Какие свойства проявляет оксид железа
Соединения
двухвалентного железа
I. Гидроксид
железа (II)
Образуется при действии растворов щелочей на соли
железа (II) без доступа воздуха:
FeCl2 + 2KOH = 2KCl + Fе(OH)2↓
Fe(OH)2 — слабое основание, растворимо в
сильных кислотах:
Fe(OH)2
+ H2SO4 = FeSO4 + 2H2O
Fe(OH)2
+ 2H+ = Fe2+ + 2H2O
Дополнительный материал:
Fe(OH)2 – проявляет и слабые амфотерные
свойства, реагирует с концентрированными щелочами:
Fe(OH)2
+ 2NaOH = Na2[Fe(OH)4].
образуется соль тетрагидроксоферрат (II) натрия
При прокаливании Fe(OH)2 без доступа
воздуха образуется оксид железа (II) FeO — соединение черного цвета:
Fe(OH)2
t˚C→ FeO + H2O
В присутствии кислорода воздуха белый осадок Fe(OH)2,
окисляясь, буреет – образуя гидроксид железа (III) Fe(OH)3:
4Fe(OH)2
+ O2 + 2H2O = 4Fe(OH)3↓
Дополнительный материал:
Соединения железа (II) обладают восстановительными
свойствами, они легко превращаются в соединения железа (III) под действием окислителей:
10FeSO4 + 2KMnO4
+ 8H2SO4 = 5Fe2(SO4)3 +
K2SO4 + 2MnSO4 + 8H2O
6FeSO4 + 2HNO3
+ 3H2SO4 = 3Fe2(SO4)3 +
2NO + 4H2O
Соединения железа склонны к комплексообразованию:
FeCl2 + 6NH3 = [Fe(NH3)6]Cl2
Fe(CN)2 + 4KCN = K4[Fe(CN)6]
(жёлтая кровяная соль)
Качественная
реакция на Fe2+
Опыт
При действии гексацианоферрата
(III) калия K3[Fe(CN)6] (красной кровяной соли) на
растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):
3Fe2+Cl2
+ 3K3[Fe3+(CN)6] → 6KCl + 3KFe2+[Fe3+(CN)6]↓
(турнбулева синь – гексацианоферрат (III) железа (II)-калия)
Турнбуллева
синь очень похожа по свойствам на берлинскую лазурь и тоже служила
красителем. Названа по имени одного из основателей шотландской
фирмы по производству красителей «Артур и Турнбуль».
Соединения трёхвалентного
железа
I. Оксид железа
(III)
Образуется при сжигании сульфидов железа, например,
при обжиге пирита:
4FeS2 + 11O2 t˚C→ 2Fe2O3 + 8SO2
или при прокаливании солей железа:
2FeSO4
t˚C→ Fe2O3 + SO2 + SO3
Fe2O3 — оксид красно-коричневого цвета, в незначительной
степени проявляющий амфотерные свойства
Fe2O3
+ 6HCl t˚C→ 2FeCl3 + 3H2O
Fe2O3
+ 6H+ t˚C→ 2Fe3+ + 3H2O
Fe2O3 + 2NaOH + 3H2O t˚C→ 2Na[Fe(OH)4],
образуется соль – тетрагидроксоферрат
(III) натрия
Fe2O3
+ 2OH- + 3H2O t˚C→ 2[Fe(OH)4]-
При сплавлении с основными оксидами или карбонатами щелочных металлов образуются
ферриты:
Fe2O3
+ Na2O t˚C→ 2NaFeO2
Fe2O3 + Na2CO3
= 2NaFeO2 + CO2
II.Гидроксид железа (III)
Образуется при действии растворов щелочей на соли
трёхвалентного железа: выпадает в виде красно–бурого осадка
Fe(NO3)3
+ 3KOH = Fe(OH)3↓ + 3KNO3
Fe3+ + 3OH- = Fe(OH)3↓
Дополнительно:
Fe(OH)3 – более слабое основание, чем
гидроксид железа (II).
Это объясняется тем, что у Fe2+ меньше
заряд иона и больше его радиус, чем у Fe3+, а поэтому, Fe2+
слабее удерживает гидроксид-ионы, т.е. Fe(OH)2 более легко
диссоциирует.
В связи с этим соли железа (II) гидролизуются
незначительно, а соли железа (III) — очень сильно.
