Какие свойства придает сера стали

Какие свойства придает сера стали thumbnail

выплавка сталь двухванная печь

Сера (S) является вредной примесью. Попадает в сталь из чугуна и топлива.

Содержание серы:

S — 0,035 — 0,06% (0,018% S — качественная сталь). Сера образует с железом соединение FeS. Это соединение образуют с железом легкоплавкую эвтектику с температурой плавления — Тпл = 988?С.

Наличие эвтектики вызывает красноломкость, т.е. хрупкость при высоких температурах. При нагреве до 1000-1200?С эвтектика, располагающая по границам зёрен, расплавляется и при деформации (ОМД) в стали возникают надрывы и трещины.

Вывозят серу из стали с помощью марганца. Марганец обладает большим сродством к сере, чем железо, и образует соединение MnS с высокой температурой плавления Тпл = 1620?С:

FeS + Mn > MnS + Fe.

Сера и её соединения при комнатных и пониженных температурах способствует снижению ударной вязкости стали, т. к. разрушение металла идёт по сульфидным включениям (поэтому ударная вязкость металла (KCU) снижается) (рис.3).

Влияние серы на вязкие свойства стали

Рисунок 3. Влияние серы на вязкие свойства стали

Также сера снижает пластичность — д, ш%.

Сернистые включения ухудшают свариваемость и коррозионную стойкость. Сера облегчает обрабатываемость резанием.

Раствор серы в железе. При растворении серы в металле выделяется тепло:

l/2S2(r) >[S],

ДGє= -72 000-10,25 T,

что является показателем определенных связей между серой и железом в растворе. Несмотря на относительно низкую температуру испарения (445 °С), сера в элементарном виде в газовую фазу практически не переходит, что также свидетельствует о сильных связях серы с железом. Об этом же свидетельствует значительное отрицательное отклонение раствора серы в чистом железе от закона Генри. На диаграмме состояния сплавов Fe-S при 50ат.% S наблюдается максимум, характерный для образования химического соединения (в данном случае FeS), поэтому предполагается наличие сильной ионной связи между ионами Fe2+ и S2-. Косвенным свидетельством образования достаточно прочных группировок Fe-S является также наблюдаемое значительное повышение вязкости железа при увеличении в нем содержания серы. Серу, растворенную в жидком металле, обычно обозначают [S]. Принято считать, что процесс перехода серы из металла в шлак происходит на границе со шлаком:

[Fe2+] + [S2-] — (Fe2+) + (S2-) или

Fеж+[S]- (Fе2+) + (82-).

Можно также представить процесс как взаимодействие на поверхности контакта металл—шлак с образованием ионов серы в шлаке и атомов кислорода в металле: [S] + (О2-) = (S2-) +

+ [О]. Иногда это выражение суммируют с уравнением распределения кислорода между металлом и шлаком:

(Ре2+) + (02~) = Fеж+[0],

Реж + [S] = (Fe2+) + (S2-)

[S] + (О2-) = (S2-) + [О].

Для упрощения процесс перехода серы из металла в шлак часто условно обозначают

[S] -»(S).

Влияние серы на качество стали. Сера обладает неограниченной растворимостью в жидком железе и ограниченной в твердом. Предельная растворимость серы в -Fе при 1365 єС составляет 0,05 %, а при 1000 °С — 0,013%. В -Fе растворимость серы снижается до 0,002-0,003 % при комнатной температуре. При кристаллизации стали по границам зерен выделяются застывающие в последнюю очередь сульфиды железа. Железо и сульфид железа образуют низкоплавкую эвтектику (температура плавления 988 °С), которая в присутствии кислорода из-за образования оксисульфидов плавится при еще более низких температурах.

Межзеренные прослойки (обычно на микрошлифе они имеют вид нитей) фазы, богатой серой, при нагревании металла перед прокаткой или ковкой размягчаются, и сталь теряет свои свойства, происходит разрушение металла (красноломкость)1. Красноломкость особенно сильно проявляется в литой стали (в виде рванин и трещин), так как сульфиды и оксисульфиды в этом случае скапливаются по границам первичных зерен. Если сталь хотя бы однократно подвергалась горячей деформации, то вследствие измельчения зерна и образования при деформации новых зерен красноломкость проявляется в гораздо меньшей степени. Однако и в этом случае стремятся получить в стали минимальное содержание серы, так как вредное влияние серы на механические свойства (в частности, на ударную вязкость) заметно, особенно в направлении, поперечном оси прокатки или ковки.

