Какие свойства относятся к механическим свойствам металлов и сплавов
РоÑновнÑм меÑ
аниÑеÑким
ÑвойÑÑвам
меÑаллов оÑноÑÑÑÑÑ Ð¿ÑоÑноÑÑÑ,
вÑзкоÑÑÑ, плаÑÑиÑноÑÑÑ,
ÑвеÑдоÑÑÑ, вÑноÑливоÑÑÑ, ползÑÑеÑÑÑ, изноÑоÑÑойкоÑÑÑ. Ðни
ÑвлÑÑÑÑÑ Ð³Ð»Ð°Ð²Ð½Ñми Ñ
аÑакÑеÑиÑÑиками меÑалла или
Ñплава.
РаÑÑмоÑÑим некоÑоÑÑе ÑеÑминÑ, пÑименÑемÑе пÑи Ñ
аÑакÑеÑиÑÑике меÑ
аниÑеÑкиÑ
ÑвойÑÑв. ÐÐ·Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ ÑазмеÑов и ÑоÑмÑ, пÑоиÑÑ
одÑÑие в ÑвеÑдом Ñеле под дейÑÑвием
внеÑниÑ
Ñил, назÑваÑÑÑÑ Ð´ÐµÑоÑмаÑиÑми, а пÑоÑеÑÑ, иÑ
вÑзÑваÑÑий,â
деÑоÑмиÑованием. ÐеÑоÑмаÑии, иÑÑезаÑÑие пÑи ÑазгÑÑзке, назÑваÑÑÑÑ ÑпÑÑгими, а не
иÑÑезаÑÑие поÑле ÑнÑÑÐ¸Ñ Ð½Ð°Ð³ÑÑзки â оÑÑаÑоÑнÑми или плаÑÑиÑеÑкими.
ÐапÑÑжением назÑваеÑÑÑ Ð²ÐµÐ»Ð¸Ñина внÑÑÑенниÑ
Ñил,
возникаÑÑиÑ
в ÑвеÑдом Ñеле под влиÑнием внеÑниÑ
Ñил.
Ðод пÑоÑноÑÑÑÑ Ð¼Ð°ÑеÑиала понимаÑÑ ÐµÐ³Ð¾ ÑпоÑобноÑÑÑ ÑопÑоÑивлÑÑÑÑÑ
деÑоÑмаÑии или ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¿Ð¾Ð´ дейÑÑвием ÑÑаÑиÑеÑкиÑ
или динамиÑеÑкиÑ
нагÑÑзок. Ð
пÑоÑноÑÑи ÑÑдÑÑ Ð¿Ð¾ Ñ
аÑакÑеÑиÑÑикам меÑ
аниÑеÑкиÑ
ÑвойÑÑв, коÑоÑÑе полÑÑаÑÑ Ð¿Ñи
меÑ
аниÑеÑкиÑ
иÑпÑÑаниÑÑ
. Ð ÑÑаÑиÑеÑким иÑпÑÑаниÑм на пÑоÑноÑÑÑ Ð¾ÑноÑÑÑÑÑ
ÑаÑÑÑжение, ÑжаÑие, изгиб, кÑÑÑение, вдавливание. РдинамиÑеÑким оÑноÑÑÑÑÑ
иÑпÑÑÐ°Ð½Ð¸Ñ Ð½Ð° ÑдаÑнÑÑ Ð²ÑзкоÑÑÑ, вÑноÑливоÑÑÑ Ð¸ изноÑоÑÑойкоÑÑÑ. ÐлаÑÑиÑноÑÑÑÑ
назÑваеÑÑÑ ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиалов ÑпÑÑго деÑоÑмиÑоваÑÑÑÑ, а плаÑÑиÑноÑÑÑÑ â
ÑпоÑобноÑÑÑ Ð¿Ð»Ð°ÑÑиÑеÑки деÑоÑмиÑоваÑÑÑÑ Ð±ÐµÐ· ÑазÑÑÑениÑ.
