Какие свойства основные или кислотные проявляет гидроксид магния
Гидроксид магния, характеристика, свойства и получение, химические реакции.
Гидроксид магния – неорганическое вещество, имеет химическую формулу Mg(OH)2.
Краткая характеристика гидроксида магния
Физические свойства гидроксида магния
Получение гидроксида магния
Химические свойства гидроксида магния
Химические реакции гидроксида магния
Применение и использование гидроксида магния
Краткая характеристика гидроксида магния:
Гидроксид магния – неорганическое вещество белого цвета.
Химическая формула гидроксида магния Mg(OH)2.
Практически нерастворим в воде. Является слабым основанием, даже ничтожная его часть, растворившаяся в воде, сообщает раствору слабощелочную реакцию.
Поглощает углекислый газ и воду из воздуха с образованием основного карбоната магния.
Встречается в природе в виде минерала брусита.
Физические свойства гидроксида магния:
Наименование параметра: | Значение: |
Химическая формула | Mg(OH)2 |
Синонимы и названия иностранном языке | magnesium hydroxide (англ.) брусит (рус.) |
Тип вещества | неорганическое |
Внешний вид | бесцветные тригональные кристаллы |
Цвет | белый, бесцветный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 2344,6 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 2,3446 |
Температура разложения, °C | 350 |
Молярная масса, г/моль | 58,35 |
* Примечание:
— нет данных.
Получение гидроксида магния:
Гидроксид магния получают в результате следующих химических реакций:
- 1. в результате взаимодействия металлического магния с парами воды:
Mg + 2H2O → Mg(OH)2 + H2.
- 2. в результате взаимодействия оксида магния и воды:
MgO + H2O → Mg(OH)2 (t = 100-125 °C).
- 3. в результате взаимодействия растворимых солей магния с щелочью:
MgCl2 + 2NaOH → Mg(OH)2 + 2NaCl,
Mg(NO3)2 + 2KOH → Mg(OH)2 + 2KNO3.
При этом гидроксид магния выпадает в виде осадка.
- 4. в результате взаимодействия хлорида магния с обожженным доломитом:
MgCl2 + CaO·MgO + 2H2O → 2Mg(OH)2 + CaCl2.
При этом гидроксид магния выпадает в виде осадка.
Химические свойства гидроксида магния. Химические реакции гидроксида магния:
Гидроксид магния является основным основанием, т. е. обладает основными свойствами.
Гидроксид магния – слабое малорастворимое основание.
Химические свойства гидроксида магния аналогичны свойствам гидроксидов других основных металлов. Поэтому для него характерны следующие химические реакции:
1. реакция гидроксида магния с гидроксидом натрия:
Mg(OH)2 + 2NaOH → Na2[Mg(OH)4] (t = 100 °C).
В результате реакции образуется тетрагидроксомагнезиат натрия. В ходе реакции используется насыщенный раствор гидроксида натрия.
2. реакция гидроксида магния с угольной кислотой:
Mg(OH)2 + H2СO3 → MgСO3 + 2H2O.
В результате реакции образуются карбонат магния и вода.
3. реакция гидроксида магния с ортофосфорной кислотой:
Mg(OH)2 + 2H3PO4 → Mg(H2PO4)2 + H2O,
Mg(OH)2 + H3PO4 → MgHPO4 + 2H2O,
3Mg(OH)2 + 2H3PO4 → Mg3(PO4)2 + 6H2O.
В результате реакции образуются в первом случае – дигидроортофосфат магния и вода, во втором – гидроортофосфат магния и вода, в третьем – ортофосфат магния и вода.
4. реакция гидроксида магния с азотной кислотой:
Mg(OH)2 + 2HNO3 → Mg(NO3)2 + 2H2O.
В результате реакции образуются нитрат магния и вода.
Аналогично проходят реакции гидроксида магния и с другими кислотами.
5. реакция гидроксида магния с фтороводородом:
Mg(OH)2 + 2HF → MgF2 + 2H2O.
В результате реакции образуются фторид магния и вода.
6. реакция гидроксида магния с бромоводородом:
Mg(OH)2 + 2HBr → MgBr2 + 2H2O.
В результате реакции образуются бромид магния и вода.
7. реакция гидроксида магния с йодоводородом:
Mg(OH)2 + 2HI → MgI2 + 2H2O.
В результате реакции образуются йодид магния и вода.
8. реакция термического разложения гидроксида магния:
Mg(OH)2 → MgO + H2O (t = 350 °C).
В результате реакции образуются оксид магния и вода.
9. реакция гидроксида магния с пероксидом водорода:
H2O2 + Mg(OH)2 → MgO2 + 2H2O (t < 20 °C).
В результате реакции образуются пероксид магния и вода. В ходе реакции используется концентрированный раствор пероксида водорода.
10. реакция гидроксида магния с оксидом серы:
Mg(OH)2 + SO3 → MgSO4 + 2H2O.
В результате реакции образуются сульфат магния и вода.
11. реакция гидроксида магния с оксидом углерода:
Mg(OH)2 + 2CO2 → Mg(HCO3)2.
В результате реакции образуется гидрокарбонат магния. В ходе реакции гидроксид магния используется в виде суспензии.
