Какие свойства проявляет p2o5

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 мая 2020;
проверки требуют 3 правки.
Пентаоксид фосфора, также оксид фосфора(V) (фосфорный ангидрид, пятиокись фосфора) — неорганическое химическое соединение класса кислотных оксидов с формулами P4O10 и P2O5. Бесцветный кристаллический порошок, реагирует с водой; ядовит.
Строение[править | править код]
Пары оксида фосфора(V) имеют состав P4O10. Твердый оксид склонен к полиморфизму. Существует в аморфном стекловидном состоянии и кристаллическом. Для кристаллического состояния известны две метастабильные модификации пентаоксида фосфора — гексагональная Н-форма (а = 0,744 нм, = 87°, пространств, гр. R3С) и орторомбическая О-форма (а = 0,923 нм, b = 0,718 нм, с = 0,494 нм, пространств, гр. Рпат), а также одна стабильная орторомбическая О-форма (а =1,63 нм, b= 0,814 нм, с =0,526 нм, пространств. гр. Fdd2). Молекулы P4O10 (Н-форма) построены из 4 групп PO4 в виде тетраэдра, вершины которого занимают атомы фосфора, 6 атомов кислорода располагаются вдоль ребер, а 4 — по оси третьего порядка тетраэдра. Эта модификация легко возгоняется (360°С) и активно взаимодействует с водой.
Другие модификации имеют слоистую полимерную структуру из тетраэдров PO4, объединенные в 10-членные (О-форма) и 6-членные (О’-форма) кольца. Эти модификации имеют более высокую температуру возгонки (~580°С) и менее химически активны. H-форма переходит в О-форму при 300—360оC.
Свойства[править | править код]
P4O10 очень активно взаимодействует с водой (H-форма поглощает воду даже со взрывом), образуя смеси фосфорных кислот, состав которых зависит от количества воды и других условий:
При сильном нагревании распадается на:
Он также способен извлекать воду из других соединений, представляя собой сильное дегидратирующее средство:
Оксид фосфора(V) широко применяется в органическом синтезе. Он реагирует с амидами, превращая их в нитрилы:
Карбоновые кислоты переводит в соответствующие ангидриды:
Оксид фосфора(V) также взаимодействует со спиртами, эфирами, фенолами и другими органическими соединениями. При этом происходит разрыв связей P—О—P и образуются фосфорорганические соединения. Реагирует с NH3 и с галогеноводородами, образуя фосфаты аммония и оксигалогениды фосфора:
При сплавлении P4O10 с основными оксидами образует различные твёрдые фосфаты, природа которых зависит от условий реакции.
Получение[править | править код]
Оксид фосфора(V) получают сжиганием фосфора в избытке кислорода или воздуха. Технологический процесс происходит в камере сжигания и включает в себя окисление элементарного P предварительно осушенным воздухом, осаждение P4O10 и очистку отходящих газов. Очищают полученный пентаоксид возгонкой.
Технический продукт имеет вид белой снегообразной массы, состоящей из смеси разных форм P4O10.
Основные сферы использования[править | править код]
P4O10 применяют как осушитель газов и жидкостей. Также он является промежуточным продуктом в производстве ортофосфорной кислоты H3PO4 термическим способом.
Широко используется в органическом синтезе в реакциях дегидратации и конденсации.
Физиологическое значение[править | править код]
Пентаоксид фосфора особо токсичен; относится ко второму классу опасности и в высоких концентрациях раздражает кожу и слизистые оболочки глаз.
ПДК в рабочей зоны — 1 мг/м³ (в соответствии с ГОСТ 12.1.005-76).
ЛД50 на крысах и белых мышах при пероральном введении составляет 140 мг/кг.