Гидролизом объясняется и цвет растворов солей Fe(III):
несмотря на то, что ион Fe3+ почти бесцветен, содержащие его
растворы окрашены в жёлто-бурый цвет, что объясняется присутствием
гидроксоионов железа или молекул Fe(OH)3, которые образуются
благодаря гидролизу:
Fe3+ + H2O
↔ [Fe(OH)]2+ + H+
[Fe(OH)]2+ + H2O
↔ [Fe(OH)2]+ + H+
[Fe(OH)2]+
+ H2O ↔ Fe(OH)3 + H+
При нагревании окраска темнеет, а при прибавлении
кислот становится более светлой вследствие подавления гидролиза.
Fe(OH)3 обладает слабо выраженной
амфотерностью: он растворяется в разбавленных кислотах и в концентрированных
растворах щелочей:
Fe(OH)3
+ 3HCl = FeCl3 + 3H2O
Fe(OH)3
+ 3H+ = Fe3+ + 3H2O
Fe(OH)3
+ NaOH = Na[Fe(OH)4]
Fe(OH)3
+ OH- = [Fe(OH)4]-
Дополнительный материал:
Соединения железа (III) — слабые окислители, реагируют
с сильными восстановителями:
2Fe+3Cl3 + H2S-2 = S0↓ + 2Fe+2Cl2 + 2HCl
FeCl3 + KI = I2↓ + FeCl2 + KCl
Качественные реакции на Fe3+
Опыт
1) При действии гексацианоферрата (II) калия K4[Fe(CN)6]
(жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):
4Fe3+Cl3 + 4K4[Fe2+(CN)6]
→ 12KCl
+ 4KFe3+[Fe2+(CN)6]↓
(берлинская лазурь — гексацианоферрат
(II)
железа (III)-калия)
Берлинская
лазурь была получена случайно в
начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у
торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении
солей железа получался синим. При проверке поташа оказалось, что он был прокален с
бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и
недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с
высушенной кровью животных и железными опилками. Выщелачиванием такого сплава
получали желтую кровяную соль. Сейчас берлинскую лазурь используют для
получения печатной краски и подкрашивания полимеров.
Установлено, что берлинская лазурь и турнбулева синь
– одно и то же вещество, так как комплексы, образующиеся в реакциях находятся между собой в равновесии:
KFeIII[FeII(CN)6]↔KFeII[FeIII(CN)6]
2) При добавлении к раствору,
содержащему ионы Fe3+ роданистого калия или аммония появляется
интенсивная кроваво-красная окраска раствора роданида железа(III):
2FeCl3
+ 6KCNS = 6KCl + FeIII[FeIII(CNS)6]
(при взаимодействии же с роданидами ионов Fe2+
раствор остаётся практически бесцветным).
Тренажёры
Тренажёр №1 — Распознавание соединений, содержащих ион
Fe (2+)
Тренажёр №2 — Распознавание соединений, содержащих ион
Fe (3+)
Задания для закрепления
№1. Осуществите превращения:
FeCl2 -> Fe(OH)2 -> FeO -> FeSO4
Fe -> Fe(NO3)3 -> Fe(OH)3 -> Fe2O3->
NaFeO2
№2. Составьте уравнения реакций, при помощи которых
можно получить:
а) соли железа (II) и соли железа (III);
б) гидроксид железа (II) и гидроксид железа (III);
в) оксиды железа.
Оксид железа (III), свойства, получение, химические реакции.
Оксид железа (III) – неорганическое вещество, имеет химическую формулу Fe2O3.
Краткая характеристика оксида железа (III)
Модификации оксида железа (III)
Физические свойства оксида железа (III)
Получение оксида железа (III)
Химические свойства оксида железа (III)
Химические реакции оксида железа (III)
Применение и использование оксида железа (III)
Краткая характеристика оксида железа (III):
Оксид железа (III) – неорганическое вещество красно-коричневого цвета.
Оксид железа (III) содержит три атома кислорода и два атома железа.
Химическая формула оксида железа (III) Fe2O3.
В воде не растворяется. С водой не реагирует.
Термически устойчив.
Оксид железа (III) – амфотерный оксид с большим преобладанием основных свойств. Как амфотерный оксид проявляет в зависимости от условий либо основные, либо кислотные свойства.
Модификации оксида железа (III):
Известны следующие кристаллические модификации железа: α-Fe2O3, γ-Fe2O3.
