 S↑ +12H2O
Al0 – 3e →Al+3 *8 восстановитель
S+6 +8e →S-2 *3 окислитель
2Fe+ 3H2SO4 = Fe2(SO4)3 +3 H2↑
Fe0 -3e →Fe+3 *2 восстановитель
2H+ + 2e → H2 *3 окислитель г Реакции разбавленной серной кислоты с малоактивными металлами
Разбавленная (50%) серная кислота не взаимодействует с металлами, расположенными в ряду напряжений после водорода.
Химические свойства концентрированной серной кислоты а С концентрированной серной кислотой натрий реагирует медленнее, чем с водой. Но реакция с калием все равно закончиться взрывом. Среди прочих продуктов в результате данных реакций образуются сульфиды этих металлов.
8Na + 4H2 SO4 (k) = 2S + 6Na2S + 4H2O
Na 0 — 1 e → Na+ *8 восстановитель
S+6 +8e →S-2 *1 окислитель б Реакции концентрированной серной кислоты с металлами средней активности
При взаимодействии концентрированной серной кислоты с металлами средней активности продуктами реакции являлись сера, сероводород и сернистый газ.
Zn + 2H2 SO4 = ZnSO4 + H2O + SO2
Zn 0 — 2 e → Zn+ 2 восстановитель
S+6 + 2 e → S+4 окислитель
4Zn + 5H2 SO4 = 4ZnSO4 + 4H2O + H2S
Zn 0 — 2 e → Zn+ 2 *4 восстановитель
S+6 + 8 e → S-2 *1 окислитель
3Zn + 4H2 SO4 = 3ZnSO4 +4 H2O + S
Zn 0 — 2 e → Zn+ 2 *3восстановитель
S+6 + 6 e → S0 *1окислитель в Реакции концентрированной серной кислоты с алюминием и железом
На холоде концентрированная серная кислота пассивирует многие металлы, в том числе РЬ, Cr, Ni, сталь, чугун.
При нагревании реакционной смеси происходит химическая реакция.
8Fe+15 H2 SO4 =4 Fe2(SO4)3+3H2 S↑ +12H2O
Al0 – 3e →Al+3 *8 восстановитель
S+6 +8e →S-2 *3 окислитель г Реакции концентрированной серной кислоты с малоактивными металлами
Может ли концентрированная серная кислота взаимодействовать с металлами, стоящими в ряду напряжений после водорода? Сера имеет степень окисления +6 в серной кислоте, это позволяет предположить, что серная кислота является окислителем за счет сульфат – иона.
Cu + 2H2 SO4 = CuSO4 + H2O + SO2
Cu 0 — 2 e → Cu+ 2 восстановитель
S+6 + 2 e → S+4 окислитель
При взаимодействии концентрированной серной кислоты с малоактивными металлами выделяется сернистый газ.
5. Реакции концентрированной серной кислоты с неметаллами
S + 2H2 SO4 = 2H2O + 3SO2
S 0 — 4 e → S+4 восстановитель
S +6 + 2 e → S+4 *2 окислитель
2P + 5H2 SO4 = 2H3PO4 + 5SO2 + 2H2O
P 0+ 2H2 O -5 e → PO4 2- +4 H+ *2 восстановитель
SO4 2- +4H+ +2e →SO2 + 2H2O *5 окислитель
6. Реакции концентрированной серной кислоты с органическими веществами
Может ли конц. серная кислота взаимодействовать с органическими веществами?
Конц. серная кислота проявляет водоотнимающие свойства. Это свойство можно использовать в химическом процессе для сушки различных продуктов, например, газов.
Она окисляет сахарозу, при этом образуются летучие газы диоксид углерода и диоксид серы, поэтому масса вспучивается и поднимается. Кроме того, она может обугливать целлюлозу.
С12Н22О11 + H2 SO4 = 13 H2O + 2SO2 + 11С + СО2
Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы — ОН. Дегидратация этилового спирта в присутствии концентрированной серной кислотой приводит к получению этилена или смеси эфиров.
C2H5OH H2 SO4 → CH2=CH2 + H2O
2C2H5OH H2 SO4 → C2H5O C2H5 + H2O
2C2H5OH + H2 SO4 → C2H5OSO3H + H2O
Выводы:
1. Серная кислота реагирует с большинством металлов, но в зависимости от её концентрации и положения металла в ряду напряжения скорость и продукты реакции могут существенно различаться.
