Какие свойства проявляет fecl3

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 февраля 2020;
проверки требует 1 правка.

У этого термина существуют и другие значения, см. Хлорид железа.

Хлорид железа(III), хлорное железо, также — трихлорид железа. FeCl3 — средняя соль трёхвалентного железа и соляной кислоты, слабое амфотерное соединение.

Физические свойства[править | править код]

Мерцающие, черно-коричневые, либо темно-красные, либо фиолетовые в проходящем свете, зеленые в отраженном свете листочки с металлическим блеском. Сильно гигроскопичен, на воздухе превращается в гидрат FeCl3· 6Н2О — гигроскопичные жёлтые, по другим источникам желто-коричневые кристаллы, хорошо растворимые в воде (при 20 °C в 100 г воды растворяется 91,9 г безводной соли).
Tпл 309 °C.

Методы получения[править | править код]

  • Самым простым методом получения трихлорида железа является действие на железные опилки или раскалённую железную проволоку[1] газообразным хлором. При этом, в отличие от действия соляной кислоты, образуется соль трёхвалентного железа — выделяется бурый дым из мельчайших её частиц[2]:
  • Также трихлорид получается при окислении хлором хлорида железа(II):
  • Также существует метод окисления оксидом серы(IV):
  • Другим способом получения трихлорида железа (FeCl3) является взаимодействие оксида железа(III) с соляной кислотой, сопровождающееся выделением воды и энергии в виде тепла:

Химические свойства[править | править код]

  • При нагревании в атмосферном давлении до температуры плавления начинается медленное разложение трихлорида железа с образованием дихлорида и молекулярного хлора:
  • За счёт того, что трихлорид железа является сильной кислотой Льюиса, он вступает во взаимодействие с некоторыми другими хлоридами, при этом образуются комплексные соли тетрахлороферратной кислоты:
  • При нагревании до 350 °C с оксидом железа(III) образуется оксохлорид железа:
  • Соли трёхвалентного железа являются слабыми окислителями, в частности, трихлорид железа хорошо окисляет металлическую медь, переводя её в растворимые хлориды:
  • реагирует с иодоводородом:

Применение[править | править код]

Хлорид железа (III) в роли катализатора реакции электрофильного замещения Фриделя-Крафтса

  • Хлорид железа(III) применяется при травлении печатных плат (радиотехника, системотехника).
  • Используется для травления печатных форм (офорт, цинкография), как альтернатива азотной кислоте, реакция с которой сопровождается выделением высокотоксичных паров («лисий хвост»).
  • Используется в кузнечном деле для проявления рисунка железа.
  • Применяется как протрава при крашении тканей.
  • В промышленных масштабах применяется как коагулянт для очистки воды.
  • За счёт чётко выраженных кислотных свойств широко применяется в качестве катализатора в органическом синтезе. Например, для реакции электрофильного замещения в ароматических углеводородах.

Безопасность[править | править код]

Хлорид железа(III) является токсичным, высококоррозионным соединением. Безводная соль служит осушителем.

См. также[править | править код]

  • Хлорид железа(II)

Примечания[править | править код]

  1. ↑ Взаимодействие хлора с железом — видеоопыт в Единой коллекции цифровых образовательных ресурсов
  2. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 76. Хлор // Неорганическая химия: Учебник для 7—8 классов средней школы. — 18-е изд. — М.: Просвещение, 1987. — С. 184-187. — 240 с. — 1 630 000 экз.

Источник

Соединения
двухвалентного железа

I. Гидроксид
железа (II)

Образуется при действии растворов щелочей на соли
железа (II) без доступа воздуха:

FeCl2 + 2KOH = 2KCl + Fе(OH)2↓

Fe(OH)2 — слабое основание, растворимо в
сильных кислотах:

Fe(OH)2
+ H2SO4 = FeSO4 + 2H2O

Fe(OH)2
+ 2H+ =  Fe2+ + 2H2O

Дополнительный материал:

Fe(OH)2 – проявляет и слабые амфотерные
свойства, реагирует с концентрированными щелочами:

Fe(OH)2
+ 2
NaOH = Na2[Fe(OH)4].
образуется соль тетрагидроксоферрат (
II) натрия