Физические свойства оксида железа (III)*:
Наименование параметра: | Значение: |
Химическая формула | Fe2O3 |
Синонимы и названия иностранном языке | iron(III) oxide (англ.) гематит (рус.) красный железняк (рус.) |
Тип вещества | неорганическое |
Внешний вид | красно-коричневые тригональные кристаллы |
Цвет | красно-коричневый |
Вкус | —** |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 5242 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 5,242 |
Температура кипения, °C | 1987 |
Температура плавления, °C | 1566 |
Молярная масса, г/моль | 159,69 |
Примечание:
* оксид железа α-форма.
** — нет данных.
Получение оксида железа (III):
В природе встречается в виде минералов гематита (красный железняк), лимонита и маггемита.
Оксид железа (III) получают в результате следующих химических реакций:
- 1. окисления железа:
4Fe + 3O2 → 2Fe2O3.
- 2. термического разложения полигидрата оксида железа (III):
Fe2O3•nH2O → Fe2O3 + nH2O (t = 500-700 oC).
- 3. термического разложения метагидроксида железа:
2FeO(OH) → Fe2O3 + H2O (t = 500-700 oC).
- 4. термического разложения гидроксида железа (III):
2Fe(OH)3 → Fe2O3 + 3H2O (t°).
- 5. термического разложения сульфата железа (III):
Fe2(SO4)3 → Fe2O3 + 3SO3 (t = 500-700 oC).
Химические свойства оксида железа (III). Химические реакции оксида железа (III):
Оксид железа (III) относится к амфотерным оксидам, но с большим преобладанием основных свойств.
Химические свойства оксида железа (III) аналогичны свойствам амфотерных оксидов других металлов. Поэтому для него характерны следующие химические реакции:
1. реакция оксида железа (III) с алюминием:
2Al + Fe2O3 → 2Fe + Al2О (t°).
В результате реакции образуется оксид алюминия и железо.
2. реакция оксида железа (III) с углеродом:
Fe2O3 + 3С → 2Fe + 3CО (t°).
В результате реакции образуется железо и оксид углерода.
3. реакция оксида железа (III) с водородом:
Fe2O3 + H2 → 2FeO + H2О (t°),
Fe2O3 + 3H2 → 2Fe + 3H2О (t = 1050-1100 °C),
3Fe2O3 + H2 → 2Fe3O4 + H2О (t = 400 °C).
В результате реакции в первом случае образуется оксид железа (II) и вода, во втором – железо и вода, в третьем – оксид железа (II, III) и вода.
4. реакция оксида железа (III) с железом:
Fe2O3 + Fe → 3FeО (t = 900 °C).
В результате реакции образуется оксид железа (II).
5. реакция оксида железа (III) с оксидом натрия:
5Na2О + Fe2O3 → 2Na5FeО4 (t = 450-500 °C).
В результате реакции образуется соль – феррат натрия.
6. реакция оксида железа (III) с оксидом магния:
MgО + Fe2O3 → MgFe2О4 (t°).
В результате реакции образуется соль – феррит магния.
7. реакция оксида железа (III) с оксидом меди (II):
CuО + Fe2O3 → CuFe2О4 (t°).
В результате реакции образуется соль – феррит меди.
8. реакция оксида железа (III) с оксидом титана:
TiО + Fe2O3 → TiFe2О4 (t°).
В результате реакции образуется соль – феррит титана.
9. реакция оксида железа (III) с оксидом марганца:
MnО + Fe2O3 → MnFe2О4 (t°).
В результате реакции образуется соль – феррит марганца.
10. реакция оксида железа (III) с оксидом никеля:
NiО + Fe2O3 → NiFe2О4 (t°).
В результате реакции образуется соль – феррит никеля.
11. реакция оксида железа (III) с оксидом кадмия:
CdО + Fe2O3 → CdFe2О4 (t°).
В результате реакции образуется соль – феррит кадмия.
12. реакция оксида железа (III) с оксидом цинка:
ZnО + Fe2O3 → ZnFe2О4 (t = 450-500 °C),
ZnО + Fe2O3 → Fe2ZnО4 (t = 450-500 °C).
В результате реакции образуется оксид железа-цинка.
13. реакция оксида железа (III) с оксидом кальция:
CaО + Fe2O3 → CaFe2О4 (t = 900-1000 °C)
В результате реакции образуется оксид кальция-железа.
14. реакция оксида железа (III) с оксидом углерода:
Fe2O3 + 3СО → 2Fe + 3СО2 (t = 700 °C),
Fe2O3 + СО → 2FeО + СО2 (t = 500-600 °C),
3Fe2O3 + СО → 2Fe3О4 + СО2 (t = 400 °C),
В результате реакции в первом случае образуется железо и углекислый газ, во втором – оксид железа (II) и углекислый газ, в третьем – оксид железа (II, III) и углекислый газ.
