Какие свойства проявляет азот окислительные или восстановительные
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 декабря 2017;
проверки требуют 30 правок.
Окисли́тельно-восстанови́тельные реа́кции (ОВР), также редокс (сокр. англ. redox, от reduction-oxidation — восстановление-окисление) — встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующимся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором) .
Историческая справка[править | править код]
Издавна учёные полагали, что окисление — потеря флогистона (особого невидимого горючего вещества, термин которого ввел Иоганн Бехер), а восстановление — его приобретение. Но, после создания А. Лавуазье в 1777 году кислородной теории горения, к началу XIX века химики стали считать окислением взаимодействие веществ с кислородом, а восстановлением их превращения под действием водорода. Тем не менее в качестве окислителя могут выступать и другие элементы, например
В этой реакции окислитель — ион водорода[1] — H+, а железо выступает в роли восстановителя.
В соответствии с электронно-ионной теорией окисления-восстановления, разработанной Л. В. Писаржевским в 1914 г., окисление — процесс отщепления электронов от атомов или ионов элемента, который окисляется; Восстановлением называется процесс присоединения электронов к атомам или ионам элемента, каковой восстанавливается. Например, в реакции
атом цинка теряет два электрона, то есть окисляется, а молекула хлора присоединяет их, то есть восстанавливается.
Описание[править | править код]
В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.[2]
Окисление[править | править код]
Окисление — процесс отдачи электронов с увеличением степени окисления.
При окисле́нии у веществ в результате отдачи электронов увеличивается степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.
В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.
Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель (сам процесс называется окислением):
восстановитель — e− ↔ сопряжённый окислитель.
Несвязанный, свободный электрон является сильнейшим восстановителем.
Восстановление[править | править код]
Восстановле́ние — процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.
При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.
Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель (сам процесс называют восстановлением):
окислитель + e− ↔ сопряжённый восстановитель.
Окислительно-восстановительная пара[править | править код]
Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-восстановительными полуреакциями.
В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, то есть восстановлением, другая — с отдачей электронов, то есть окислением.
Виды окислительно-восстановительных реакций[править | править код]
Межмолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных
веществ, например:
Внутримолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:
Диспропорционирование (самоокисление-самовосстановление) — реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:
Репропорционирование (конпропорционирование) — реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления:
Примеры[править | править код]
Окислительно-восстановительная реакция между водородом и фтором
Разделяется на две полу-реакции:
1) Окисление:
2) Восстановление:
Процесс присоединения электронов — восстановление. При восстановлении степень окисления понижается:
Атомы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а атомы или ионы, которые отдают электроны — восстановителями.
Для нахождения пропорции веществ, вступающих в химическую реакцию, часто требуется уравнять ОВР. Уравнивание ОВР сводится к нахождению стехиометрических коэффициентов (то есть, количества молей каждого соединения). Стехиометрические коэффициенты могут принимать только значения целых величин от 1 и выше, дробные стехиометрические коэффициенты допускаются лишь в некоторых случаях записи термохимических уравнениях из курса физической химии. Различают два методы уравнивания ОВР: метод полуреакций и метод электронного баланса. Метод электронного баланса более прост и используется в случае протекания реакции в газообразной среде (например, процессы горения или термического разложения соединений). Метод полуреакций более сложен и используется в случае протекания реакции в жидкой среде. Метод полуреакций оперирует не свободными атомами и одноатомными ионами, а реально существующими в растворе частицами, образовавшимися в результате процессов растворения и/или диссоциации реагирующих веществ. Оба метода занимают важное место в базовом курсе общей и неорганической химии, изучаемом студентами различных учебных заведений[3].
Примечания[править | править код]
- ↑ В этом, как и во многих других случаях водород рассматривают как помещённый в VII группе периодической системы химических элементов над галогенами-окислителями.