При прокаливании Fe(OH)2 без доступа
воздуха образуется оксид железа (II) FeO — соединение черного цвета:

Fe(OH)2 
t˚C→  FeO + H2O

В присутствии кислорода воздуха белый осадок Fe(OH)2,
окисляясь, буреет – образуя гидроксид железа (III) Fe(OH)3: 

4Fe(OH)2
+ O2 + 2H2O = 4Fe(OH)3↓

Дополнительный материал:

Соединения железа (II) обладают восстановительными
свойствами, они легко превращаются в соединения железа (III) под действием  окислителей:
 

10FeSO4 + 2KMnO4
+ 8H2SO4 = 5Fe2(SO4)3 +
K2SO4 + 2MnSO4 + 8H2O

6FeSO4 + 2HNO3
+ 3H2SO4 = 3Fe2(SO4)3 +
2NO­ + 4H2O

Соединения железа склонны к комплексообразованию: 

FeCl2 + 6NH3 = [Fe(NH3)6]Cl2

Fe(CN)2 + 4KCN = K4[Fe(CN)6]
(жёлтая кровяная соль)
 

Качественная
реакция на Fe2+

 Опыт

При действии гексацианоферрата
(III) калия K3[Fe(CN)6] (красной кровяной соли)
на
растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):

3Fe2+Cl2
+ 3
K3[Fe3+(CN)6] → 6KCl + 3KFe2+[Fe3+(CN)6]↓

(турнбулева синь – гексацианоферрат (III) железа (II)-калия)

Турнбуллева
синь
очень похожа по свойствам на берлинскую лазурь и тоже служила
красителем.  Названа по имени одного из основателей шотландской
фирмы  по производству красителей «Артур и Турнбуль».

Соединения трёхвалентного
железа

I. Оксид железа
(III)

Образуется при сжигании сульфидов железа, например,
при обжиге пирита:

4FeS2 + 11O2 t˚C→   2Fe2O3 + 8SO2­

или при прокаливании солей железа:

2FeSO4 
t˚C→  Fe2O3 + SO2­ + SO3­

Fe2O3 — оксид красно-коричневого цвета, в незначительной
степени проявляющий амфотерные свойства

Fe2O3
+ 6HCl  t˚C→  2FeCl3 + 3H2O

Fe2O3
+ 6H+  t˚C→  2Fe3+ + 3H2O

Fe2O3 + 2NaOH + 3H2O  t˚C→  2Na[Fe(OH)4], 
образуется соль – тетрагидроксоферрат
(
III) натрия

Fe2O3
+ 2OH- + 3H2O t˚C→   2[Fe(OH)4]-

При сплавлении с основными оксидами  или карбонатами щелочных металлов образуются
ферриты:

Fe2O3
+ Na2O t˚C→ 2NaFeO2

Fe2O3 + Na2CO3
= 2NaFeO2 + CO2

II.Гидроксид железа (III)

Образуется при действии растворов щелочей на соли
трёхвалентного железа: выпадает в виде красно–бурого осадка

Читайте также:  Какое технологическое свойство шелковых тканей

Fe(NO3)3
+ 3KOH = Fe(OH)3↓ + 3KNO3

Fe3+ + 3OH- = Fe(OH)3↓

Дополнительно:

Fe(OH)3 – более слабое основание, чем
гидроксид железа (II).

Это объясняется тем, что у Fe2+ меньше
заряд иона и больше его радиус, чем у Fe3+, а поэтому, Fe2+
слабее удерживает гидроксид-ионы, т.е. Fe(OH)2 более легко
диссоциирует.

В связи с этим соли железа (II) гидролизуются
незначительно, а соли железа (III) — очень сильно.

Гидролизом объясняется и цвет растворов солей Fe(III):
несмотря на то, что ион Fe3+ почти бесцветен, содержащие его
растворы окрашены в жёлто-бурый цвет, что объясняется присутствием
гидроксоионов железа или молекул Fe(OH)3, которые образуются
благодаря гидролизу:
 

Fe3+ + H2O
↔ [Fe(OH)]2+ + H+

[Fe(OH)]2+ + H2O
↔ [Fe(OH)2]+ + H+

[Fe(OH)2]+
+ H2O ↔ Fe(OH)3 + H+
 

При нагревании окраска темнеет, а при прибавлении
кислот становится более светлой вследствие подавления гидролиза.