15. реакция оксида железа (III) с гидроксидом натрия:
Fe2O3 + 2NaOH → 2NaFeO2 + H2О (t = 600 oC, p).
В результате реакции образуется соль – феррит натрия и вода. Реакция протекает при избыточном давлении.
16. реакция оксида железа (III) с карбонатом натрия:
Fe2O3 + Na2СO3 → 2NaFeO2 + СО2 (t = 800-900 oC).
В результате реакции образуется соль – феррит натрия и оксид углерода.
17. реакция оксида железа (III) с плавиковой кислотой:
Fe2O3 + 6HF → 2FeF3 + 3H2O.
В результате химической реакции получается соль – фторид железа и вода.
18. реакция оксида железа (III) с азотной кислотой:
Fe2O3 + 6HNO3 → 2Fe(NO3)3 + 3H2O.
В результате химической реакции получается соль – нитрат железа и вода. Азотная кислота – разбавленный раствор.
Аналогично проходят реакции оксида железа и с другими кислотами.
19. реакция оксида железа (III) с бромистым водородом (бромоводородом):
Fe2O3 + 6HBr → 2FeBr3 + 3H2O.
В результате химической реакции получается соль – бромид железа и вода.
20. реакция оксида железа (III) с йодоводородом:
Fe2O3 + 6HI → 2FeI3 + 3H2O.
В результате химической реакции получается соль – йодид железа и вода.
21. реакция оксида железа (III) с хлоридом железа:
Fe2O3 + FeСl3 → 3FeOCl3 (t = 350 oC).
В результате химической реакции получается оксид хлорида-железа.
22. реакция термического разложения оксида железа (III):
6Fe2O3 → 4Fe3O4 + O2 (t = 1200-1390 oC).
В результате химической реакции получается оксид железа (II, III) и кислород.
Применение и использование оксида железа:
Оксид железа используется в металлургии для выплавки чугуна, как катализатор в химической и нефтехимической промышленности, как пищевая добавка (E172), как компонент керамики, красок и пр. целей.
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
оксид железа реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие оксида железа
реакции с оксидом железа
Коэффициент востребованности
8 824
Железо – химический элемент
1. Положение железа в
периодической таблице химических элементов и строение его атома
Железо
— это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar(Fe) = 56; состав атома: 26-протонов;
30 – нейтронов; 26 – электронов.
Схема
строения атома:
Электронная
формула: 1s22s22p63s23p63d64s2
Металл
средней активности, восстановитель:
Fe0-2e-→Fe+2, окисляется восстановитель
Fe0-3e-→Fe+3, окисляется восстановитель
Основные
степени окисления: +2, +3
2. Распространённость
железа
Железо – один из
самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%,
по этому показателю оно уступает только
кислороду, кремнию и алюминию. Много железа находится и в небесных телах,
что установлено по данным спектрального анализа. В образцах лунного грунта,
которые доставила автоматическая станция “Луна”, обнаружено железо в
неокисленном состоянии.
Железные
руды довольно широко распространены на Земле. Названия гор на Урале говорят
сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят
соединения железа.
Железо
входит в состав большинства горных пород. Для получения железа используют
железные руды с содержанием железа 30-70% и более.
Основными железными
рудами являются:
магнетит (магнитный железняк) – Fe3O4 содержит 72%
железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:
гематит (железный блеск, кровавик)– Fe2O3содержит до
65% железа, такие месторождения встречаются в Криворожском районе:
лимонит (бурый железняк) – Fe2O3*nH2O
содержит до 60% железа, месторождения встречаются в Крыму:
пирит (серный колчедан, железный
колчедан, кошачье золото) – FeS2
содержит примерно 47% железа, месторождения встречаются на Урале.
3. Роль железа в жизни
человека и растений
Биохимики
открыли важную роль железа в жизни растений, животных и человека. Входя в
состав чрезвычайно сложно построенного органического соединения, называемого
гемоглобином, железо обусловливает красную окраску этого вещества, от которого
в свою очередь, зависит цвет крови человека и животных. В организме взрослого
человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина.
Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном
направлении – CO2.
Железо
необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе
фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют
белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый
цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо,
и вскоре смазанное место зеленеет.
Так
от одной и той же причины – наличия железа в соках и тканях – весело зеленеют
листья растений и ярко румянятся щеки человека.
4. Физические свойства железа.
Железо
– это серебристо-белый металл с температурой плавления 1539оС. Очень
пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется.