- ↑ Несущественно, переходят ли электроны с одного атома на другой вполне (ионная связь) или же только более или менее оттягиваются (полярная ковалентная связь). Поэтому в данном случае мы будем говорить об отдаче или присоединении электронов независимо от действительного типа валентной связи. В общем, окислительно-восстановительные процессы можно определить как реакции, связанные с переходом электронов от одних атомов к другим. То есть валентности [ковалентных молекулярных соединений] в этих реакциях выступают как степени окисления. Более строго, в узком смысле под степенью окисления имеется в виду в том числе и валентности.
- ↑ ОВР методом полуреакций (недоступная ссылка). Химия и химическая технология в жизни (10.07.2013). Дата обращения 19 января 2015. Архивировано 19 января 2015 года.
Литература[править | править код]
- Хомченко Г. П., Севастьянова К. И., Окислительно-восстановительные реакции, 2 изд., М., 1980;
- Кери Ф., Сандберг Р., Углублённый курс органической химии, пер. с англ., кн. 2, М., 1981, с. 119-41, 308-43;
- Марч Дж., Органическая химия, пер. с англ., т. 4, М., 1988, с. 259—341;
- Турьяи Я. И., Окислительно-восстановительные реакции и потенциалы в аналитической химии, М., 1989;
- Тодрес 3. В., Электронный перенос в органической и металлоорганической химии, в сб.: Итоги науки и техники. Сер. Органическая химия, т. 12, М., 1989. С. И. Дракин, З. В. Тодрес.
См. также[править | править код]
- Кислотно-основные реакции
Àçîòèñòàÿ êèñëîòà HNO2 èìååò ñëàáûé õàðàêòåð. Âåñüìà íåóñòîé÷èâà, ìîæåò áûòü òîëüêî â ðàçáàâëåííûõ ðàñòâîðàõ:
2HNO2 NO + NO2 + H2O.
Ñîëè àçîòèñòîé êèñëîòû íàçûâàþòñÿ íèòðèòàìè èëè àçîòèñòîêèñëûìè. Íèòðèòû ãîðàçäî áîëåå óñòîé÷èâû, ÷åì HNO2, âñå îíè òîêñè÷íû.
Àòîì àçîòà â àçîòèñòîé êèñëîòå èìååò ïðîìåæóòî÷íóþ ñòåïåíü îêèñëåíèÿ +3 è â ñâÿçè ñ ýòèì îí ìîæåò áûòü è îêèñëèòåëåì, è ïðîÿâëÿòü âîññòàíîâèòåëüíûå ñâîéñòâà:
2HNO2 + 2HI = I2 + 2NO + 2H2O,
HNO2 + H2O2 = HNO3 + H2O,
5KNO2 + 2KMnO4 + 3H2SO4 = 5KNO3 + K2SO4 + 2MnSO4 + 3H2O.
Ñòðîåíèå àçîòèñòîé êèñëîòû.
 ãàçîâîé ôàçå ïëàíàðíàÿ ìîëåêóëà àçîòèñòîé êèñëîòû ñóùåñòâóåò â âèäå äâóõ êîíôèãóðàöèé öèñ- è òðàíñ-:
Ïðè êîìíàòíîé òåìïåðàòóðå ïðåîáëàäàåò òðàíñ-èçîìåð: ýòà ñòðóêòóðà ÿâëÿåòñÿ áîëåå óñòîé÷èâîé. Òàê, äëÿ öèñ — HNO2 (ã) DG°f = −42,59 êÄæ/ìîëü, à äëÿ òðàíñ-HNO2 (ã) DG = −44,65 êÄæ/ìîëü.
Õèìè÷åñêèå ñâîéñòâà àçîòèñòîé êèñëîòû.