ÐÑзкоÑÑÑ â ÑÑо ÑвойÑÑво маÑеÑиала, коÑоÑое опÑеделÑÐµÑ ÐµÐ³Ð¾
ÑпоÑобноÑÑÑ Ðº поглоÑÐµÐ½Ð¸Ñ Ð¼ÐµÑ
аниÑеÑкой ÑнеÑгии пÑи поÑÑепенном ÑвелиÑении
плаÑÑиÑеÑкой деÑоÑмаÑии вплоÑÑ Ð´Ð¾ ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¼Ð°ÑеÑиала. ÐаÑеÑÐ¸Ð°Ð»Ñ Ð´Ð¾Ð»Ð¶Ð½Ñ Ð±ÑÑÑ
одновÑеменно пÑоÑнÑми и плаÑÑиÑнÑми.
ТвеÑдоÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала ÑопÑоÑивлÑÑÑÑÑ
пÑÐ¾Ð½Ð¸ÐºÐ½Ð¾Ð²ÐµÐ½Ð¸Ñ Ð² него дÑÑгиÑ
Ñел.
ÐÑноÑливоÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала вÑдеÑживаÑÑ, не
ÑазÑÑÑаÑÑÑ, болÑÑое ÑиÑло повÑоÑно-пеÑеменнÑÑ
нагÑÑзок.
ÐзноÑоÑÑойкоÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала ÑопÑоÑивлÑÑÑÑÑ
повеÑÑ
ноÑÑÐ½Ð¾Ð¼Ñ ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¿Ð¾Ð´ дейÑÑвием внеÑнего ÑÑениÑ.
ÐолзÑÑеÑÑÑ â ÑÑо ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала медленно и непÑеÑÑвно
плаÑÑиÑеÑки деÑоÑмиÑоваÑÑÑÑ (ползÑи) пÑи поÑÑоÑнном напÑÑжении (оÑобенно пÑи
вÑÑокиÑ
ÑемпеÑаÑÑÑаÑ
).
Ðоведение некоÑоÑÑÑ
меÑаллов (напÑимеÑ, оÑожженной ÑÑали) пÑи иÑпÑÑании на
ÑаÑÑÑжение показано на ÑиÑ. 3. ÐÑи ÑвелиÑении нагÑÑзки в меÑалле ÑнаÑала
ÑазвиваÑÑÑÑ Ð¿ÑоÑеÑÑÑ ÑпÑÑгой деÑоÑмаÑии, Ñдлинение обÑазÑа пÑи ÑÑом
незнаÑиÑелÑно. ÐаÑем наблÑдаеÑÑÑ Ð¿Ð»Ð°ÑÑиÑеÑкое ÑеÑение меÑалла без повÑÑениÑ
напÑÑжениÑ, ÑÑÐ¾Ñ Ð¿ÐµÑиод назÑваеÑÑÑ ÑекÑÑеÑÑÑÑ. ÐапÑÑжение, пÑи коÑоÑом
пÑодолжаеÑÑÑ Ð´ÐµÑоÑмаÑÐ¸Ñ Ð¾Ð±ÑазÑа без замеÑного ÑвелиÑÐµÐ½Ð¸Ñ Ð½Ð°Ð³ÑÑзки, назÑваÑÑ
пÑеделом ÑекÑÑеÑÑи. ÐÑи далÑнейÑем повÑÑении нагÑÑзки пÑоиÑÑ
Ð¾Ð´Ð¸Ñ ÑазвиÑие в
меÑалле пÑоÑеÑÑов наклепа (ÑпÑоÑÐ½ÐµÐ½Ð¸Ñ Ð¿Ð¾Ð´ нагÑÑзкой). ÐаиболÑÑее напÑÑжение,
пÑедÑеÑÑвÑÑÑее ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑа, назÑваÑÑ Ð¿Ñеделом пÑоÑноÑÑи пÑи
ÑаÑÑÑжении.
РиÑ. 3. ÐиагÑамма деÑоÑмаÑии пÑи иÑпÑÑании меÑаллов на
ÑаÑÑÑжение.