2. Степень окисления продукта реакции зависит от активности металла, чем активнее металл, вступающий в реакцию с концентрированной серной кислотой, тем ниже степень окисления продута восстановления серы.
3. Свойства концентрированной серной кислоты существенно отличаются от свойств ее растворов.
4. Концентрированная серная кислота является сильнейшим окислителем.
Окислителем в концентрированной серной кислоте является сульфат- ион, а в ее растворах – протон водорода.
Заключение
В результате работы над проектом: мы провели ряд самостоятельных лабораторных исследований и опытным путем выяснили, какие продукты реакции возможны при взаимодействии серной кислоты с различными веществами при определенных условиях.
Изучили особые свойства концентрированной серной кислоты; закрепили понятие окислитель и восстановитель.
Получили возможность усовершенствовать и развить экспериментальные умения и навыки.
Опыт 3. Окислительные свойства перманганата калия. Поместить в три пробирки по 2—3 капли раствора перманганата калия. Добавить в одну пробирку 5—6 капель разбавленной серной кислоты, в другую — столько же дистиллированной воды, в третью — 5—б капель концентрированного раствора щелочи. Во все три пробирки внести микрошпателем по несколько кристалликов сульфита натрия. Встряхнуть содержимое пробирки до его растворения. Отметить видимые признаки реакции- (изменение цвета раствора и выпадение осадка). Составить уравнения реакций [c.100]
Опыт 8. Окислительно-восстановительные свойства пероксида водорода, а) К раствору иодида калия, подкисленного равным объемом серной кислоты, прилейте раствор перекиси водорода. Объясните наблюдаемое. [c.52]
Окисление в кислой среде. Наиболее сильно окислительные свойства перманганата калия выражены в кислой среде. Чаще всего реакцию ведут в присутствии серной кислоты. Для подсчета количества окислителя можно использовать «следующее расчетное уравнение [c.131]
Выполнение. В стаканы налить растворы дихромата калия и вольфрамата калия, подкислить серной кислотой. После добавления иодида калия в стакан с дихроматом наблюдается обильное выделение иоДа — хромовая кислота сильный окислитель. Прибавление иодида калия к раствору вольфрама не сопровождается выделением, иода,— для вольфрамовой кислоты окислительные свойства не характерны. [c.185]
Сероводородная кислота, образование кислых и средних солей. Гидролиз сульфидов. Растворимость сульфидов. Оксид серы (IV), строение молекулы, получение. Физические и химические свойства. Получение сернистой кислоты. Соли кислые и средние. Окислительно-восстановительные свойства соединений серы со степенью окисления +4. Оксид серы (IV), строение молекулы, получение. Физические и химические свойства. Получение серной кислоты. Химические свойства разбавленной и концентрированной серной кислоты (взаимодействие с металлами, неметаллами, органическими веществами). [c.7]
Концентрированная серная кислота проявляет окислительные свойства за счет серы в степени окисленности +6, которая может восстанавливаться до степени окисленности — 4 (ЗОа), О (свободная сера) или —2 (НгЗ). Состав продуктов восстановления определяется главным образом активностью восстановителя, а также соотношением количеств восстановителя и серной кислоты, концентрацией кислоты и температурой системы. Чем активнее восстановитель и выше концентрация кислоты, тем более глубоко протекает восстановление. Так, малоактивные металлы (Си, 5Ь и др.), а также бромоводород и некоторые неметаллы восстанавливают концентрированную серную кислоту до 50 [c.162]
Разбавленная серная кислота обладает свойствами сильной двухосновной кислоты окислительные свойства проявляются только за счет ионов водорода. Разбавленная кислота растворяет металлы, стоящие в ряду напряжений до водорода, но не-реагирует с неактивными металлами (Си, Hg и др.) [c.163]
При использовании серной кислоты в качестве водоотнимающего средства следует помнить об ее окислительных свойствах и добавлять ее надо очень осторожно, чтобы не вызвать обугливания вещества. Количество и процентное содержание кислоты, применяемой в реакциях, зависит от физических и химических свойств органических соединений, с которыми серная кислота вступает во взаимодействие, от температуры и условий проведения реакции. [c.161]