Литература[править | править код]
- Ахметов Н. С. «Общая и неорганическая химия» М.: Высшая школа, 2001
- Реми Г. «Курс неорганической химии» М.: Иностранная литература, 1963
- Ф. Коттон, Дж. Уилкинсон «Современная неорганическая химия» М.: Мир, 1969
- Зефиров Н.С. и др. т.5 Три-Ятр // Химическая энциклопедия. — М.: Большая Российская Энциклопедия, 1998. — 783 с. — ISBN 5-85270-310-9.
Оксид
фосфора (V) – фосфорный ангидрид
Физические свойства: Оксид фосфора (V) Р2О5 — белый гигроскопичный порошок (поглощает воду),
следует хранить в плотно закрытых сосудах.
Получение: Получается при горении фосфора в избытке воздуха или
кислорода
4P + 5O2 = 2P2O5
Применение:
Оксид фосфора (V) очень
энергично соединяется с водой, а также отнимает воду от других соединений. Применяется
как осушитель газов и жидкостей.
Химические
свойства: Оксид фосфора (V) – это кислотный оксид, взаимодействует, подобно другим
кислотным оксидам с водой, основными оксидами и основаниями.
Фосфорный ангидрид
особым образом взаимодействует с водой, взаимодействуя с водой при обычных условиях (без нагревания),
образует в первую очередь метафосфорную кислоту НРО3:
P2O5 + H2O = HPO3
при нагревании образуется ортофосфорная кислота H3PO4:
P2O5 + 3H2O = 2H3PO4 (t˚C)
При нагревании H3PO4
можно получить пирофосфорнуюкислоту H4P2O7:
2H3PO4 = H2O + H4P2O7 (t˚C)
Ортофосфорная
кислота
Наибольшее
практическое значение имеет ортофосфорная кислота Н3РO4.
Строение
молекулы: В молекуле фосфорной
кислоты атомы водорода соединены с атомами кислорода:
Физические
свойства: Фосфорная кислота
представляет собой бесцветное, гигроскопичное твердое вещество, хорошо
растворимое в воде.
Получение:
1) Взаимодействие
оксида фосфора (V) с водой при нагревании:
P2O5 + 3H2O = 2H3PO4 (t˚C)
2) Взаимодействие
природной соли – ортофосфата кальция с
серной кислотой при нагревании:
Сa3(PO4)2
+ 3H2SO4 = 3CaSO4 + 2H3PO4 (t˚C)
3) При
взаимодействии фосфора с концентрированной азотной кислотой
3P + 5HNO3+
2H2O = 3H3PO4+
5NO
Химические
свойства:
Свойства, общие с другими кислотами | Специфические |
1. Водный раствор кислоты изменяет окраску индикаторов Ортофосфорная кислота диссоциирует H3PO4 H2PO4- ↔ H+ + HPO42- (гидроортофосфат-ион) HPO42- ↔ H+ + PO43- (ортофосфат-ион) 2. Взаимодействует металл+ H3PO4=соль+Н2↑ 3. оксид металла + H3PO4 = соль + Н2О 4. основание + H3PO4 = соль + Н2О если H3PO4(изб) + NaOH = NaH2PO4 + H2O или H3PO4(изб) + 2NaOH = Na2HPO4 + 2H2O 5. H3PO4 H3PO4 H3PO4 + 3NH3 = (NH3)3PO4 6. 2H3PO4+3Na2CO3 = 2Na3PO4 | 1. При 2H3PO4 (t˚C) → H2O + H4P2O7 H4P2O7 (t˚C)→ H2O + 2HPO3 2. Качественная реакция на PO43- — фосфат Отличительной реакцией ортофосфорной Н3РО4 3. Играет |
Применение:
В основном для
производства минеральных удобрений.
А также, используется
при пайке, для очищения от ржавчины металлических поверхностей. Также
применяется в составе фреонов, в промышленных морозильных установках как
связующее вещество. Ортофосфорная кислота зарегистрирована в качестве пищевой
добавки E338. Применяется как регулятор кислотности в газированных напитках.