Fe(OH)3 обладает слабо выраженной
амфотерностью: он растворяется в разбавленных кислотах и в концентрированных
растворах щелочей:

Fe(OH)3
+ 3HCl = FeCl3 + 3H2O

Fe(OH)3
+ 3H+ = Fe3+ + 3H2O

Fe(OH)3
+ NaOH = Na[Fe(OH)4]

Fe(OH)3
+ OH- = [Fe(OH)4]-

Дополнительный материал:

Соединения железа (III) — слабые окислители, реагируют
с сильными восстановителями:
 

2Fe+3Cl3 + H2S-2 = S0↓ + 2Fe+2Cl2 + 2HCl

FeCl3 + KI = I2↓ + FeCl2 + KCl 

Качественные реакции на Fe3+

 Опыт

1)     При действии гексацианоферрата (II) калия K4[Fe(CN)6]
(жёлтой кровяной соли)
на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):

4Fe3+Cl3 + 4K4[Fe2+(CN)6]
→ 12
KCl
+ 4
KFe3+[Fe2+(CN)6]↓

(берлинская лазурь — гексацианоферрат
(
II)
железа (
III)-калия)

Берлинская
лазурь
была получена случайно в
начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у
торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении
солей железа получался синим. При проверке поташа оказалось, что он был прокален  с
бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и
недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с
высушенной кровью животных и железными опилками. Выщелачиванием такого сплава
получали желтую кровяную соль. Сейчас берлинскую лазурь используют для
получения печатной краски и подкрашивания полимеров.

Установлено, что берлинская лазурь и турнбулева синь
– одно и то же вещество, так как комплексы, образующиеся в реакциях находятся между собой в равновесии:

KFeIII[FeII(CN)6]KFeII[FeIII(CN)6]

2)     При добавлении к раствору,
содержащему ионы Fe3+ роданистого калия или аммония появляется
интенсивная кроваво-красная окраска раствора роданида железа(III):

2FeCl3
+ 6KCNS = 6KCl + FeIII[FeIII(CNS)6]

(при взаимодействии же с роданидами ионов Fe2+
раствор остаётся практически бесцветным).

Тренажёры

Тренажёр №1 — Распознавание соединений, содержащих ион
Fe (2+)

Тренажёр №2 — Распознавание соединений, содержащих ион
Fe (3+)

Задания для закрепления

№1. Осуществите превращения:
FeCl2 -> Fe(OH)2 -> FeO -> FeSO4
Fe -> Fe(NO3)3 -> Fe(OH)3 -> Fe2O3->
NaFeO2

№2. Составьте уравнения реакций, при помощи которых
можно получить:
а) соли железа (II) и соли железа (III);
б) гидроксид железа (II) и гидроксид железа (III);
в) оксиды железа.

Источник

Железо – химический элемент четвертого периода и побочной подгруппы VIII группы периодической системы. Атом железа содержит восемь валентных электронов, однако в соединениях железо обычно проявляет степени окисления (+2) и (+3), редко – (+6). Имеются сообщения о получении соединений восьмивалентного железа.

Степень окисления +3 для железа является наиболее устойчивой. Соединения железа(III) могут быть восстановлены только под действием сильных восстановителей, таких как водород в момент выделения, сероводород. Эти реакции проводят в кислой среде:

$Fe_2(SO_4)_3 + H_2S = 2FeSO_4 + S + H_2SO_4$

Железо широко распространено в природе – это самый распространенный металл, после алюминия. Существует гипотеза о том, что внутреннее ядро Земли – целиком состоит из железа с примесью никеля и серы, а возможно и других элементов. 