Железо обладает способностью намагничиваться и размагничиваться, поэтому
применяется в качестве сердечников электромагнитов в различных электрических
машинах и аппаратах. Ему можно придать большую прочность и твердость методами
термического и механического воздействия, например, с помощью закалки и
прокатки.
Различают
химически чистое и технически чистое железо. Технически чистое железо, по сути,
представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода,
а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо
содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый,
блестящий, по внешнему виду очень похожий на платину металл. Химически чистое
железо устойчиво к коррозии и хорошо
сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих
драгоценный свойств.
5. Получение железа
Восстановлением
из оксидов углём или оксидом углерода (II), а также водородом:
FeO + C =
Fe + CO
Fe2O3
+ 3CO = 2Fe + 3CO2
Fe2O3
+ 3H2 = 2Fe + 3H2O
Опыт «Получение железа алюминотермией»
6. Химические свойства железа
Как
элемент побочной подгруппы железо может проявлять несколько степеней окисления.
Мы рассмотрим только соединения, в которых железо проявляет степени окисления
+2 и +3. Таким образом, можно говорить, что у железа имеется два ряда
соединений, в которых оно двух- и трехвалентно.
1) На воздухе железо легко
окисляется в присутствии влаги (ржавление):
4Fe +
3O2 + 6H2 O = 4Fe(OH)3
2) Накалённая железная проволока
горит в кислороде, образуя окалину — оксид железа (II,III) — вещество чёрного цвета:
3Fe +
2O2 = Fe3O4
C кислородом во влажном воздухе образуется Fe2O3*nH2O
Опыт «Взаимодействие железа с кислородом»
3) При высокой
температуре (700–900°C) железо реагирует с парами воды:
3Fe + 4H2O t˚C→
Fe3O4 + 4H2
4) Железо
реагирует с неметаллами при нагревании:
2Fe + 3Br2 t˚C→
2FeBr3
Fe + S t˚C→ FeS
5) Железо
легко растворяется в соляной и разбавленной серной кислотах при обычных
условиях:
Fe + 2HCl = FeCl2 + H2
Fe + H2SO4(разб.) = FeSO4
+ H2
6) В концентрированных кислотах –
окислителях железо растворяется только при нагревании
2Fe + 6H2SO4(конц.) t˚C→
Fe2(SO4)3 + 3SO2 + 6H2O
Fe + 6HNO3(конц.) t˚C→ Fe(NO3)3
+ 3NO2 + 3H2O
На холоде
концентрированные азотная и серная кислоты пассивируют железо!
Опыт «Взаимодействие железа с концентрированными кислотами»
7) Железо
вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.
Fe +
CuSO4 = FeSO4 + Cu
8) Качественные реакции на
Железо (II)
Железо (III)
7. Применение железа.
Основная
часть получаемого в мире железа используется для получения чугуна и стали —
сплавов железа с углеродом и другими металлами. Чугуны содержат около 4%
углерода. Стали содержат углерода менее 1,4%.
Чугуны
необходимы для производства различных отливок — станин тяжелых машин и т.п.
Изделия из чугуна
Стали
используются для изготовления машин, различных строительных материалов, балок,
листов, проката, рельсов, инструмента и множества других изделий. Для
производства различных сортов сталей применяют так называемые легирующие
добавки, которыми служат различные металлы: Мn, Сr, Мо и другие, улучшающие
качество стали.
Изделия из стали
«ПОЯВЛЕНИЕ ЖЕЛЕЗА»
ЭТО ИНТЕРЕСНО
ТРЕНАЖЁРЫ
Тренажёр №1
— Генетический ряд Fe 2+
Тренажёр №2
— Генетический ряд Fe 3+
Тренажёр №3
— Уравнения реакций железа с простыми и сложными веществами
Задания для закрепления
№1. Составьте
уравнения реакций получения железа из его оксидов Fe2O3 и
Fe3O4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.
№2. Осуществите
превращения по схеме:
Fe2O3 -> Fe -+H2O,
t -> X -+CO, t-> Y -+HCl-> Z
Назовите продукты X, Y, Z?
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 декабря 2019;
проверки требует 1 правка.