Разбавленная серная кислота окислительных свойств за счет S + не проявляет. Все металлы, стоящие в ряду, напряжений до водорода, вытесняют его из разбавленной [c.293]
Окислительно-восстановительные свойства сероводорода и концентрированной серной кислоты обусловлены серой, входящей в состав этих соединений в различном валентном состоянии. [c.213]
Опыт II. Окислительные свойства нитрата (III) натрия (ТЯГА ). К подкисленному разбавленной серной кислотой раствору иодида калия добавьте раствор нитрита натрия NaNOa. Отметьте выделение газа, его побурёние под действием кислорода воздуха, а также окраску образовавшегося раствора. Экспериментально докажите выделение иода. Напишите уравнение реакции. [c.39]
Опыт 445. Окислительные свойства серной кислоты. При действии на металлы разбавленной серной кислоты окислительная роль принадлежит иону Н+, который может окислять только металлы, находящиеся в ряду стандартных окислительных потенциалов впереди водорода. На металлы менее активные, стоящие за водородом, разбавленная серная кислота не действует. [c.297]
Разбавленная серная кислота окислительных свойств за счет 5 + не проявляет. Все металлы, стоящие в ряду напряжений до водорода, вытесняют его из разбавленной серной кислоты, если только образующаяся соль растворима в ней [c.234]
При этом серная кислота проявляет 1) кислотные свойства 2) окислительные свойства 3) не проявляет ни тех, ни других свойств. [c.228]
Концентрированная серная кислота — бесцветная маслянистая жидкость, без запаха р = 1,8 г/см сильно едкая. Смешивается с водой с выделением больщого количества тепла. Следует лить кислоту в воду ), Вследствие ярко выраженных окислительных свойств взаимодействует также и с благородными металлами с образованием солей. [c.162]
Свинцовый аккумулятор. Действие широко используемых свинцовых аккумуляторов основано иа окислительных свойствах соедииеиий свиица (IV) и на их переходе в устойчивые соединения свинца (11), Аккумуляторы составляют из свинцовых пластин с нане-ссниым на ннх оксидом свинца Р1)0. Пластины погружают в раствор серной кислоты, Сначала происходит реак.ция образования сульфата свинца. Затем при зарядке аккуму,лятора пронускаиием через него постоянного электрического тока происходит иревраще- [c.344]
Соляная, разбавленная серная и другие кислоты, анионы которых не обладают окислительными свойствами, взаимодействуют с железом с выделением водорода и образованием солен железа (П) [c.301]
Н2804 — это химически активная неорганическая кислота, которая активно взаимодействует с большинством металлов и окислов, соединяется с водой и с органическими соединениями, обладает окислительными и обезвоживающими свойствами. Концентрированная Н25 04 (свыше 70 %) почти не действует на стальные предметы. В то же время разбавленная серная кислота интенсивно разрушает железо, выделяя водород. [c.139]
Во втором томе даются сведения о каталитических процессах исчерпывающего и селективного гидрирования, обычного и окислительного дегидрирования, синтеза метанола, получения дизельного топлива из монооксида углерода и водорода. Рассмотрены также общие вопросы подбора катализаторов, свойства и применения некоторых гетерогенных и гомогенных катализаторов. Завершает второй том описание катализаторов производства серной кислоты. [c.6]
Окислительные свойства серной кислоты проявляются и при взаимодействии с другими восстановителями (S, С, H2S, НВг, HI и т. д.) [c.117]
Многие виды диэлектриков, особенно пластмассы, в большей или меньшей степени гидрофобны, т. е. не смачиваются водой. Поэтому гидрофилизация поверхности большинства диэлектриков является основной задачей, решаемой на стадии первичной обработки поверхности. Наиболее эффективными способами придания поверхности диэлектрика гидрофильных свойств считаются травление в органических растворителях и обработка в растворе окислителей. Органический растворитель разрыхляет поверхностный слой диэлектрика, вызывая его набухание, что ослабляет связи между полимерными цепями в приповерхностном слое. Окислительная обработка, проводимая после стадии набухания, резко повышает сорбционную способность поверхности