В природе  железо встречается в виде руд —  оксидов Fe$_2$O$_3$ (гематит, красный железняк) и Fe$_3$O$_4$ (магнетит, магнитный железняк), гидратированного оксида Fe$_2$O$_3 cdot$H$_2$O (лимонит, бурый железняк), карбоната FeCO$_3$ (сидерит), дисульфида FeS2 (пирит), редко встречается в виде самородков, попадающих на землю с метеоритами. Такое метеоритное железо было известно людям издревле. Освоение получения железа из железной руды послужило началом железного века.

Получение железа

В настоящее время железную руду восстанавливают коксом в доменных печах, при этом расплавленное железо частично реагирует с углеродом, образуя карбид железа Fe3C (цементит), а частично растворяет его. При затвердевании расплава образуется чугун. Чугун, используемый для получения стали, называют передельным.

Запомнить! Сталь, в отличие от чугуна, содержит меньшее количество углерода.

При получении стали, лишний углерод, содержащийся в чугуне, необходимо выжечь. Этого добиваются, пропуская над расплавленным чугуном воздух, обогащенный кислородом. Существует и прямой метод получения железа, основанный на восстановлении окатышей магнитного железняка природным газом:

Fe$_3$O$_4$ + CH$_4$ = 3Fe + CO$_2$ + 2H$_2$O

Физические свойства

Железо – серебристо-белый, ковкий и пластичный тугоплавкий (т. пл. 1535°C, т. кип. 2870°C) металл, при температурах ниже 769°C притягивается магнитом, то есть обладает ферромагнетизмом. Ферромагнитные свойства вызваны наличием в структуре металла отдельных зон – доменов, магнитные моменты которых под действием внешнего магнитного поля ориентируются в одну и ту же сторону.  Железо существует в форме нескольких полиморфных (аллотропных) модификаций. При температурах ниже $910^0C$ устойчиво железо с объемно-центрированной кристаллической решеткой ($alpha$-Fe, немагнитное α-железо существующее при $769 – 910^0C$ называют β-Fe), в интервале температур $910 – 1400^0C$ – более плотная модификация с кубической гранецентрированной ($gamma$-Fe), а выше этой температуры и вплоть до температуры плавления вновь становится устойчивой структура с объемно-центрированной ячейкой (δ-Fe).

Читайте также:  Какими свойствами обладают белки

Химические свойства железа

Запомнить!

  • Степень окисления +2 железо проявляет при взаимодействии со слабыми окислителями: серой, йодом, соляной кислотой, растворами солей. 

  • Степень окисления +3 железо проявляет при взаимодействии с сильными окислителями: хлором, бромом. 

  • Смешанную степень окисления  железо проявляет при взаимодействии с кислородом, водяным паром. 

1) с кислотами. На влажном воздухе окисляется, покрываясь коричневой коркой гидратированного оксида Fe$_2$O$_3 cdot $H$_2$O, ржавчины. Железо легко растворяется в разбавленных кислотах:

Fe + 2HCl = FeCl$_2$ + H$_2$­

но пассивируется в холодных концентрированных растворах кислот-окислителях – серной и азотной.

2) с солями.Будучи металлом средней химической активности, железо вытесняет другие, менее активные металлы из растворов их солей:

Fe + CuSO$_4$ = FeSO$_4$ + Cu

При этом, как и при растворении в кислотах, образуются соли двухвалентного железа.

3) с парами воды.При температуре белого каления железо реагирует с водой. Пропуская перегретый водяной пар через раскаленный на жаровне чугунный пушечный ствол, Лавуазье получил водород:

3Fe + 4H$_2$O = Fe$_3$O$_4$ + 4H$_2$.

4) с кислородом.В кислороде железо сгорает с образованием черyого порошка железной окалины – оксида железа(II, III) Fe$_3$O$_4$,имеющей тот же состав, что и природный минерал магнитный железняк^

3Fe + 2O$_2$ = Fe$_3$O$_4$

Искры, вырывающиеся при заточке стальных ножей или при резке стальных листов ацетилено-кислородным пламенем , также представляют собой раскаленные куски железной окалины.

5) с неметаллами. Степень окисления железа в образующихся соединениях зависит от силы окислителя — неметалла. Так, при взаимодействии с хлором образуется хлорид FeCl$_3$:

2Fe + 3Cl$_2$ = 2FeCl$_3$,

 с серой – сульфид FeS:

Fe + S = FeS.

