Какие свойства параллельных прямых включены в их определение

Сначала рассмотрим разницу между понятиями признак, свойство и аксиома.
Определение 1
Признаком называют некий факт, по которому можно определить истинность суждения об интересующем объекте.
Пример 1
Прямые являются параллельными, если их секущая образует равные накрест лежащие углы.
Определение 2
Свойство формулируется в том случае, когда есть уверенность в справедливости суждения.
Пример 2
При параллельных прямых их секущая образует равные накрест лежащие углы.
Определение 3
Аксиомой называют такое утверждение, которое не требует доказательства и принимается как истина без него.
Каждая наука имеет аксиомы, на которых строятся последующие суждения и их доказательства.
Аксиома параллельных прямых
Иногда аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.
Теорема 1
Через точку, которая не лежит на заданной прямой, на плоскости можно провести лишь одну прямую, которая будет параллельной заданной.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Аксиома доказательства не требует.
Свойства параллельных прямых
Теорема 2
Свойство1. Свойство транзитивности параллельности прямых:
Когда одна из двух параллельных прямых является параллельной третьей, то и вторая прямая будет ей параллельна.
Свойства требуют доказательств.
Доказательство:
Пусть имеются две параллельные прямые $a$ и $b$. Прямая $с$ параллельна прямой $а$. Проверим, будет ли в таком случае прямая $с$ параллельна и прямой $b$.
Для доказательства будем пользоваться противоположным суждением:
Представим, что возможен такой вариант, при котором прямая $c$ параллельна одной из прямых, например, прямой $a$, а другую – прямую $b$ – пересекает в некоторой точке $K$.
Получаем противоречие согласно аксиоме параллельных прямых. Получается ситуация, при которой в одной точке пересекаются две прямые, к тому же параллельные одной и той же прямой $a$. Такая ситуация невозможна, следовательно, прямые $b$ и $c$ пересекаться не могут.
Таким образом, доказано, что если одна из двух параллельных прямых является параллельной третьей прямой, то и вторая прямая параллельна третьей прямой.
Теорема 3
Свойство 2.
Если одна из двух параллельных прямых пересекается третьей, то ею будет пересекаться и вторая прямая.
Доказательство:
Пусть имеются две параллельные прямые $а$ и $b$. Также пусть имеется некоторая прямая $с$, которая пересекает одну из параллельных прямых, например, прямую $а$. Необходимо показать, что прямая $с$ пересекает и вторую прямую – прямую $b$.
Построим доказательство методом от противного.
Представим, что прямая $с$ не пересекает прямую $b$. Тогда через точку $К$ проходят две прямые $а$ и $с$, которые не пересекают прямую $b$, т. е. являются параллельными ей. Но такая ситуация противоречит аксиоме параллельных прямых. Значит, предположение было неверным и прямая $с$ пересечет прямую $b$.
Теорема доказана.
Свойства углов, которые образуют две параллельные прямые и секущая:
накрест лежащие углы равны,
соответственные углы равны,
* сумма односторонних углов равна $180^{circ}$.
Пример 3
Даны две параллельные прямые и третья прямая, перпендикулярная одно из них. Доказать, что эта прямая перпендикулярна и другой из параллельных прямых.
Доказательство.
Пусть имеем прямые $а parallel b$ и $с perp а$.
Поскольку прямая $с$ пересекает прямую $а$, то согласно свойству параллельных прямых она будет пересекать и прямую $b$.
Секущая $с$, пересекая параллельные прямые $а$ и $b$, образует с ними равные внутренние накрест лежащие углы.
Т.к. $с perp а$, то углы будут по $90^{circ}$.
Следовательно, $с perp b$.
Доказательство завершено.
Свойства параллельных прямых крайне часто встречаются при решении задач и доказательствах теорем. Произвольные прямые – редкость, но есть такие фигуры, как квадрат или параллелограмм, где параллельные прямые могут стать основой задачи, а без знания свойств параллельных прямых решить такие задачи невозможно.
Что такое свойства параллельных прямых
Для начала выделим определения, которые необходимо знать для изучения свойств параллельных прямых.
Параллельные прямые это прямые, которые не имеют общих точек, или прямые, которые не пересекаются
Пересечение означает, что у двух объектов есть общая точка или набор точек. Поэтому когда в геометрии говорят, что прямые имеют общую точку, имеется в виду, что они пересекаются.