Углеродистая сталь приобретает ярко-красный цвет при температуре 900—1000 єС (цвет каления). Причиной красноломкости может быть также повышенное (более 0,4— 0,5 %) содержание меди; при высоких температурах могут образовываться местные скопления структурно-свободной меди, в результате чего при деформации металла могут возникнуть поверхностные надрывы и трещины.

В катаных или кованых изделиях сульфидные включения обычно вытянуты в виде строчек в направлении горячей пластической деформации, что нарушает сплошность структуры проката или поковки, поэтому в тех случаях, когда нагрузка направлена поперек оси деформации, т. е. перпендикулярно строчкам, стальная матрица разрывается по границам раздела с сульфидами; соответственно снижается пластичность стали в поперечных образцах. Это особенно важно учитывать при изготовлении изделий, подвергающихся знакопеременным нагрузкам или нагрузкам в поперечном (относительно оси прокатки) направлении (трубы для газопроводов высокого давления, резервуары, конструкции для платформ морского бурения и пр.). Степень анизотропии свойств уменьшается по мере снижения содержания серы (рис. 4); при снижении содержания серы < 0,003 % степень анизотропии приближается к 1.

Влияние концентрации серы в стальных бесшовных трубах на относительную ударную вязкость КСОТН, т

Рис. 4. Влияние концентрации серы в стальных бесшовных трубах на относительную ударную вязкость КСОТН, т. е. отношение ударной вязкости на поперечных образцах к ударной вязкости на продольных (Г) и ударной вязкости на вертикальных образцах к ударной вязкости на продольных образцах (2)

Сульфиды отрицательно влияют на результаты испытаний поперечных образцов при пониженных температурах, заметно повышая порог хладноломкости, что, например, особенно важно при разработке технологии производства труб большого диаметра для газопроводов Крайнего Севера. Помимо максимального снижения содержания серы для получения стали с особыми вязкими свойствами принимают специальные меры с целью получить сульфиды в глобулярной форме (а не в виде строчек). Для этого сталь обрабатывают ЩЗМ (кальцием, барием) и РЗМ (лантаном, церием, иттрием и др.).

Для ряда конструкционных сталей основные нагрузки приходятся на продольное, а не на поперечное направление. Для этих сталей такого низкого (< 0,003 %) содержания серы не требуется. Для ряда марок стали, в частности в автомобилестроении, машиностроении, особые требования предъявляют к обрабатываемости стали на станках-автоматах. Для обеспечения высокой обрабатываемости содержание серы регламентировано до 0,02-0,08 %.

Источники серы. К основным источникам относится шихта, и прежде всего чугун. В зависимости от содержания серы обычные передельные чугуны делят на три категории: 1-<0,030%8, II-<0,050 %S, III-< 0,07 % S. Некоторое количество серы может содержаться в стальном ломе и особенно в замасленной стальной стружке. Какое-то количество серы переходит в металл из топлива (при отоплении печи сернистым мазутом или коксовым газом, полученным при коксовании сернистых углей).

Активность серы в жидкой стали зависит от состава расплава. Такие примеси, как углерод, кремний, повышают активность серы в жидком расплаве (рис. 4). В связи с этим десульфурация чугуна, содержащего большое количество углерода и кремния, при прочих равных условиях происходит легче, чем десульфурация обычной стали.

Сера является поверхностно-активным элементом, в результате чего на поверхности раздела фаз концент рации серы выше, чем в объеме раствора, поэтому наибольший эффект дают такие методы ведения плавки, которые обеспечивают увеличение поверхности контакта металла с десуль-фурирующей фазой (искусственное перемешивание металла со шлаком, вдувание в металл тонкоизмельченных порошкообразных реагентов и т.д.). Приходится, однако, учитывать, что некоторые другие примеси металла также поверхностно-активны. Если в металле присутствует несколько поверхностно-активных примесей, то между ними происходит как бы «борьба за поверхность». В металле, например, всегда содержится какое-то количество кислорода. Кислород также поверхностно-активен, поэтому в тех случаях, когда в металле много кислорода (металл окислен), на поверхности контакта металла с десульфури-рующей фазой присутствует много кислорода и реакция десульфурации идет с трудом. Если содержание кислорода в металле снизить до определенного уровня (< 0,01 %), то адсорбция серы становится большей, чем адсорбция кислорода, и скорость, и степень удаления серы из металла резко возрастают (рис. 5).