диэлектрика. Это происходит главным образом за счет увеличения хемосорбционной поверхностной активности, которая обусловлена, с одной стороны, увеличением гидрофильности поверхности ( прививка активных групп), с другой стороны, разрывом связей типа С=С и С=-0 в результате воздействия на молекулы мономеров сильного окислителя. Так, обработка стеклотекстолита в растворе, содержащем перманганат калия и фосфорную кислоту, приводит к повышению адсорбции палладия на его поверхности в четыре раза, а обработка в растворе, содержащем хромовый ангидрид и серную кислоту, увеличивает сорбционную способность поверхности стеклотекстолита более чем в 10 раз. [c.97]
Действие серной кислоты на металлы. Разбавленную серную кислоту обычно рассматривают как необладающую окислительными свойствами концентрированная же серная кислота такими свойствами обладает, причем сама восстанавливается до сернистого газа. Она пассивирует железо. Для хранения на заводах достаточно концентрированной кислоты обычно применяются стальные или чугунные емкости случайное разбавление кислоты до концентрации ниже безопасной (обычно около 68%, но она зависит от металла) может иметь серьезные последствия. Не следует забывать возможность поглощения воды из воздуха. Также не следует считать, что если данный образец стали стоек в кислоте вначале, то такое поведение стали обязательно будет продолжаться и в дальнейшем. Иногда внешний слой емкости из томасовской стали обладает стойкостью против серной или азотной кислоты, но после того как кислота, медленно разъевши этой слой, проникнет к зоне сегрегации, процесс коррозии пойдет быстро [38]. [c.305]
Окислительные свойства соединений хрома (VI). 1. В три пробирки внесите по нескольку капель раствора дихромата калия и подкислите их одной-двумя каплями раствора разбавленной серной кислоты. В первую пробирку прибавьте несколько капель раствора иодида калия, во вторую — сульфата железа (II), в третью — нитрита калия или натрия. Последнюю пробирку слегка подогрейте. Напишите уравнения реакций в молекулярной и ионной формах. [c.153]
Окислительные свойства. В две пробирки возьмите немного оксида марганца (IV), прибавьте в одну 2—3 мл концентрированной серной кислоты, во вторую — соляной. Осторожно подогрейте. Наблюдайте выделение из одной кислорода (проба тлеющей лучинкой), а из другой — хлора. [c.121]
H2SO4, H2Se04, НбТеОб — сильные окислители в случае серной кислоты окислительными свойствами обладают ее концентрированные растворы. Окислительные свойства наиболее сильно выражены у H2Se04. [c.360]
Бромная кислота в отличие от хлорной и йодной в свободном виде неустойчива, и окислительные свойства у нее проявляются гораздо сильнее, чем у хлорной, хотя по силе эти кислоты примерно одинаковы. Йодная же кислота является слабой кислотой, кристаллизуется в виде дигидрата Н104 2И20 и обнаруживает свойства многоосновной кислоты, поскольку образует соли, отвечающие замещению всех пяти атомов водорода атомами металла, например NasIOe. Это неудивительно, так как крупный атом иода координирует вокруг себя больше атомов кислорода, чем бром или хлор (6 вместо 4). Такая же тенденция проявляется в других группах периодической системы химических элементов Д. И. Менделеева (ср., например, серную и теллуровую кислоты). [c.108]
Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах РеС1з наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте. [c.379]
Для создания кислой среды обычно пользуются разбавле1пюй серной кислотой, так как азотная кислота проявляет окислительные, а хлористоводородная кислота — восстановительные свойства. Для создания щелочной среды прибавляют раствор NaOH ИЛН КОН. [c.209]
Так как бинарные никелево-молибденовые сплавы имеют плохие физико-механические свойства (низкая пластичность, плохая обрабатываемость), то в них вводят Другие элементы, например железо, для создания тройных или многокомпонентных сплавов. Они тоже довольно трудно обрабатываются, но все же заметно легче, чем двухкомпонентные. В соляной и серной кислотах стойкость этих сплавов выше, чем никеля, однако в окислительных средах (например, в азотной кислоте) повышения стойкости не отмечается. Коррозионный потенциал сплавов N1—Мо—Ре лежит в акт11вной области, поэтому на них образуется питтинг в сильнокислых средах, в которых эти сплавы обычно исполь зуют на практике. [c.362]