При пересечении двух прямых секущей, образуются накрест лежащие, соответственные и односторонние углы.
Существует аксиома параллельных прямых, которая крайне важна при доказательстве некоторых свойств и является основным свойством параллельных прямых. Аксиома гласит, что через точку на плоскости можно провести только одну прямую, параллельную данной.
Две группы свойств параллельных прямых
Свойств у параллельных прямых всего 5, но они делятся на две большие группы: следствия из аксиомы параллельных прямых и следствия из признаков параллельности прямых. Начнем с первой группы.
Следствия из параллельности прямых
Следствие 1
Если одна из двух параллельных прямых, параллельна третьей, то и другая прямая ей параллельна.
Кажется, что это логично и не требует доказательства. Но в геометрии количество утверждений не требующих обоснования крайне мало и каждое из них носит название аксиомы.
Аксиомы были выведены еще на заре геометрии и с тех пор мало что изменилось. Большая часть современных теорем выведена на основании аксиом Древней Греции. Эти утверждения единственные, что в математике не требует доказательства.
Проведем две параллельные прямые а и b. Прямая с параллельная прямой а. Предположим, что при этом с не параллельна прямой b. Тогда у нее должна быть какая-то точка пересечения К. То есть через точку К проходит две прямые с и b. При этом каждая из этих прямых должна быть параллельна прямой а.
То есть, через одну точку на плоскости проведены две прямые, параллельные данной. Это невозможно, потому что противоречит аксиоме параллельных прямых. Значит изначальное предположение было неверным и прямые с и b параллельны.
Рис. 1. Иллюстрация следствия.
Следствие 2
Следствие 2 очень важно, так как говорит о секущей двух параллельных прямых. Свойство гласит: если прямая пересекает одну из параллельных прямых, то она пересечет и вторую.
Доказательство также ведется методом от противного. Проведем две прямые: а и b. Представим, что прямая с пересекает прямую а, но не пересекает прямую b. Тогда прямые c и b параллельны. При этом с пересекает а, то есть у этих прямых есть общая точка К.
Тогда через точку к проходит прямая а и прямая с, но каждая из них параллельна b. Значит, через одну точку проходит две прямых параллельных прямой b, а это невозможно по аксиоме параллельных прямых. Значит изначальное предположение было неверным и прямая с пересекает каждую из прямых а и b, что и требовалось доказать.
Рис. 2. Рисунок к доказательству.
Следствия из признаков параллельности
Эту группу запомнить проще всего. Свойств параллельности прямых всего 3 и каждому из них соответствует свое следствие.
- Прямые параллельны, если накрест лежащие углы при секущей равны. Следствие вполне логично: Накрест лежащие углы при двух параллельных прямых и секущей равны.
- Прямые параллельны, если соответственные углы равны. Следствие: соответственные углы при параллельных прямых и секущей равны.
- Прямые параллельны, если сумма односторонних углов равна 180. Следствие: сумма односторонних углов при параллельных прямых и секущей равны 180
Рис. 3. Иллюстрация признаков.
Что мы узнали?
Мы дали понятие параллельным прямым, выделили две большие группы свойств параллельных прямых и доказали два свойства. Разобрались с использованием аксиомы параллельных прямых при доказательстве теорем в геометрии.
Тест по теме
Оценка статьи
Средняя оценка: 4.3. Всего получено оценок: 93.
Юлия Ш. · 29 апреля 2019
14,6 K
Имею естественно научное образование, в юношестве прикипел к литературе, сейчас…
Паралелльные прямые — прямые, которые не пересекаются в какой угодно точке, сколько бы их не продолжали, достаточно абстрактное понятие.
Параллельные лучи — лучи, прямые которых не пересекаются в какой угодно точке, сколько бы их не продолжали.
Угол не может быть образован двумя параллельными прямыми, потому что определение параллельных прямых противоречит определению угла, если говорить об углах между ними, то:
- Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
- Если две параллельные прямые пересечены секущей, то соответственные углы равны.
- Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
- Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Свойства параллельных прямых:
Если параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Если параллельные прямые пересечены секущей, то соответственные углы равны.
Если параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Признаки параллельности прямых:
Если накрест лежащие углы, образованные при пересечении двух прямых… Читать далее
Если прямые пересечены секущей и накрест лежащие углы равны значит прямые паралельны
Какие есть условия параллельности прямых?