Рис. 5. Влияние компонентов расплава на активность серы в жидкой стали

Источник

Сталь — наиболее распространенный сплав железа с углеродом, в который входит ряд неизбежных примесей (Мп, Si, S, Р, О, N, Н и др.). Все они оказывают влияние на свойства стали, поэтому химический анализ — обязательный элемент системы качества на предприятии.

  • Анализ на углерод. Углерод — основной компонент стали, который представлен в ней в разных формах, и определяет его марку и основные свойства.
  • Анализ на серу и фосфор. Сера и фосфор трудноудаляемые элементы, которые попадают при выплавке стали в основном из чугуна. Они считаются вредными примесями, так как ухудшают качество стали. Максимально допустимое содержание серы не более 0,06%, а фосфора — 0,05%. В ходе плавки металла стараются провести мероприятия по десульфурации и дефосфорации, чтобы снизить влияние этих элементов.

Влияние углерода, серы и фосфора на качество стали

Определение углерода, серы и фосфора в стали для металлургов, литейщиков и машиностроителей имеет первоочередную важность. Это позволяет получить качественную продукцию и исключить неисправимый брак. Государственные стандарты регламентируют содержание примесей в стали и методы определения их содержания.

Углерод в стали

Углерод — полиморфный неметаллический элемент, который способен растворяться в железе в жидком и твердом состоянии с образованием твердых растворов — феррита и аустенита. Кроме этого, он создает с железом химическое соединение — цементит (Fe3C), и может быть представлен в высокоуглеродистых сталях в виде графита.

В зависимости от содержания углерода стали классифицируются на:

  • низкоуглеродистые (до 0,3% С);
  • среднеуглеродистые (0,3-0,6% С);
  • высокоуглеродистые (более 0,6% С).

Содержание углерода оказывает влияние на структуру стали, количество и соотношение фаз, поэтому определяет показатели твердости и пластичности металла. При повышении содержания углерода происходит снижение ударной вязкости, и повышается порог хладноломкости. Увеличение концентрации C приводит к изменению и электрических свойств: растет сопротивление и коэрцитивная сила, уменьшается магнитная проницаемость и плотность магнитной индукции.

С ростом углерода происходит ухудшение литейных свойств, обрабатываемость давлением, резанием и свариваемость. Обработка резанием низкоуглеродистых сталей также затрудняется.

Сера в стали

Сера — вредная примесь, основными источниками которой служат передельный чугун и руда, используемые при выплавке стали. Она способна растворяться в жидком железе, а в процессе кристаллизации образует FeS. Сульфид железа образует с железом эвтектику с низкой температурой плавления, которая располагается по границам зерен. При технологическом нагреве до температуры обработки металла давлением она оплавляется, а при деформировании становится причиной надрывов и трещин. Это явление называется красноломкостью, так как сталь при температуре 900-1000℃ становится ярко-красного цвета.

Повышение содержания серы нелинейно влияет на порог хладноломкости: сначала происходит его повышение, а при повышении содержания MnS он понижается. Негативное влияние сера оказывает на свариваемость и коррозионную стойкость.

Фосфор в стали

Фосфор относится к вредным примесям стали, источником которой служат шихтовые материалы, в основном — чугун. Он способен в значительных количествах растворяться в феррите, что приводит к искажению кристаллической решетки. Одновременно с этим происходит увеличение временного сопротивления и предела текучести, уменьшение пластичности и вязкости. Увеличение содержания фосфора становится причиной повышения порога хладноломкости и уменьшения работы развития трещины.

Фосфор в значительной мере подвержен ликвации, что приводит к резкому снижению вязкости в центральной части слитка. В настоящее время технологии глубокой очистки стали от фосфора не существует.

Оптико-эмиссионный спектральный анализ C, S, P.

Оптико-эмиссионные спектрометры — универсальные приборы, которые способны решать широкий круг аналитических задач. В основу их работы лежат принципы атомно-эмиссионного спектрального анализа элементного состава вещества:

  • спектр возбужденных атомов и ионов индивидуален для каждого элемента;
  • интенсивность спектральной линии находится в зависимости от концентрации элемента в исследуемой пробе.