ÐапÑÑженное ÑоÑÑоÑние â ÑÑо ÑоÑÑоÑние Ñела, наÑ
одÑÑегоÑÑ Ð¿Ð¾Ð´
дейÑÑвием ÑÑавновеÑеннÑÑ
Ñил, пÑи ÑÑÑановивÑемÑÑ ÑпÑÑгом ÑавновеÑии вÑеÑ
его
ÑаÑÑиÑ. ÐÑÑаÑоÑнÑе напÑÑÐ¶ÐµÐ½Ð¸Ñ â ÑÑо напÑÑжениÑ, оÑÑаÑÑиеÑÑ Ð² Ñеле, поÑле
пÑекÑаÑÐµÐ½Ð¸Ñ Ð´ÐµÐ¹ÑÑÐ²Ð¸Ñ Ð²Ð½ÐµÑниÑ
Ñил, или возникаÑÑие пÑи бÑÑÑÑом нагÑевании и
оÑ
лаждении, еÑли линейное ÑаÑÑиÑение или ÑÑадка Ñлоев меÑалла и ÑаÑÑей Ñела
пÑоиÑÑ
Ð¾Ð´Ð¸Ñ Ð½ÐµÑавномеÑно.
ÐнÑÑÑенние напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑÑÑÑÑ Ð¿Ñи бÑÑÑÑом оÑ
лаждении или нагÑевании в
ÑемпеÑаÑÑÑнÑÑ
зонаÑ
пеÑеÑ
ода Ð¾Ñ Ð¿Ð»Ð°ÑÑиÑеÑкого к ÑпÑÑÐ³Ð¾Ð¼Ñ ÑоÑÑоÑÐ½Ð¸Ñ Ð¼ÐµÑалла. ÐÑи
ÑемпеÑаÑÑÑÑ Ð´Ð»Ñ ÑÑали ÑооÑвеÑÑÑвÑÑ 400â600°. ÐÑли обÑазÑÑÑиеÑÑ Ð²Ð½ÑÑÑенние
напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¿ÑевÑÑаÑÑ Ð¿Ñедел пÑоÑноÑÑи, Ñо в деÑалÑÑ
обÑазÑÑÑÑÑ ÑÑеÑинÑ, еÑли они
пÑевÑÑаÑÑ Ð¿Ñедел ÑпÑÑгоÑÑи, Ñо пÑоиÑÑ
Ð¾Ð´Ð¸Ñ ÐºÐ¾Ñобление деÑали.
ÐÑедел пÑоÑноÑÑи пÑи ÑаÑÑÑжении в кг/мм2 опÑеделÑеÑÑÑ Ð½Ð°
ÑазÑÑвной маÑине как оÑноÑение нагÑÑзки Рв кÐ, необÑ
одимой Ð´Ð»Ñ ÑазÑÑÑениÑ
ÑÑандаÑÑного обÑазÑа (ÑиÑ. 4, а), к плоÑади попеÑеÑного ÑеÑÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑа в
мм2.
РиÑ. 4. ÐеÑÐ¾Ð´Ñ Ð¸ÑпÑÑÐ°Ð½Ð¸Ñ Ð¿ÑоÑноÑÑи маÑеÑиалов: а — на ÑаÑÑÑжение; б — на
изгиб; в — на ÑдаÑнÑÑ Ð²ÑзкоÑÑÑ; г — на ÑвÑÑдоÑÑÑ
ÐÑедел пÑоÑноÑÑи пÑи изгибе в кÐ/мм2 опÑеделÑеÑÑÑ ÑазÑÑÑением
обÑазÑа, коÑоÑÑй ÑÑÑанавливаеÑе» на двÑÑ
опоÑаÑ
(ÑиÑ. 4, б), нагÑÑженного
по ÑеÑедине ÑоÑÑедоÑоÑенной нагÑÑзкой Ð .
ÐÐ»Ñ ÑÑÑÐ°Ð½Ð¾Ð²Ð»ÐµÐ½Ð¸Ñ Ð¿Ð»Ð°ÑÑиÑноÑÑи маÑеÑиала опÑеделÑÑÑ Ð¾ÑноÑиÑелÑное Ñдлинение δ
пÑи ÑаÑÑÑжении или пÑогиб ƒ пÑи изгибе.