Интересы часто менялись, поэтому во многих областях знаний что-то знаю:)
Есть необходимые и достаточные условия. Достаточное условие параллельности прямых — это такое условие, выполнение которого гарантирует параллельность прямых. Необходимое условие, как следует из его названия, необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны.
Необходимым и достаточным условием параллельности прямых является следующая ситуация: если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.
На иллюстрации будет понятнее.
Прочитать ещё 2 ответа
Почему кажется, что линии на этой картинке не параллельны, хотя они параллельны?
интеллектуал. дизайнер. меломан. мизантроп.
Потому что мозг человека настроен иначе. Он не рассчитан на восприятие геометрических узоров такого типа — различные способы анализа изображения начинают конфликтовать друг с другом. Миллионы лет человек приспосабливаться к трёхмерному миру (перспектива) освещённому сверху вниз. Эта привычка помогает быстро ориентироваться в пространстве, но мешает решению визуальных ребусов. 🙂
Вот простейший случай:
Иллюзия стены кафе — оптическая иллюзия, создаваемая за счёт совместного действия разных уровней нейронных механизмов: нейронов сетчатки и нейронов зрительной коры.
С первого взгляда кажется, что серые линии между чёрными и белыми квадратами расположены под углом, но если присмотреться то можно увидеть что линии абсолютно ровные. Мозг, сбитый с толку контрастными и близко расположенными квадратами, видит серые линии как часть мозаики, выше или ниже квадратов.
Иллюзия была открыта в 1973 году исследователем Ричардом Грегори из Бристольского университета который теперь является почетным профессоромнейропсихологии. Посмотрев на одну из стен кафе, исследователь обнаружил причудливую особенность рисунка на стене. В материале и конструкции стены не было ничего необычного, все дело в рисунке из черных и белых кирпичиков, ряды которых были сдвинуты на пол-ширины кирпича и разделены тонкой полоской раствора. Эффект оказался гипнотическим. Из-за того, что иллюзия была найдена на стене кафе, она и получила своё название.
Вот более весёлый вариант:
Как доказать, что вписанные углы, опирающиеся на одну и ту же дугу, равны?
Теорема. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу окружности.
Следствие. Вписанные углы, опирающиеся на одну и ту же дугу окружности, равны.
Доказательство. Действительно, если вписанные углы ACB и ADB опираются на одну и ту же дугу AB то у них один и тот же центральный угол AOB. По теореме данные вписанные углы равны половине центрального угла AOB и, следовательно, равны между собой.
Геометрия
7 класс
Урок №21
Свойства параллельных прямых
Перечень рассматриваемых вопросов:
- Углы, образованные при пересечении двух прямых секущей.
- Доказательство свойств параллельных прямых и их применение при решении задач.
- Формулирование теоремы об углах с соответственно параллельными сторонами.
Тезаурус:
Две прямые на плоскости называются параллельными, если они не пересекаются.
Утверждение, обратное данной теореме– это утверждение, в котором условие является заключением теоремы, а заключение – условием теоремы.
Основная литература:
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
Дополнительная литература:
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Ранее мы узнали и научились применять признаки параллельности прямых.
Рассмотрим утверждения, обратные к теоремам, выражающим признаки параллельности двух прямых.
В любой теореме есть две части: условие (это то, что дано)и заключение (это то, что требуется доказать).
Утверждением, обратным данному, называется утверждение, в котором условием является заключение, а заключением – условие.
Итак, вспомним один из признаков параллельности прямых. Если при пересечении двух прямых секущей накрест лежащие углы, образованные этими прямыми и секущей, равны (это условие), то прямые параллельны (заключение).
Сформулируем и докажем обратное утверждение.
Если две параллельные прямые пересечены секущей, то накрест лежащие углы,образованные этими прямыми и секущей,равны.
Дано:
MNՈa =М
MNՈb = N
a║b
∠1 и ∠2 – накрест лежащие.
Доказать: ∠1=∠2.
Доказательство:( метод от противного):
Пусть ∠1≠∠2.
Отложим ∠PMN =∠2 (накрест лежащие) → МР║b→ через точку М проходит 2 параллельные прямые прямой b (МР║b– доказательство;a║b– условие).→∠1=∠2.
Это противоречит теореме о единственности прямой параллельной данной и проходящей через точку.
Теорема доказана.