 âîäíûõ ðàñòâîðàõ ñóùåñòâóåò ðàâíîâåñèå:
,
Íàãðåâàÿñü, ðàñòâîð àçîòèñòîé êèñëîòû ðàñïàäàåòñÿ ñ âûäåëåíèåì NO è îáðàçîâàíèåì àçîòíîé êèñëîòû:
,
HNO2 â âîäíûõ ðàñòâîðàõ äèññîöèèðóåò (KD=4,6·10−4), íåìíîãî ñèëüíåå óêñóñíîé êèñëîòû. Ëåãêî âûòåñíÿåòñÿ áîëåå ñèëüíûìè êèñëîòàìè èç ñîëåé:
,
Àçîòèñòàÿ êèñëîòà ïðîÿâëÿåò îêèñëèòåëüíûå è âîññòàíîâèòåëüíûå ñâîéñòâà. Ïðè äåéñòâèè áîëåå ñèëüíûõ îêèñëèòåëåé (ïåðîêñèä âîäîðîäà, õëîð, ïåðìàíãàíàò êàëèÿ) ïðîèñõîäèò îêèñëåíèå â àçîòíóþ êèñëîòó:
,
,
.
Êðîìå òîãî, îíà ìîæåò îêèñëÿòü âåùåñòâà, êîòîðûå îáëàäàþò âîññòàíîâèòåëüíûìè ñâîéñòâàìè:
.
Ïîëó÷åíèå àçîòèñòîé êèñëîòû.
Àçîòèñòóþ êèñëîòó ïîëó÷àþò ïðè ðàñòâîðåíèè îêñèäà àçîòà (III) N2O3 â âîäå:
,
Êðîìå òîãî, îíà îáðàçóåòñÿ ïðè ðàñòâîðåíèè â âîäå îêñèäà àçîòà (IV) NO2:
.
Ïðèìåíåíèå àçîòèñòîé êèñëîòû.
Àçîòèñòàÿ êèñëîòà ïðèìåíÿåòñÿ äëÿ äèàçîòèðîâàíèÿ ïåðâè÷íûõ àðîìàòè÷åñêèõ àìèíîâ è îáðàçîâàíèÿ ñîëåé äèàçîíèÿ. Íèòðèòû ïðèìåíÿþòñÿ â îðãàíè÷åñêîì ñèíòåçå â ïðîèçâîäñòâå îðãàíè÷åñêèõ êðàñèòåëåé.
Ôèçèîëîãè÷åñêîå äåéñòâèå àçîòèñòîé êèñëîòû.
Àçîòèñòàÿ êèñëîòà ÿâëÿåòñÿ òîêñè÷íîé è îáëàäàåò ÿðêî âûðàæåííûì ìóòàãåííûì äåéñòâèåì, òàê êàê ÿâëÿåòñÿ äåàìèíèðóþùèì àãåíòîì.
Êàëüêóëÿòîðû ïî õèìèè | |
Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé. | |
Êàëüêóëÿòîðû ïî õèìèè |
Êèñëîòû, ñâîéñòâà êèñëîò. | |
Óãîëüíàÿ, ôîñôîðíàÿ, íóêëåèíîâàÿ, õëîðíàÿ, éîäíàÿ, êàðáîíîâàÿ, êðåìíèåâàÿ, ñåðíàÿ, àçîòíàÿ è äðóãèå êèñëîòû è èõ ñâîéñòâà | |
Êèñëîòû, ñâîéñòâà êèñëîò. |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Êèñëîòû. | |
Êèñëîòû êëàññ ñîåäèíåíèé, êîòîðûå ñîñòîÿò èç ïðîòîíà ( âîäîðîäà ) è êèñëîòíîãî îñòàòêà. | |
Êèñëîòû. |
Êèñëîòû è èõ ñîëè. | |
Êèñëîòû è èõ ñîëè, ñîëè ñåðíîé êèñëîòû, îêñèä, îáðàçîâàíèå ñîëè, ñîëÿíàÿ êèñëîòà, ñîëè àçîòíîé êèñëîòû, ãèäðîêñèäû è òä. | |
Êèñëîòû è èõ ñîëè. |