Оксид железа(II,III) | |
---|---|
Систематическое наименование | Оксид железа(II,III) |
Традиционные названия | закись-окись железа, железная окалина, магнетит, магнитный железняк |
Хим. формула | Fe3O4 |
Состояние | чёрные кристаллы |
Молярная масса | 231,54 г/моль |
Плотность | 5,11; 5,18 г/см³ |
Твёрдость | 5,6-6,5 |
Температура | |
• плавления | разл. 1538; 1590; 1594 °C |
Мол. теплоёмк. | 144,63 Дж/(моль·К) |
Энтальпия | |
• образования | −1120 кДж/моль |
Рег. номер CAS | 1317-61-9 |
PubChem | 16211978 |
Рег. номер EINECS | 215-277-5 |
SMILES | O1[Fe]2O[Fe]O[Fe]1O2 |
InChI | 1S/3Fe.4O SZVJSHCCFOBDDC-UHFFFAOYSA-N |
ChEBI | CHEBI:50821 |
ChemSpider | 17215625, 21169623 и 21250915 |
NFPA 704 | |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
Медиафайлы на Викискладе |
Оксид железа(II,III), закись-окись железа, железная окалина — неорганическое соединение, двойной оксид металла железа с формулой Fe3O4 или FeO·Fe2O3, чёрные кристаллы, не растворимые в воде, образует кристаллогидрат.
Получение[править | править код]
- В природе встречаются большие залежи минерала магнетита (магнитного железняка) — Fe3O4 с различными примесями.
- Сжигание порошкообразного железа на воздухе:
- Действие перегретого пара на железо:
- Осторожное восстановление оксида железа(III) водородом:
Физические свойства[править | править код]
Оксид железа(II,III) при комнатной температуре образует чёрные кристаллы кубической сингонии, пространственная группа F d3m, параметры ячейки a = 0,844 нм, Z = 8 (структура шпинели). При 627 °С α-форма переходит в β-форму. При температуре ниже 120—125 К существует моноклинная форма.
Ферромагнетик с точкой Кюри 858 К (585 °С)[источник не указан 472 дня].
Обладает электрической проводимостью. Полупроводник. Электропроводность низкая. Истинная удельная электропроводность монокристаллического магнетита максимальна при комнатной температуре (250 Ом−1·см−1), она быстро снижается при понижении температуры, достигая значения около 50 Ом−1·см−1 при температуре перехода Вервея (англ.)русск. (фазового перехода от кубической к низкотемпературной моноклинной структуре, существующей ниже TV = 120—125 К)[1]. Электропроводность моноклинного низкотемпературного магнетита на 2 порядка ниже, чем кубического (~1 Ом−1·см−1 при TV); она, как и у любого типичного полупроводника, очень быстро уменьшается с понижением температуры, достигая нескольких единиц ×10−6 Ом−1·см−1 при 50 К. При этом моноклинный магнетит, в отличие от кубического, проявляет существенную анизотропию электропроводности — проводимость вдоль главных осей может отличаться более чем в 10 раз. При 5,3 К электропроводность достигает минимума ~10−15 Ом−1·см−1 и растёт при дальнейшем понижении температуры. При температуре выше комнатной электропроводность медленно уменьшается до ≈180 Ом−1·см−1 при 780—800 К, а затем очень медленно растёт вплоть до температуры разложения[2].
Кажущаяся величина электропроводности поликристаллического магнетита в зависимости от наличия трещин и их ориентировки может отличаться в сотни раз.
Образует кристаллогидрат состава Fe3O4·2H2O.
Химические свойства[править | править код]
- Разлагается при нагревании:
- Реагирует с разбавленными кислотами:
- Реагирует с концентрированными окисляющими кислотами:
- Реагирует с щелочами при сплавлении:
- Окисляется кислородом воздуха:
- Восстанавливается водородом и монооксидом углерода:
- Конпропорционирует при спекании с железом:
Применение[править | править код]
- Изготовление специальных электродов.
- Как черный пигмент в краске
Литература[править | править код]
- Химическая энциклопедия / Редкол.: Кнунянц И. Л. и др.. — М.: Советская энциклопедия, 1990. — Т. 2. — 671 с. — ISBN 5-82270-035-5.
- Справочник химика / Редкол.: Никольский Б. П. и др.. — 2-е изд., испр. — М.-Л.: Химия, 1966. — Т. 1. — 1072 с.
- Справочник химика / Редкол.: Никольский Б. П. и др.. — 3-е изд., испр. — Л.: Химия, 1971. — Т. 2. — 1168 с.
- Лидин Р. А. и др. Химические свойства неорганических веществ: Учеб. пособие для вузов. — 3-е изд., испр. — М.: Химия, 2000. — 480 с. — ISBN 5-7245-1163-0.
- Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М.: Мир, 1972. — Т. 2. — 871 с.