Рассмотрим следствие.
Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.
Дано:
a║b
с┴ а
∠1=90°
Доказать: с┴ b.
Доказательство:
С пересекает а, значит, и пересекает параллельную ей прямую b(по следствию из аксиомы параллельных прямых).→ с – секущая к прямым а и b→∠1 = ∠2 = 90° (по только что доказанному свойству параллельных прямых).→ с ┴ b.
Что и требовалось доказать.
Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей соответственные углы равны(это условие), то прямые параллельны(заключение).
Сформулируем и докажем обратное утверждение
Если две параллельные прямые пересечены секущей, то соответственные углы, образованные этими прямыми и секущей, равны.
Дано:
a║b;
с – секущая.
Доказать:
∠1 = ∠2.
Доказательство:
По условию a║b→∠1 = ∠3 (накрест лежащие углы). → ∠2 = ∠3 (вертикальные углы).
Значит, ∠1 = ∠2, что и требовалось доказать.
Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей сумма односторонних углов, образованных этими прямыми и секущей, равна 180° (условие), то прямые параллельны (заключение).
Сформулируем и докажем обратное утверждение.
Если две параллельные прямые пересечены секущей, то сумма односторонних углов, образованных этими прямыми и секущей, равна 180°.
Дано:a║b,
с – секущая.
Доказать:
∠1+∠4= 180°.
Доказательство:
По условию a║b→∠1=∠2 ‑соответственные углы, (в силу предыдущей теоремы).
∠2+∠4=180° (по свойству смежных углов).
→ ∠1+∠4= 180°,что и требовалось доказать.
Материал для углубленного изучения темы.
Задача на доказательство.
Прямая m пересекает параллельные прямые а и b в точках А и В. Прямая р, проходящая через середину отрезка АВ, точку О, пересекает прямые а и b в точках С и D.
Докажем, что ОС=ОD.
По условию дано: а ║b, рՈа= А, рՈb = В, mՈа = D, mՈb = C.
Доказать: ОС = ОD.
Доказательство: рассмотрим, образовавшиеся при построении, треугольники AOD и BOC. Они равны по 2 признаку равенства треугольников, т.к. АО=ВО (О– середина отрезка АВ по условию); ∠1=∠2(накрест лежащие углы); ∠3=∠4 (вертикальные углы). →Все элементы равных треугольников соответственно равны → ОС=ОD. Что и требовалось доказать.
Разбор заданий тренировочного модуля.
1. Три прямых а,р,с пересечены прямой k, при этом образуются соответственные углы: ∠1= 30°,∠2 = 40°,∠3= 30°,как показано на рисунке. Какие из прямых параллельны?
Решение:
На рисунке изображены прямые а, р, с, которые пересечены секущей k. При этом углы 1,2,3 соответственные. По условию: ∠3= ∠1= 30°,∠2 ≠ ∠1,∠2 ≠ ∠3.
Следовательно, прямые а и р параллельные, прямые а и с, р и с не параллельные(по свойствам параллельных прямых).
Ответ: а║р.
2. На рисунке прямые а║b, при этомMO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ, если сумма углов в треугольнике равна 180°?
Решение:
По условию а║b→∠М+∠Е=180° (по теореме о параллельных прямых об односторонних углах). Т.к. MO и ЕО – биссектрисы углов М и Е →∠М = 2∠ОМЕ,
∠Е= 2∠МЕО →
∠М+∠Е =2∠ОМЕ +2∠МЕО =180°.
2(∠ОМЕ +∠МЕО) =180°
∠ОМЕ +∠МЕО =180°:2
∠ОМЕ +∠МЕО =90°.
По условию сумма углов в треугольнике равна 180° → в ∆МОЕ.
∠ОМЕ + ∠МЕО + ∠МОЕ = 180°
90° + ∠МОЕ = 180°
∠МОЕ = 180° – 90° = 90°
Ответ: 90°.
В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.
Параллельные прямые: основные сведения
Определение 1
Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.
Определение 2
Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.
Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.
Чтобы обозначить параллельность прямых, общепринято использовать символ ∥. Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b. Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b, или прямая b параллельна прямой а.
Сформулируем утверждение, играющее важную роль в изучаемой теме.
Аксиома
Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.
В случае, когда речь идет о пространстве, верна теорема:
Теорема 1
Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.
Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10-11 классов).
Параллельность прямых: признаки и условия параллельности
Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.