Соединения железа(II)

Запомнить! Оксид и гидроксид железа(II) обладают основными свойствами.

Соединения железа(II) являются сильными восстановителями и на воздухе легко окисляются до соединений трехвалентного железа:

4FeSO$_4$ + O$_2$ + 2H$_2$O = 4Fe(OH)SO$_4$.

Белый осадок гидроксида железа(II) Fe(OH)2, образующийся при действии на соли железа(II) растворов щелочей, на воздухе мгновенно зеленеет, образуя «зеленую ржавчину» – смешанный гидроксид железа(II) и железа(III), который лишь через некоторое время приобретает характерный для Fe$_2$O$_3 cdot$H$_2$O ржавый цвет.

Соединения железа(III)

Гидроксид железа(III) выпадает в виде коричневого осадка при действии растворов щелочей, сульфидов, карбонатов на соли железа(III):

2FeCl$_3$ + 3Na$_2$CO$_3$ + 6H$_2$O = 2Fe(OH)$_3^-$ +3CO$_2$+ 6NaCl

Запомнить! Оксид и гидроксид железа(III) являются слабо амфотерными, с преобладанием основных свойств.

Так, при растворении гидроксида железа(III) в кислотах образуются соли железа(III), а при сплавлении оксида с оксидами активных металлов – ферриты (ферраты(+3)):

2Fe(OH)$_3$ + 2H$_2$SO$_4$ = Fe$_2$(SO$_4$)$_3$ + 3H$_2$O,

Fe$_2$O$_3$ + CaO = CaFe$_2$O$_4$.

В концентрированных щелочах Fe(OH)$_3$ медленно растворяется, образуя гидроксоферраты, например, Na$_3$[Fe(OH)$_6$]:

$Fe(OH)_3 + 3NaOH_{textrm{водн.}} =Na_3[Fe(OH)_6]$

При действии недостатка кислот они разлагаются в образованием осадка гидроксида железа(III):

$Na_3[Fe(OH)_6] + 3HCl_{textrm{нед.}} =3NaCl + Fe(OH)_3downarrow +3H_2O$

$Na_3[Fe(OH)_6] + 6HCl_{textrm{изб.}} =3NaCl + FeCl_3 +6H_2O$

 При пропускании углекислого газа они разлагаются на гидроксид железа(III) и карбонат натрия:

$2Na_3[Fe(OH)_6] + 3CO_2uparrow=3Na_2CO_3 + 2Fe(OH)_3downarrow +3H_2O$

Запомнить! Соли железа(III) и некоторых слабых кислот, например, сернистой и угольной не могут быть выделены из водных растворов по причине полного необратимого гидролиза

$2FeCl_3 + 3Na_2CO_3 + 3H_2O = 2Fe(OH)_3 +3CO_2uparrow + 6NaCl$

О протекании реакции судят по выделению газа и образованию коричневого осадка гидроксида железа(III).

Окисление Fe(OH)3 бромом в щелочной среде приводит к образованию вишневых растворов ферратов (+6):

2Fe(OH)$_3$ + 3Br$_2$ + 10KOH = 2K$_2$FeO$_4$ + 6KBr + 8H$_2$O.

Запомнить! Ферраты содержат железо в степени окисления (+6), и являются сильными окислителями.

Применение железа

В виде чугуна и стали железо находит широкое применение в народном хозяйстве. Хлорид железа(III) используется при травлении медных плат, а сульфат железа(III) – в качестве хлопьеобразователя (коагулянта) при очистке воды. Ферриты двухвалентных металлов (магния, цинка, кобальта, никеля) со структурой шпинели применяют в радиоэлектронике, вычислительной технике. 

Соли железа(III) образуют желто-коричневые растворы, цвет которых объясняется гидролизом, приводящим к образованию коллоидного раствора гидроксида железа(III). Многие из них, например, хлорид FeCl3×6H2O («хлорное железо») сильно гигроскопичны, и при хранении в неплотно закрытых склянках, отсыревают.