ТРЕНАЖЁРЫ
Тренажёр №1. «Свойства фосфора и его соединений»
Тренажёр №2. Тестовые задания по теме: «Азот и фосфор, их соединения»
№1. Составьте уравнения реакций оксида фосфора (V) с
1. Na2O
2. NaOH
3. H2O при нагревании
4. H2O без нагревания
Для 2 реакции запишите полное и краткое ионное уравнение.
№2. Составьте молекулярные и ионные уравнения реакций ортофосфорной кислоты с:
1. калием
2. оксидом калия
3. гидроксидом калия
4. сульфитом калия
№3. Осуществите превращения по схеме:
Сa3(PO4)2 -> P -> PH3 -> P2O5 -> H3PO4 -> Ca3(PO4)2
Назовите вещества
№4.
Вычислите (в %), какое из фосфорных удобрений: двойной суперфосфат или
преципитат богаче фосфором? Химические формулы удобрений найдите в схеме
самостоятельно.
Оксид фосфора (V), свойства, получение, химические реакции.
Оксид фосфора (V) – неорганическое вещество, имеет химическую формулу P4O10 и P2O5.
Краткая характеристика оксида фосфора (V)
Модификации оксида фосфора (V)
Физические свойства оксида фосфора (V)
Получение оксида фосфора (V)
Химические свойства оксида фосфора (V)
Химические реакции оксида фосфора (V)
Применение и использование оксида фосфора (V)
Краткая характеристика оксида фосфора (V). Формула оксида фосфора (V):
Оксид фосфора (V) – неорганическое вещество белого цвета.
Оксид фосфора (V) содержит четыре атома фосфора и десять атомов кислорода.
Химическая формула оксида фосфора (V) P4O10 и P2O5. Для простоты записи используют последнюю формулу.
В воде не растворяется, а взаимодействует с ней, образуя кислоты.
Кислотный оксид.
Модификации оксида фосфора (V):
Твердый оксид фосфора (V) склонен к полиморфизму. Существуют три формы-модификации оксида фосфора (V): H, O`, O и G формы-модификации.
гексагональная H-форма | орторомбическая O`-форма | орторомбическая O-форма | G-форма | |
Состояние вещества | Кристаллический вид | Кристаллический | Кристаллический вид | Стекловидный вид |
Характер стабильности формы | Метастабильная форма | Стабильная форма | Метастабильная форма | |
Другие характеристики | a=0,744 нм, угол = 87°, пространственная группа R3C | a=1,63 нм, b=0,814 нм, c=0,526 нм, пространственная группа Fdd2 | a=0,923 нм, b = 0,718 нм, c = 0,494 нм, пространственная группа Pnam |
H-форма переходит в O-форму при 300-360 °C (процесс заканчивается при 378 °C).
Физические свойства оксида фосфора (V). Масса, цвет, плотность, температура и пр.:
Наименование параметра: | Значение: |
Химическая формула оксида фосфора (V) | P4O10 и P2O5 |
Синонимы и названия иностранном языке | phosphorus (V) oxide (англ.) тетрафосфора декаоксид (рус.) фосфора пентаоксид (рус.) фосфорный ангидрид (рус.) |
Тип вещества | неорганическое |
Внешний вид | белые тригональные кристаллы |
Цвет оксида фосфора (V) | белый |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность H-формы (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 2300 |
Плотность H-формы (состояние вещества – твердое вещество, при 20 °C), г/см3 | 2,3 |
Плотность O`-формы (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 3000 |
Плотность O`-формы (состояние вещества – твердое вещество, при 20 °C), г/см3 | 3,0 |
Плотность O-формы (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 2720 |
Плотность O-формы (состояние вещества – твердое вещество, при 20 °C), г/см3 | 2,72 |
Температура сублимации H-формы, °C | 340,5 |
Температура кипения O`-формы, °C | 605,5 |
Температура кипения O-формы, °C | 605,5 |
Температура плавления H-формы, °C | 420,5 (0,48 МПа) |
Температура плавления O`-формы, °C | 580,5 (74 кПа) |
Температура плавления O-формы, °C | 562 (58 кПа) |
Молярная масса оксида фосфора (V), P2O5, г/моль | 141,94 |
Молярная масса оксида фосфора (V), P4O10, г/моль | 283,88 |
Примечание:
* — нет данных.