ÐÑноÑиÑелÑное Ñдлиненней δ в % опÑеделÑеÑÑÑ Ð½Ð° обÑазÑаÑ
,
иÑпÑÑÑемÑÑ
на ÑаÑÑÑжение. Ðа обÑÐ°Ð·ÐµÑ Ð½Ð°Ð½Ð¾ÑÑÑ Ð´ÐµÐ»ÐµÐ½Ð¸Ñ (ÑиÑ. 4, а) и измеÑÑÑÑ
Ð¼ÐµÐ¶Ð´Ñ Ð½Ð¸Ð¼Ð¸ ÑаÑÑÑоÑние до иÑпÑÑÐ°Ð½Ð¸Ñ (l0) и поÑле ÑазÑÑÑÐµÐ½Ð¸Ñ (l) и опÑеделÑÑÑ
Ñдлинение
δ = l-lo / lo · 100%
ÐÑогиб пÑи изгибе в мм опÑеделÑеÑÑÑ Ð¿Ñи помоÑи пÑогибомеÑа маÑинÑ,
ÑказÑваÑÑего пÑогиб ƒ, обÑазÑÑÑийÑÑ Ð½Ð° обÑазÑе в Ð¼Ð¾Ð¼ÐµÐ½Ñ ÐµÐ³Ð¾ ÑазÑÑÑÐµÐ½Ð¸Ñ (ÑиÑ. 4,
б).
УдаÑÐ½Ð°Ñ Ð²ÑзкоÑÑÑ Ð² кÐм/Ñм2 опÑеделÑеÑÑÑ Ð½Ð° обÑазÑаÑ
(ÑиÑ. 4, в), подвеÑгаемÑÑ
на копÑе ÑазÑÑÑÐµÐ½Ð¸Ñ ÑдаÑом оÑведенного в
ÑÑоÑÐ¾Ð½Ñ Ð¼Ð°ÑÑника. ÐÐ»Ñ ÑÑого ÑабоÑÑ Ð´ÐµÑоÑмаÑии в кÐм делÑÑ Ð½Ð° плоÑÐ°Ð´Ñ Ð¿Ð¾Ð¿ÐµÑеÑного
ÑеÑÐµÐ½Ð¸Ñ Ð¾Ð±ÑазÑа в Ñм 2.
ТвеÑдоÑÑÑ Ð¿Ð¾ ÐÑÐ¸Ð½ÐµÐ»Ñ (ÐÐ) опÑеделÑÑÑ Ð½Ð° заÑиÑенной повеÑÑ
ноÑÑи
обÑазÑа, в коÑоÑÑÑ Ð²Ð´Ð°Ð²Ð»Ð¸Ð²Ð°ÑÑ ÑÑалÑной ÑаÑик (ÑиÑ. 4, г) диамеÑÑом 5 или
10 мм под ÑооÑвеÑÑÑвÑÑÑей нагÑÑзкой в 750 или 3000 кРи замеÑÑÑÑ Ð´Ð¸Ð°Ð¼ÐµÑÑ d
обÑазовавÑейÑÑ Ð»Ñнки. ÐÑноÑение нагÑÑзки в кРк плоÑади лÑнки πd2 / 4 в
мм2 Ð´Ð°ÐµÑ ÑиÑло ÑвеÑдоÑÑи.
ÐоказаÑели Ð´Ð»Ñ Ð¼ÐµÑ
аниÑеÑкиÑ
ÑвойÑÑв Ð´Ð»Ñ Ð¾ÑновнÑÑ
Ñплавов пÑÐ¸Ð²ÐµÐ´ÐµÐ½Ñ Ð² Ñабл.
1.