В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.
Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.
Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.
Определение 3
Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.
Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:
Теорема 2
Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.
Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:
Доказательство указанных условий присутствует в программе геометрии за 7-9 классы.
В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.
Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.
Теорема 3
На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.
Теорема 4
В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.
Доказательство признака изучается в программе геометрии 10 класса.
Дадим иллюстрацию указанных теорем:
Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.
Теорема 5
На плоскости две прямые, перпендикулярные третьей, параллельны между собой.
Сформулируем аналогичное для трехмерного пространства.
Теорема 6
В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.
Проиллюстрируем:
Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.
Параллельность прямых в прямоугольной системе координат
В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.
Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.
Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.
Теорема 7
Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.
Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a→=(ax, ay) и b→=(bx, by) являются направляющими векторами прямых a и b;
и nb→=(nbx, nby) являются нормальными векторами прямых a и b, то указанное выше необходимое и достаточное условие запишем так: a→=t·b→⇔ax=t·bxay=t·by или na→=t·nb→⇔nax=t·nbxnay=t·nby или a→, nb→=0⇔ax·nbx+ay·nby=0, где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.
- Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A1x+B1y+C1=0; прямая b — A2x+B2y+C2=0. Тогда нормальные векторы заданных прямых будут иметь координаты (А1, В1) и (А2, В2) соответственно. Условие параллельности запишем так:
A1=t·A2B1=t·B2
- Прямая a описывается уравнением прямой с угловым коэффициентом вида y=k1x+b1. Прямая b — y=k2x+b2. Тогда нормальные векторы заданных прямых будут иметь координаты (k1, -1) и (k2, -1) соответственно, а условие параллельности запишем так:
k1=t·k2-1=t·(-1)⇔k1=t·k2t=1⇔k1=k2
Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.
- Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x-x1ax=y-y1ay и x-x2bx=y-y2by или параметрическими уравнениями прямой на плоскости: x=x1+λ·axy=y1+λ·ay и x=x2+λ·bxy=y2+λ·by.
Тогда направляющие векторы заданных прямых будут: ax, ay и bx, by соответственно, а условие параллельности запишем так:
ax=t·bxay=t·by
Разберем примеры.
Пример 1
Заданы две прямые: 2x-3y+1=0 и x12+y5=1. Необходимо определить, параллельны ли они.
Решение
Запишем уравнение прямой в отрезках в виде общего уравнения:
x12+y5=1⇔2x+15y-1=0
Мы видим, что na→=(2, -3) — нормальный вектор прямой 2x-3y+1=0, а nb→=2, 15- нормальный вектор прямой x12+y5=1.
Полученные векторы не являются коллинеарными, т.к. не существует такого значения t, при котором будет верно равенство:
2=t·2-3=t·15⇔t=1-3=t·15⇔t=1-3=15
Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.
Ответ: заданные прямые не параллельны.
Пример 2
Заданы прямые y=2x+1и x1=y-42. Параллельны ли они?
Решение
Преобразуем каноническое уравнение прямой x1=y-42 к уравнению прямой с угловым коэффициентом:
x1=y-42⇔1·(y-4)=2x⇔y=2x+4
Мы видим, что уравнения прямых y = 2x + 1 и y = 2x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.
Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2x + 1, например, (0, 1), координаты этой точки не отвечают уравнению прямой x1=y-42, а значит прямые не совпадают.
Следующим шагом определим выполнение условия параллельности заданных прямых.
Нормальный вектор прямой y = 2x + 1 это вектор na→=(2, -1), а направляющий вектором второй заданной прямой является b→=(1, 2). Скалярное произведение этих векторов равно нулю:
na→, b→=2·1+(-1)·2=0
Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.
Ответ: данные прямые параллельны.
Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.
Теорема 8
Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.
Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a→=(ax, ay, az) и b→=(bx, by, bz)являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t, чтобы выполнялось равенство:
a→=t·b→⇔ax=t·bxay=t·byaz=t·bz
Пример 3
Заданы прямые x1=y-20=z+1-3 и x=2+2λy=1z=-3-6λ. Необходимо доказать параллельность этих прямых.
Решение
Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a→ и b→ заданных прямых имеют координаты: (1, 0, -3) и (2, 0, -6).
Так как:
1=t·20=t·0-3=t·-6⇔t=12, то a→=12·b→.
Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.
Ответ: параллельность заданных прямых доказана.