Получение оксида фосфора (V):
Оксид фосфора (V) получают путем сжигания фосфора в избытке кислорода или воздуха.
P4 + 5O2 → P4O10 (t = 34-60 °C).
Готовый продукт состоит из смеси разных форм P4O10.
Химические свойства оксида фосфора (V). Химические реакции оксида фосфора (V):
Оксид фосфора (V) относится к кислотным оксидам.
Химические свойства оксида фосфора (V) аналогичны свойствам кислотным оксидов других неметаллов. Поэтому для него характерны следующие химические реакции:
1. реакция оксида фосфора (V) и белого фосфора:
3P4O10 + 2P4 → 5P4O6 (t = 50 °C).
В результате реакции образуются оксид фосфора (III).
2. реакция оксида фосфора (V) и натрия:
3P4O10 + 16Na → 10NaPO3 + 2Na3P (t = 300-400 °C).
В результате реакции образуются соли – метафосфат натрия и фосфид натрия.
3. реакция оксида фосфора (V) и лития:
3P4O10 + 16Li → 10LiPO3 + 2Li3P (t = 300-400 °C).
В результате реакции образуются соли – метафосфат лития и фосфид лития.
4. реакция оксида фосфора (V) и фтора:
P4O10 + 6F2 → 4POF3 + 3O2 (t = 100 °C).
В результате реакции образуются оксид-трифторид фосфора(V) и кислород.
5. реакция оксида фосфора (V) с водой:
P4O10 + 6H2O → 4H3PO4 или P2O5 + 3H2O → 2H3PO4,
P4O10 + 2H2O → 4HPO3 или P2O5 + H2O → 2HPO3.
В результате реакции образуются кислоты: в первом случае – ортофосфорная кислота, во втором – метафосфорная кислота.
6. реакция оксида фосфора (V) с оксидом кальция:
CaO + P2O5 → Ca(PO3)2,
2CaO + P2O5 → Ca2P2O7,
3CaO + P2O5 → Ca3(PO4)2 (t°).
В результате реакции образуется соль, в первом случае – метафосфат кальция, во втором – дифосфат кальция, в третьем – фосфат кальция.
7. реакция оксида фосфора (V) с оксидом натрия:
3Na2O + P2O5 → 2Na3PO4.
В результате реакции образуется соль – ортофосфат натрия.
8. реакция оксида фосфора (V) с оксидом бора:
2B2O3 + P4O10 → 4BPO4 (t°).
В результате реакции образуется соль – фосфат бора.
9. реакция оксида фосфора (V) с гидроксидом натрия:
P4O10 + 12NaOH → 4Na3PO4 + 6H2O или P2O5 + 6NaOH → 2Na3PO4 + 3H2O.
В результате реакции образуется соль – ортофосфат натрия и вода. Гидроксид натрия – разбавленный раствор.
10. реакция оксида фосфора (V) с плавиковой кислотой:
P4O10 + 3HF → POF3 + 3HPO3 (t = 120-170 oC).
В результате химической реакции получается оксид-трифторид фосфора и метафосфорная кислота.
11. реакция оксида фосфора (V) с бромистым водородом (бромоводородом):
P4O10 + 3HBr → POBr3 + 3HPO3 (t = 200 oC).
В результате химической реакции получается оксид-трибромид фосфора и метафосфорная кислота.
12. реакция оксида фосфора (V) с азотной кислотой:
4HNO3 + P4O10 → 2N2O5 + 4HPO3 или 2HNO3 + P2O5 → N2O5 + 2HPO3 (t = -10 oC).