Эмиссионные спектральные приборы находят широкое применение в металлургии, что обусловлено следующими преимуществами метода:

  • Возможность исследования проб в различном агрегатном состоянии.
  • Анализ носит неразрушающий характер.
  • Количество исследуемых элементов практически не ограничено. В их число входят углерод, сера и фосфор, которые представляют особый интерес для металлургов.
  • Для проведения исследования в качестве пробы достаточно малого количества вещества.
  • Высокая чувствительность и точность.
  • Экспрессность.
  • Возможность проведения сертификационного анализа.

Для анализа углерода, серы и фосфора с использованием эмиссионных спектрометров должны быть созданы в приборе определенные условия, а именно: бескислородная атмосфера. В противном случае определить элементы, длина волны которых короче 185 нм, не представляется возможным. В настоящее время удаление кислорода в приборе осуществляется двумя способами:

  • путем прокачки инертным газом;
  • вакуумированием.

Каждая из систем декислородизации имеет определенные особенности эксплуатации и обслуживания, поэтому при выборе прибора для анализа углерода, серы и фосфора следует учитывать их преимущества и недостатки. Это позволит подобрать спектрометр, который оптимально соответствует аналитической задаче, требованиям к точности результатов исследований и имеет удовлетворительные экономические показатели.

Оптико-эмиссионные приборы, предусматривающие прокачку инертным газом

В спектральных приборах для декислородизации используют чаще всего аргон. Для удаления кислорода предусматривается одна из следующих систем:

  • Открытая. В результате продувки происходит вытеснение кислорода, а инертный газ удаляется из прибора в окружающую атмосферу.
  • Замкнутая. При прохождении инертного газа происходит захват кислорода, который в дальнейшем очищается с помощью фильтра. Газ продолжает движение по замкнутой системе, давление в которой обеспечивает насос.

Приборы с открытой системой декислородизации отличаются простотой конструкции и меньшей стоимостью. Однако в этом случае степень очистки находится на низком уровне, а аргон расходуется безвозвратно. Применение подобных спектрометров целесообразно при пониженных требованиях к аналитическим характеристикам, как со стороны потребителя, так и со стороны производителя.

Конструкция приборов с замкнутой системой декислодизации усложняется, так как для обеспечения функциональности необходимы дополнительные компоненты и их обслуживание:

  • Насос с блоком питания.
  • Баллон с газом для компенсации потерь.
  • Дополнительный фильтрующий элемент.

Каждый из этих компонентов прибора требует обслуживания, а расходные материалы — замены, что связано с дополнительными расходами. Кроме этого, в результате непрофессиональных действий обслуживающего персонала возникает риск завоздушить систему при замене фильтра. Ликвидация последствий этого требует не только с дополнительных материальных затрат, но и времени.

Оптико-эмиссионные приборы с системой вакуумирования

Система вакуумирования позволяет получить низкую остаточную концентрацию кислорода, которая во много раз ниже, чем в открытой системе декислородизации, и сопоставима с лучшими результатами, полученными в замкнутых. Следует отметить, что при этом нет необходимости использования инертного газа.

Такая система удаления кислорода применяется в наиболее совершенных спектральных приборах. В них установлен масляный насос, который дополняется специальными ловушками для масла. Кроме этого, предусмотрен клапан, который при аварийном отключении электропитания, не допускает повреждения спектрометра маслом в результате его проникновения в вакуумную магистраль.

Двухступенчатые масляные форвакуумные насосы — наиболее предпочтительное оборудование по сравнению безмасляными мембранными моделями. Они имеют сопоставимую стоимость, но при этом в десятки раз превосходят последние по степени удаления кислорода, а также обладают значительным ресурсом и намного проще в обслуживании.

Универсальные настольные и стационарные спектрометры Искролайн 100/300 — отличные образцы приборов, в которых для удаление кислорода  реализована система вакуумирования. Они способны определять более 70 элементов, в число которых входят углерод, сера и фосфор, с пределом детектирования до 0,0001% Приборы позволяют быстро и точно проводить спектральный анализ сталей, и отличаются высоким спектральным разрешением, высокой сходимостью результатов измерений и высоким качеством изготовления.

Источник

Включения серы в сталях можно увидеть.

Сера, как и фосфор, является вредной примесью, попадая в сталь в процессе выплавки (из руды и при сгорании органического топлива). Обычно содержание серы в высококачественной стали ограничено и не превышает 0,02—0,03%. В углеродистой стали обычного качества — не более 0,03—0,04%. При обработке жидкого металла синтетическими шлаками содержание серы можно снизить до 0,005%.
Наличие сульфидов недопустимо для ответственных деталей.
Сера нерастворима в железе, и любое ее количество образует с железом соединение под названием сульфид железа (FeS), который входит в состав эвтектики состава Fe + FeS, образующейся при 988 ºС (рис.1).