Качественные реакции на катионы железа

Какие свойства проявляет fecl3

На ионы железа существуют удобные качественные реакции. Если к раствору соли железа(III) прибавить разбавленный раствор роданида калия KCNS, то образуется интенсивно-красное окрашивание, вызванное образованием роданида железа(III):

$FeCl_3 + 3KSCN= Fe(SCN)_3 + 3KCl$

Другим реагентом на ионы железа(III) служит комплексное соединение гексацианоферрат(II) калия $K_4[Fe(CN)_6]$, часто называемый также «желтая кровяная соль». Такое странное на первый взгляд название связано с тем, что раньше эту соль получали нагреванием крови с поташом и железными опилками. С солями железа(III) она дает синий коллоидный раствор  «берлинской лазури» или «турнбуллева синь»:

$K_4[Fe(CN)_6] + FeCl_3 = KFe[Fe(CN)_6] downarrow + 3KCl$

.

Аналогичное синие окрашивание осадка того же состава можно получить при взаимодействии ионов железа(II) с раствором «красной кровяной соли» — гексацианоферрат(III) калия $K_3[Fe(CN)_6]$:

Читайте также:  Какие волновые свойства проявляет свет

$K_3[Fe(CN)_6] + FeCl_2 = KFe[Fe(CN)_6] downarrow + 2KCl$

.

Таким образом, красная кровяная соль служит реактивом на соли двухвалентного железа. При более высоких концентрациях растворов выделяется нерастворимая в воде форма «берлинской лазури» состава $Fe_4[Fe(CN)_6]_3$. Именно это вещество долгое время использовали при крашении тканей. При работе с кровяными солями следует помнить об их токсичности. 

Источник

Соединения железа (II)

Соединения железа со степень окисления железа +2 малоустойчивы и легко окисляются до производных железа (III).

Оксид железа (II)– порошок черного цвета, в мелкораздробленном состоянии воспламеняется. Кристаллизуется в структурном типе хлорида натрия (кубическая гранецентрированная решетка).

Проявляет преимущественно основные свойства. В воде не растворяется, легко растворяется в неокисляющих кислотах:

FeO + 2HCl = FeCl2 + H2O.

Проявляет восстановительные свойства:

3FeO + 10HNO3 = 3Fe(NO3)3 + NO + 5H2O.

Получается разложением оксалата железа (II) в атмосфере азота или без доступа воздуха:

FeC2O4·3H2O = FeO + 3H2O + CO2 + CO

или в процессе восстановления оксида железа (III) водородом или оксидом углерода (II):

Fe2O3 + H2 = 2FeO + H2O,

Fe2O3 + CO = 2FeO + CO2.

Гидроксид железа (II) Fe(OH)2в свежеосажденном виде имеет серовато-зеленую окраску, в воде не растворяется, при температуре выше 150 °С разлагается, быстро темнеет вследствие окисления:

4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3.

Проявляет слабовыраженные амфотерные свойства с преобладанием основных, легко реагирует с неокисляющими кислотами:

Fe(OH)2 + 2HCl = FeCl2 + 2H2O.

Взаимодействует с концентрированными растворами щелочей при нагревании с образованием тетрагидроксоферрата (II):

Fe(OH)2 + 2NaOH = Na2[Fe(OH)4].

Проявляет восстановительные свойства, при взаимодействии с азотной или концентрированной серной кислотой образуются соли железа (III):

2Fe(OH)2 + 4H2SO4 = Fe2(SO4)3 + SO2 + 6H2O.

Получается при взаимодействии солей железа (II) с раствором щелочи в отсутствии кислорода воздуха:

FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4.

Соли железа (II). Железо (II) образует соли практически со всеми анионами. Обычно соли кристаллизуются в виде зеленых кристаллогидратов: Fe(NO3)2 · 6H2O, FeSO4 · 7H2O, FeBr2 · 6H2O, (NH4)2Fe(SO4)2 · 6H2O (соль Мора) и др. Растворы солей имеют бледно-зеленую окраску и, вследствие гидролиза, кислую среду:

Fe2+ + H2O = FeOH+ + H+.

Проявляют все свойства солей.

При стоянии на воздухе медленно окисляются растворенным кислородом до солей железа (III):

4FeCl2 + O2 + 2H2O = 4FeOHCl2.