В результате химической реакции получается оксид азота и метафосфорная кислота.
13. реакция оксида фосфора (V) с ортофосфорной кислотой:
P4O10 + 8H3PO4 → 6H4P2O7 (t = 80-100 oC).
В результате химической реакции получается дифосфорная кислота. Ортофосфорная кислота – концентрированный раствор.
14. реакция оксида фосфора (V) с пероксидом водорода:
P4O10 + 8H2O2 → 4H3PO2(O2)2 + 2H2O (t = -20 oC).
В результате химической реакции получается дипероксодиоксофосфата водорода и вода. Пероксид водорода – безводный.
15. реакции оксида фосфора (V) с органическими веществами:
Оксид фосфора (V) реагирует с амидами, превращая их в нитрилы, а также со спиртами, эфирами, фенолами и другими органическими соединениями, при этом образуются фосфорорганические соединения.
Применение и использование оксида фосфора (V):
Оксид фосфора (V) используется как осушитель газов и жидкостей в органическом синтезе.
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
оксид фосфора (V) реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие оксида фосфора (V)
реакции с оксидом фосфора (V)
Коэффициент востребованности
4 058
Оксид фосфора | |
---|---|
![]() | |
![]() | |
Систематическое наименование | Оксид фосфора (V) |
Хим. формула | P2O5 |
Состояние | белый порошок |
Молярная масса | 141,94 г/моль |
Плотность | 2.39 г/см³ |
Т. плав. | 420оС(Н-форма),569 (О-форма) |
Т. кип. | возгоняется при 359 (Н-форма) °C |
Энтальпия образования | -3010,1 кДж/моль |
Растворимость в воде | реагирует |
Рег. номер CAS | [1314-56-3] (P2O5) [16752-60-6] (P4O10) |
PubChem | 14812 |
SMILES | O=P12OP3(=O)OP(=O)(O1)OP(=O)(O2)O3 |
InChI | 1S/O10P4/c1-11-5-12(2)8-13(3,6-11)10-14(4,7-11)9-12 DLYUQMMRRRQYAE-UHFFFAOYSA-N |
RTECS | TH3945000 |
ChEBI | 37376 |
ChemSpider | 14128 и 21428497 |
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного. |
Пентаоксид фосфора, также оксид фосфора (V) (фосфорный ангидрид, пятиокись фосфора) — неорганическое химическое соединение класса кислотных оксидов с формулами P4O10 и P2O5
Строение
Пары оксида фосфора(V) имеют состав P4O10. Твердый оксид склонен к полиморфизму. Существует в аморфном стекловидном состоянии и кристаллическом. Для кристаллического состояния известны две метастабильные модификации пентаоксида фосфора — гексагональная Н-форма (а = 0,744 нм, = 87°, пространств, гр. R3С) и орторомбическая О-форма (а = 0,923 нм, b = 0,718 нм, с = 0,494 нм, пространств, гр. Рпат), а также одна стабильная орторомбическая О-форма (а =1,63 нм, b= 0,814 нм, с =0,526 нм, пространств. гр. Fdd2). Молекулы P4O10 (Н-форма) построены из 4 групп PO4 в виде тетраэдра, вершины которого занимают атомы фосфора, 6 атомов кислорода располагаются вдоль ребер, а 4 — по оси третьего порядка тетраэдра. Эта модификация легко возгоняется (360°С) и активно взаимодействует с водой. Другие модификации имеют слоистую полимерную структуру из тетраэдров PO4, объединенные в 10-членные (О-форма) и 6-членные (О’-форма) кольца. Эти модификации имеют более высокую температуру возгонки (~580°С) и менее химически активны. H-форма переходит в О-форму при 300—360оC.