диаграмма состояния железо-сера

Рисунок 1. Фрагмент диаграммы состояния железо-сера.

Обычно сернистая эвтектика, присутствующая в небольшом количестве, коалесцирует, т.е. феррит эвтектики объединяется с ферритом основной массы металла, а соединение FeS располагается по границам зерен в виде цепочки отдельных включений (рис.2,а) или более крупными включениями в виде оторочки по границам зерен (рис.2,б; 3). Такая форма включений серы является особенно вредной, так как при горячей обработке давлением получаются надрывы и трещины. Ну а если вспомнить, что эвтектика имеет наименьшую температуру плавления среди фаз данного сплава, то ясно, что в процессе нагрева стали вокруг оторочек сернистого железа, начиная с температуры 988 ºС, происходит оплавление (т.е. образование расплава в соответствии с диаграммой состояния Fe-S). Поэтому при 800 ºС и выше, т.е. при температуре красного каления, сталь становится хрупкой. О калении на этом сайте сказано в статье «Каленый и закаленный – в чем разница?». Хрупкость стали при температуре красного каления носит название «красноломкость». Поэтому сталь с повышенным содержанием серы не поддается горячей обработке давлением.

Рисунок 2. Сульфиды железа в стали 45.

сульфидные включения в стали 45

Рисунок 3. Сульфидные включения различной формы в стали 45.

Отдельные обособленные крупные включения сернистого железа (рис.4) уже менее вредны.

Рисунок 4. Обособленные включения сульфида железа: нетравленный образец, б – после травления.

Протяженные включения сульфидов железа можно видеть в исходно деформированной стали как в состоянии поставки (нормализация), так и после закалки и отпуска (рис. 5).

Рис. 5. Протяженные включения сульфидов железа в нормализованной (а) и в закаленной и отпущенной (б) стали 45

Введение марганца в сталь уменьшает вредное влияние серы, так как при введении его в жидкую сталь протекает реакция образования сульфида марганца:

FeS + Mn  MnS + Fe.

Сульфид марганца плавится при 1620 ºС, т.е. при температурах более высоких, чем температура горячей обработки. Сульфид марганца нерастворим также в жидком металле, поэтому невозможно образование легкоплавкой эвтектики с фазой сульфид марганца. Поэтому присутствие сульфида марганца в стали допустимо.
Включения сульфида марганца в сталях, как правило, наблюдаются хорошо. В отсутствие травления (рис.6,а) они имеют вид темных включений. В светлопольном освещении после травления включения светлые (рис.6,б). На том же участке структуры в темном поле (рис.6,в) включения выглядят темными. Здесь употреблен термин «прицельная металлография». Это означает, что один и тот же участок структуры фотографируют, например, до и после травления, чтобы показать особенности структуры. Или до и после какой-нибудь обработки, чтобы заметить изменения в структуре.

Рисунок 6. Структура стали 1.2312 HASCO (обозначение по DIN 40CrMnMoS86): а – нетравленый шлиф; б – после травления, светлое поле; в – после травления, темное поле; прицельная металлография.

При температурах горячей обработки (800—1200 ºС) сульфид марганца пластичен и под действием внешних сил вытягивается в направлении деформации в виде продолговатых включений (рис.6, а) или цепочек по границам зерна (рис.6, б). Встречаются отдельные крупные включения (рис. 7,а) или в виде сплошной окантовки вокруг зерна (рис. 7,б).

Рисунок 6. Крупные (а) и строчечные (б) включения сульфида марганца в структуре стали 1.2312 HASCO.

Рисунок 7. Включения сульфида марганца в стали 1.2312 HASCO; без травления.

Сульфиды железа можно наблюдать и в чугуне. Здесь показаны круглые (принято говорить «глобулярные») включения сульфидов в сером феррито-перлитном чугуне на фоне фосфидной эвтектики (рис.8), а также в зернах перлита и феррита (рис.9).

сульфид железа в сером чугуне

Рисунок 8. Сульфиды в сером чугуне на фоне фосфидной эвтектики.

Рисунок 9. Сульфиды в чугуне в зернах перлита (а) и феррита (б).

Источник