ТаблиÑа.1. ÐеÑ
аниÑеÑкие ÑвойÑÑва оÑновнÑÑ
пÑомÑÑленнÑÑ
Ñплавов
Ð¢ÐµÑ Ð½Ð¸ÑеÑкое железо | 23 | 30 | 90 | ÐембÑÐ°Ð½Ñ |
ЧÑгÑн ÑеÑÑй | 12â38 | до 0,25 | 143â220 | ÐÑливки ÑаÑоннÑе |
ЧÑгÑн вÑÑокопÑоÑнÑй | 30â60 | 0,5â10 | 170â262 | ÐÑвеÑÑÑвеннÑе оÑливки |
СÑÐ°Ð»Ñ Ð¼Ð°Ð»Ð¾ÑглеÑодиÑÑÐ°Ñ (мÑгкаÑ) | 32 â 70 | 11 â 28 | 100â130 | ÐоÑелÑное железо ÑÑÑбÑ, коÑÐ»Ñ |
СÑÐ°Ð»Ñ ÑÑеднеÑглеÑодиÑÑÐ°Ñ (ÑÑедней ÑвеÑдоÑÑи) | 50â70 | 12 â 16 | 170 â 200 | ÐÑи, ÑаÑÑнÑ, валÑ, ÑелÑÑÑ |
СÑÐ°Ð»Ñ ÑвеÑÐ´Ð°Ñ Ð¿Ð¾Ñле закалки и оÑпÑÑка | 110â140 | до 9 | 400â600 | ÐнÑÑÑÑÐ¼ÐµÐ½Ñ ÑдаÑнÑй и ÑежÑÑий |
ÐÑонза оловÑниÑÑÐ°Ñ | 15 â 25 | 3â10 | 70â80 | ÐеÑали, ÑабоÑаÑÑие на иÑÑиÑание и подвеÑженнÑе коÑÑозии |
ÐÑонза алÑÐ¼Ð¸Ð½Ð¸ÐµÐ²Ð°Ñ | 40â50 | 10 | 120 | То же |
ÐаÑÑÐ½Ñ Ð¾Ð´Ð½Ð¾ÑÐ°Ð·Ð½Ð°Ñ | 25 â 35 | 30-60 | 42â60 | ÐаÑÑонно-гилÑзовое пÑоизводÑÑво |
ÐаÑÑÐ½Ñ Ð´Ð²ÑÑ ÑÐ°Ð·Ð½Ð°Ñ | 35â45 | 30â40 | _ | ÐеÑали, изгоÑовленнÑе гоÑÑÑей ÑÑамповкой |
СилÑмин | 21â23 | 1 â 3 | 65â100 | ÐеÑали в авиаÑÑÑоении и авÑоÑÑÑоении |
Ð¡Ð¿Ð»Ð°Ð²Ñ Ð¼Ð°Ð³Ð½Ð¸Ñ | 24 â 32 | 10â16 | 60â70 | То же |
На чтение 5 мин.
Металлические изделия и детали используются в разных сферах промышленности. Существует множество видов металлов и каждый из них обладает сильными и слабыми сторонами. При изготовлении деталей для машин, самолётов или промышленного оборудования мастера обращают внимание на характеристики материала. Поэтому требуется знать свойства металлов и сплавов.
Свойства металлов и сплавов
У металлов есть признаки, которые их характеризуют:
- Высокие показатели теплопроводности. Металлические материалы хорошо проводят электричество.
- Блеск на изломе.
- Ковкость.
- Кристаллическая структура.
Не все материалы прочные и обладают высокими показателя износоустойчивости. Это же касается плавления при высоких температурах.
Классификация металлов
Металлы разделяются на две большие группы — черные и цветные. Представители обоих видов различаются не только характеристиками, но и внешним видом.
Черные
Представители этой группы считаются самыми распространёнными и недорогими. В большинстве своем имеют серый или тёмный цвет. Плавятся при высокой температуре, обладают высокой твердостью и большой плотностью. Главный представитель этой группы — железо. Эта группа разделяется на подгруппы:
- Железные — к представителям этой подгруппы относится железо, никель и кобальт.
- Тугоплавкие — сюда входят металлы температура плавления которых начинается с 1600 градусов. Их применяют при создании основ для сплавов.
- Редкоземельные — к ним относятся церий, празеодим и неодим. Обладают низкой прочностью.
Существуют урановые и щелочноземельные металлы, однако они менее популярны.
Цветные
Представители этой группы отличаются яркой окраской, меньшей прочностью, твердостью и температурой плавления (не для всех). Разделяется эта группа на следующие подгруппы:
- Лёгкие — подгруппа, включающая в себя металлы с плотностью до 5000 кг/м3. Это такие материалы, как литий, натрий, калий, магний и другие.
- Тяжёлые — сюда относится серебро, медь, свинец и другие. Плотность превышает 5000 кг/м3.
- Благородные — представили этой подгруппы имеют высокую стоимость и устойчивость к коррозийным процессам. К ним относятся золото, палладий, иридий, платина, серебро и другие.
Выделяются тугоплавкие и легкоплавкие металлы. К тугоплавким относится вольфрам, молибден и ниобий, а к легкоплавким все остальные.
Основные виды сплавов
Человечество знакомо с различными металлическими сплавами. Самыми многочисленными из них являются соединения на основе железа. К ним относятся ферриты, стали и чугун. Ферриты имеют магнитные свойства, в чугуне содержится более 2,4% углерода, а сталь — это материал с высокой прочность и твердостью.