Свойства
P4O10 очень активно взаимодействует с водой (H-форма поглощает воду даже со взрывом), образуя смеси фосфорных кислот, состав которых зависит от количества воды и других условий:
P4O10 + 6H2O → 4H3PO4
При сильном нагревании распадается на:
P4O10 → P4O6 + 2O2
Он также способен извлекать воду из других соединений, представляя собой сильное дегидратирующее средство:
4HNO3 + P4O10 → 4HPO3 + 2N2O5 4HClO4 + P4O10 → (HPO3)4 + 2Cl2O7
Оксид фосфора(V) широко применяется в органическом синтезе. Он реагирует с амидами, превращая их в нитрилы:
P4O10 + RCONH2 → P4O9(OH)2 + RCN
Карбоновые кислоты переводит в соответствующие ангидриды:
P4O10 + 12RCOOH → 4H3PO4 + 6(RCO)2O
Оксид фосфора(V) также взаимодействует со спиртами, эфирами, фенолами и другими органическими соединениями. При этом происходит разрыв связей P—О—P и образуются фосфорорганические соединения. Реагирует с NH3 и с галогеноводородами, образуя фосфаты аммония и оксигалогениды фосфора:
P4O10 + 8PCl3 + O2 → 12POCl3
При сплавлении P4O10 с основными оксидами образует различные твёрдые фосфаты, природа которых зависит от условий реакции.
Получение
Оксид фосфора(V) получают сжиганием фосфора в избытке кислорода или воздуха. Технологический процесс происходит в камере сжигания и включает в себя окисление элементарного P предварительно осушенным воздухом, осаждение P4O10 и очистку отходящих газов. Очищают полученный пентаоксид возгонкой.
4P + 5O2 → P4O10
Технический продукт имеет вид белой снегообразной массы, состоящей из смеси разных форм P4O10.
Применение
P4O10 применяют как осушитель газов и жидкостей. Также он является промежуточным продуктом в производстве ортофосфорной кислоты H3PO4 термическим способом.
Широко используется в органическом синтезе в реакциях дегидратации и конденсации.
Неорганические соединения фосфора | |
---|---|
Оксиды |
|
Фосфорные кислоты |
|
Соли |
|
Соединения фосфония |
|
Прочее |
|
Информация
Традиционно содержание Фосфора в удбрениях выражают содержанием Оксида фосфора.
Все свойства Фосфора, как питательного элемента описаны в статье Фосфор.
Подробнее >>>
Химические и физические свойства
Оксид фосфора – бесцветное аморфное или стекловидное вещество, существующеев трех кристаллических, двух аморфных и двух жидких формах.[1]
Токсичное вещество. Вызывает ожоги кожи и раздражение слизистой оболочки.
Пентаоксид фосфора очень гигроскопичен. Реагирует со спиртами эфирами, фенолами, кислотами и прочими веществами. В процессе реакции с органическими веществами происходит разрыв связей фосфора с кислородом, и образуются фосфорорганические соединения. Вступает в химические реакции с аммиаком (NH3) и галогеноводородами с образованием фосфатов аммония и оксигалогенидов фосфора. С основными оксидами образует фосфаты.[3]
Трехмерная модель молекулы
Трехмерная модель молекулы
Содержание пентаоксида фосфора в почве и удобрениях
Фактически в почве имеются только соли ортофосфорной кислоты H3PO4, но в сложных удобрениях могут быть и соли мета-, пиро- и полифосфорных кислот.[4]
Основой для образования ортофосфорной кислоты является пентаоксида фосфора. Именно поэтому, а так же в связи с тем, что растения не поглощают элементарный фосфор, условлено обозначать концентрацию фосфора через содержание пентаоксида фосфора.[2]
P2O5 + 3H2O → 2H3PO4
Все встречающиеся в почве соли ортофосфорной кислоты и одновалентных катионов (NH4+, Na+, K+) и однозамещенные соли двухвалентных катионов (Ca(H2PO4)2 и Mg(H2PO4)2) растворимы в воде.