Серная кислота в процессе нитрования способствует образованию иона нитрония (см. стр. 90), что усиливает нитрующее действие азотной кислоты и одновременно уменьшает ее окислительные свойства. Ион Н80 связывает освобождающийся протон. Кроме того, серная кислота растворяет многие органические соединения и, как вещество высококипящее, позволяет вести реакцию в большом температурном интервале. [c.87]
Восстановительные свойства свободных металлов и водорода. Окислительные свойства кислот. Опыт 1. В цилиндрическую пробирку влить 3—4 мл разбавленной серной кислоты (1 4). Прибавить по каплям раствор перманганата калия КМПО4 до слаборозового окрашивания жидкости. Отлить половину в другую пробирку. Внести в одну пробирку 2—3 кусочка магниевой стружки, в другую — столько же железной стружки. Наблюдать [c.26]
Опыт 16. Окислительные свойства оксида марганца (VII). (Работать под тягой с наполовину опущенным стеклом.) На часовое стекло положите несколько кристаллов КМПО4, осторожно добавьте несколько капель концентрированной серной кислоты и перемещайте стеклянной палочкой. Небольшое количество смеси перенесите в фарфоровую чашку на кусочек ваты, слегка смоченной спиртом. Наблюдайте загорание спирта. Ни в коем случае нельзя повторять опыт с уже использованной для переноса смеси КМПО4 и Нг504 стеклянной палочкой [c.144]
Коэффициент к K2SO4 определен по количеству ионов калия в левой части уравнения. Для создания в растворе кислой среды чаще всего пользуются серной кислотой, так как анион 50Г устойчив и не проявляет окислительных и восстановительных свойств. [c.132]
Селеновая и теллуровая кислоты являются окислителями уже в разбавленных растворах, тогда как разбавленная серная кислота не проявляет окислительных свойств. Концентрированная H2SO4 окисляет иодиды. Такие металлы, как медь и серебро, восстанавливают ее даже до H2S. [c.522]
Особенно эффективное средство очистки стекла и фарфора — смесь бихромат+серная кислота, так называемая хромовая смесь, которую готовят растворением 20—30 г тонкоизмельченного ЫагСггО или К2СГ2О7 в 1 дм конц. Н2304. Очищающая способность этой очень агрессивной жидкости красно-коричневого цвета основана преимущественно на ее окислительном действии. Безводная хромовая смесь может реагировать с органическими веществами даже со взрывом, о чем нужно помнить ири обработке сосудов с неизвестным содержимым. При разбавлении хромовая смесь теряет свои свойства, поэтому перед ее употреблением надо дать стечь каплям воды с очищаемой посуды, предварительно вымытой водой. Толстостенные сосуды с хромовой смесью лучше всего держать закрытыми. Если моющая смесь окрашена в зеленый цвет, значит, хром восстановлен [Сг(У1)- Сг(П1)] такая смесь уже непригодна для работы. Для очистки шлифов от находящейся на них смазки вместо хромовой смеси лучше использовать органические растворители, такие, как бензин, бензол или тетрахлорид углерода. [c.482]
Опыт 5, Окислительные свойства персульфатов, В пробирку с 2—3 каплями раствора сульфата хрома (П1) внести 4—5 капель разбавленной серной кислоты, 2 капли катализатора — раствора нитрата серебра. Нагреть, В горячий раствор прибавить 5—6 капель раствора NazSsOs и продолжать нагревание до изменения зеленого цвета раствора на оранжевый. Составить электронные уравнения й расставить коэффициенты в уравнении реакции [c.84]
Опыт 4. Окислительные свойства хлората калия. Поместить в две пробирки по 4—5 капель раствора хлората калия. Добавить в каждую по 3—4 капли разбавленной серной кислоты. Первую пробирку с раствором оставить для сравнения, во вторую внести 2—3 кристаллика FeS04. Нагреть. Наблюдать появление желтоватой окраски раствора вследствие окисления Fe + в Fe +. В обе пробирки прибавить по 2 капли раствора нитрата [c.87]
Лабораторные работы по неорганической химии (1948) — [
c.124
]
Практикум по общей химии (1948) — [
c.253
]
Практикум по общей химии Издание 2 1954 (1954) — [
c.264
]
Практикум по общей химии Издание 3 (1957) — [
c.271
]
Практикум по общей химии Издание 4 (1960) — [
c.271
]
Практикум по общей химии Издание 5 (1964) — [
c.292
]