Отдельное внимания требуют металлические сплавы из цветных металлов.
Производство стали
Цинковые сплавы
Соединения металлов, которые плавятся при низких температурах. Смеси на основе цинка устойчивы к воздействию коррозийных процессов. Легко обрабатываются.
Алюминиевые сплавы
Популярность алюминий и сплавы на его основе получили во второй половине 20 века. Этот материал обладает такими преимуществами:
- Устойчивость к низким температурам.
- Электропроводность.
- Малый вес заготовок в сравнении с другими металлами.
- Износоустойчивость.
Однако нельзя забывать про то, что алюминий плавится при низких температурах. При температуре около 200 градусов характеристики ухудшаются.
Алюминий применяется при изготовлении комплектующих к машинам, производстве деталей для самолётов, составляющих промышленного оборудования, посуды, инструментов. Не многие знают, что алюминий популярен в сфере производства оружия. Связано это с тем, что детали из алюминия не искрят при сильном трении.
Чтобы увеличить прочность детали, алюминий смешивают с медью. Чтобы заготовка выдерживала давление — с марганцем. Кремний добавляют, чтобы получить обычную отливку.
Медные сплавы
Сплавы на основе меди — марки латуни. Из этого материала изготавливаются детали высокой точности, так как латунь легко обрабатывать. В составе сплава может содержаться до 45% цинка.
Свойства сплавов
Чтобы изготавливать детали и конструкции, нужно знать основные свойства металлов и сплавов. При неправильной обработке готовая деталь может быстро выйти из строя и разрушить оборудование.
Двигатель внутреннего сгорания
Физические свойства
Сюда относятся визуальные параметры и характеристики материала, изменяющиеся при обработке:
- Теплопроводность. От этого зависит насколько поверхность будет передавать тепло при нагревании.
- Плотность. По этому параметру определяется количество материла, которое содержится в единице объёма.
- Электропроводность. Возможность металла проводить электрический ток. Этот параметр называется электрическое сопротивление.
- Цвет. Этот визуальный показатель меняется под воздействием температур.
- Прочность. Возможность материала сохранять структуру при обработке. Сюда же относится твердость. Эти показатели относятся и к механическим свойствам.
- Восприимчивость к действию магнитов. Это возможность материала проводить через себя магнитные лучи.
Физические основы позволяют определить в какой сфере будет использоваться материал.
Химические свойства
Сюда относятся возможности материала противостоять воздействию химических веществ:
- Устойчивость к коррозийным процессам. Этот показатель определяет на сколько материал защищён от воздействия воды.
- Растворимость. Устойчивость металла к воздействию растворителей — кислотам или щелочным составам.
- Окисляемость. Параметр указывает на выделение оксидов металлом при его взаимодействии с кислородом.
Обуславливаются эти характеристики химическим составом материала.
Механические свойства
Механические свойства металлов и сплавов отвечают за целостность структуры материала:
- прочность;
- твердость;
- пластичность;
- вязкость;
- хрупкость;
- устойчивость к механическим нагрузкам.
Технологические свойства
Технологические свойства определяют способность металла или сплава изменяться при обработке:
- Ковкость. Обработка заготовки давлением. Материал не разрушается. Структура изменяется.
- Свариваемость. Восприимчивость детали к работе сварочным оборудованием.
- Усадка. Происходит этот процесс при охлаждении заготовки после её разогрева.
- Обработка режущим инструментом.
- Ликвация (затвердевание жидкого металла при понижении температуры).
Основной способ обработки металлических деталей — нагревание.
Свойства металлов и сплавов отвечают за то, как себя будет вести готовое изделие при эксплуатации. При обработке материалов также важно знать его характеристики.
Основные механические свойства
К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.
Прочность — способность металла сопротивляться разрушению при действии на него внешних сил.
Пластичность — способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.
Твердость — способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю) , а после закалки — 500 . . . 600 НВ.
Ударная вязкость — способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС (Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.
Упругость — способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а к вызванной им упругой деформации. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.
Механические свойства металлов
Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).
В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.
Оценка свойств
При оценке механических свойств металлических материалов различают несколько групп их критериев.
- Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).
- Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.
- Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.
Конструкторская прочность металлов
Критерии конструктивной прочности металлических материалов можно разделить на две группы:
- критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;
- критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).
Критерии оценки
Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д.
Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.