Двузамещенные соли двухвалентных катионов в воде не растворимы, но легко растворяются в слабокислых кислотах корневых выделений и органических кислотах жизнедеятельности микроорганизмов. В этой связи они так же являются хорошим источником P2O5 для растений.[4]
Поглощение пентаоксида фосфора растениями
Как указывалось выше, в природе основной источник фосфора – это соли ортофосфорнонй кислоты H3PO4. Однако после гидролиза пиро-, поли- и метафосфаты так же используются практически всеми культурами.
Гидролиз пирофосфата натрия:
Na4P2O7 + H2O + 2H+ → 2NaH2PO4 +2Na+
Гидролиз триполифосфата натрия:
Na5P3O10 + 2H2O + 2H+ → 3NaH2PO4 +2Na+
Гидролиз метафосфат иона (в кислой среде):
(PO3)66- + 3H2O → H2P3O103- + H2P2O72- + H2PO4-
Ортофосфорная кислота, будучи трехосновной отдиссоциирует три аниона H2PO—4, HPO42-, PO4 3- . В условиях слабокислой реакции среды, именно в них возделываются растения, наиболее распространен и доступен первый ион, в меньшей степени второй и практически недоступен третий. Однако люпин, гречиха, горчица, горох, донник, конопля и другие растения способны усваивать фосфор из трехзамещенных фосфатов.[4]
Некоторые растения приспособились усваивать фосфат-ион из фосфорорганических соединений (фитин, глицефосфаты и прочее). Корни данных растений выделяют особый фермент (фотофтазу), который и отщипляет анион фосфорной кислоты от органических соединений, а затем растения поглощают этот анион. К подобного рода растениям относятся горох, бобы, кукуруза. Причем фосфатазная активность возрастает в условиях фосфорного голода.
Многие растения могут питаться фосфором из очень разбавленных растворов, вплоть до 0,01 мг /л P2O5 . Естественно, что удовлетворить потребность в фосфоре растения могут только при условии постоянного возобновления в нем концентрации хотя бы такого же низкого уровня.
Опытным путем установлено, что поглощаемый корнями фосфор прежде всего идет на синтез нуклеотидов, а для дальнейшего продвижения в наземную часть фосфаты вновь поступают в проводящие сосуды корня в виде минеральных соединений.[4]
Рерасчет содержения фосфора в удобрениях
В некоторых случаях требуется рассчитать процентное содержание фосфора в удобрении, если дано содержание по P2O5. Расчет производится по формуле:
y = x,% × 30,974 (молярная масса P) × 2 / 30,974 (молярная масса P) × 2 + 15,999 (молярная масса O) × 5
где:
х – содержание P2O5 в удобрении, %;
y – содержание P в удобрении, %
Или:
y = x, % × 0,43643
Например:
в удобрении содержится 40% оксида фосфора
для пересчета процентного содержания элемента фосфор в удобрении нужно умножить массовую долю оксида в удобрении на массовую долю элемента в оксиде (для P2O5 – 0,43643): 40 * 0,43643 = 17,4572 %
Статья составлена с использованием следующих материалов:
Литературные источники:
1.
Ван Везер «Фосфор и его соединения». Монография. т. 1.: Изд-во иностранной литературы, М., 1962.
2.
Калинский А.А., Вильдфлуш И.Р., Ионас В.А. и др. – Агрохимия в вопросах и ответах – Мн.: Урожай,1991. – 240 с.: ил.
3.
Химическая энциклопедия: в пяти томах: т.1: А-Дарзана/Редкол.: Кнунянц И.Л. (гл. ред.) и др. – М.: Советская энциклопедия, 1988. – 623.: ил
4.
Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия / Под редакцией Б.А. Ягодина.– М.: Колос, 2002.– 584 с.: ил (Учебники и учебные пособия для студентов высших учебных заведений).
Свернуть
Список всех источников