Качественная реакция на катион Fe2+ – взаимодействие с гексацианоферратом (III) калия (красной кровяной солью) :

FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4

Fe2+ + K+ + [Fe(CN)6]3- = KFe[Fe(CN)6]↓

в результате реакции образуется осадок синего цвета – гексацианоферрат (II) железа (III) — калия.

Степень окисления +3 характерна для железа.

Оксид железа (III) Fe2O3 – вещество бурого цвета, существует в трех полиморфных модификациях.

Проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:

Fe2O3 + 6HCl = 2FeCl3 + 3H2O.

С растворами щелочей не реагирует, но при сплавлении образует ферриты:

Fe2O3 + 2NaOH = 2NaFeO2 + H2O.

Проявляет окислительные и восстановительные свойства. При нагревании восстанавливается водородом или оксидом углерода (II), проявляя окислительные свойства:

Fe2O3 + H2 = 2FeO + H2O,

Fe2O3 + CO = 2FeO + CO2.

В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):

Fe2O3 + 3KNO3 + 4KOH = 2K2FeO4 + 3KNO2 + 2H2O.

При температуре выше 1400°С разлагается:

6Fe2O3 = 4Fe3O4 + O2.

Получается при термическом разложении гидроксида железа (III):

2Fe(OH)3 = Fe2O3 + 3H2O

или окислением пирита:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2.

Гидроксид железа (III) Fe(OH)3 – кристаллическое или аморфное вещество бурого цвета. Как и оксид, проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:

Fe(OH)3 + 3HCl = FeCl3 + 3H2O.

Реагирует с концентрированными растворами щелочей с образованием гексагидроксоферратов (III):

Fe(OH)3 + 3NaOH = Na3[Fe(OH)6],

при сплавлении со щелочами или щелочными реагентами образует ферриты:

Fe(OH)3 + NaOH = NaFeO2 + 2H2O,

2Fe(OH)3 + Na2CO3 = 2NaFeO2 + CO2 + 3H2O.

В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):

2Fe(OH)3 + 3Br2 + 10KOH = 2K2FeO4 + 6NaBr + 8H2O.

При нагревании разлагается:

Fe(OH)3 = FeO(OH) + H2O,

2FeO(OH) = Fe2O3 + H2O.

Получается при взаимодействии солей железа (III) с растворами щелочей:

Fe2(SO4)3 + 6NaOH = 2Fe(OH)3 + 3Na2SO4.

Соли железа (III). Железо (III) образует соли практически со многими анионами. Обычно соли кристаллизуются в виде бурых кристаллогидратов: Fe(NO3)3 · 6H2O, FeCl3 · 6H2O, NaFe(SO4)2 · 12H2O (железные квасцы) и др. В растворе соли железа (III) значительно более устойчивы, чем соли железа (II). Растворы солей имеют желто-бурую окраску и, вследствие гидролиза, кислую среду:

Fe3+ + H2O = FeOH2+ + H+.

Соли железа (III) гидролизуют в большей степени, чем соли железа (II), по этой причине соли железа (III) и слабых кислот нельзя выделить из раствора, они мгновенно гидролизуют с образованием гидроксида железа (III):

Fe2(SO4)3 + 3Na2CO3 + 3H2O = 2Fe(OH)3 + 3CO2 + 3Na2SO4.

Проявляют все свойства солей.

Обладают преимущественно восстановительными свойствами:

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl.

Качественная реакция на катион Fe3+ – взаимодействие с гексацианоферратом (II) калия (желтой кровяной солью) :

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + 3KCl

Fe3+ + K+ + [Fe(CN)6]4- = KFe[Fe(CN)6]↓

в результате реакции образуется осадок синего цвета – гексацианоферрат (III) железа (II) — калия.

Кроме того, ионы Fe3+ определяют по характерному кроваво-красному окрашиванию роданида железа (III), который образуется в результате взаимодействия соли железа (III) с роданидом калия или аммония:

FeCl3 + 3KCNS = Fe(CNS)3 + 3KCl,

Fe3+ + 3CNS- = Fe(CNS)3.

Источник