12. реакция гидроксида магния с оксидом углерода:
Mg(OH)2 + 2N2O5 → Mg(NO3)2 + 2HNO3 (t = 40-60 °C).
В результате реакции образуются нитрат магния и азотная кислота.
Применение и использование гидроксида магния:
Гидроксид магния используется при очистке воды (как флокулянт), в моющих средствах (как добавка), в качестве наполнителя в зубной пасте, для рафинирования сахара, в качестве пищевой добавки (Е528).
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
гидроксид магния реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения реакции масса взаимодействие гидроксида магния
Коэффициент востребованности
4 220
Гидроксид магния (формула Mg(OH)2) — это химическое неорганическое соединение, гидроксид магния (щелочноземельного металла). Относится к группе нерастворимых оснований.
Физические свойства магния гидроксида
1. В нормальных условиях магния гидроксид представляет собой бесцветные (прозрачные) кристаллы, имеющие гексагональную решетку.
2. Разлагается на оксид магния (MgO) и воду (H2O) при температуре триста пятьдесят градусов.
3. Поглощает из воздуха углекислый газ (CO2) и воду (H2O), образуя при этом основной карбонат магния.
4. Практически не растворяется в воде и хорошо растворим в солях аммония.
5. Это основание средней силы.
6. В природе встречается в виде особого минерала — брусита.
Как получают магния гидроксид?
1. Данное вещество можно получить посредством взаимодействия солей магния с различными щелочами, например:
MgCl2 (хлорид магния) + 2NaOH (гидроксид натрия) = Mg(OH)2 (выпадает в осадок, гидроксид магния) + 2NaCl (хлорид натрия)
Mg(NO3)2 (нитрат магния) + 2KOH (основание калия) = Mg(OH)2 (основание магния, выпадает в осадок) + 2KNO3 (нитрат калия)
2. Также это химическое соединение можно получить путем реакции раствора магния хлорида (MgCl2) с обожженным доломитом (CaO*MgO):
MgCl2 (хлорид магния) + CaO*MgO (обожженный доломит) + 2H2O (вода) = 2Mg(OH)2 (основание магния, выпадает в осадок) + CaCl2 (хлорид кальция)
3. Основание магния можно получить еще и путем взаимодействия паров воды с металлическим магнием:
Mg (магний металлический) + 2H2O (водяные пары) = Mg(OH)2 (выпадает в осадок) + H2 (водород, в виде газа)
Химические свойства магния гидроксида:
1. Это вещество при температуре 350 градусов разлагается на оксид магния и воду. Так выглядит эта реакция:
Mg(OH)2 (основание магния) = MgO (магния оксид) + 2H2O (вода)
2. Взаимодействует с кислотами. При этом образуются соль и вода. Примеры:
Mg(OH)2 (основание) + 2HCl (соляная кислота) = MgCl2 (магниевый хлорид) + 2H2O (вода)
Mg(OH)2 (основание) + H2SO4 (серная кислота) = MgSO4 (магниевый сульфат) + 2H2O (вода)
3. Взаимодействует с кислотными оксидами. В результате реакции получаются соль и вода:
Mg(OH)2 (основание) + SO3 (оксид серы) = MgSO4 (магниевый сульфат) + H2O (вода)
4. Также магниевый гидроксид взаимодействует с концентрированными горячими растворами щелочей. При этом образуются гидроксомагнезаты. Примеры:
Mg(OH)2 + 2NaOH (основание натрия) = Na2(Mg(OH)4)
Mg(OH)2 + S(OH)2 (основание серы) = Sr(Mg(OH)4)
Применение:
— как пищевая добавка, предназначенная для связывания диоксида серы (SO2). Зарегестрирован под знаком Е528;
— в качестве фокулянта для очистки сточных вод;
— как добавка в различные моющие средства и как компонент в зубных пастах;
— для рафинирования сахара и для получения оксида магния (MgO);
Отдельного внимания заслуживает использование данного химического вещества в медицинской отрасли.
Гидроксид магния в медицине
Это слабительное и антацидное средство, способное нейтрализовать соляную (хлороводородную, HCl) кислоту в желудке и снижать активность желудочного сока. При этом воздействие гидроксида магния не сопровождается изменениями КЩР и вторичной гиперсекрецией соляной кислоты. Также данное вещество способствует повышению перистальтики и других отделов кишечника. Слабительное действие наступает примерно через 2-6 часов.
Показания к применению: гастрит хронический с повышенной и нормальной секрецией, язва двенадцатиперстной кишки и желудка, чувство дискомфорта или боли в эпигастрии, изжога после курения или употребления кофе или алкоголя, запоры.
Противопоказания к применению: повышенная чувствительность в гидроксиду магния.
Стоит отметить, что у пациентов, имеющих проблемы с почками, после применения магниевого основания может развиться гипермагнемия (то есть избыток магния в организме).
Также в медицине используется алгелдрат магния гидроксид — средство, которое применяется при язве желудка, остром дуодените, гиперацидном гастрите, гастралгии, хроническом панкреатите, изжоге, гиперфосфатемии, гнилостной или бродильной дипепсии. Этот препарат будет противопоказан пациентам с гиперчувствительностью, болезнью Альцгеймера, в период беременности или грудного вскармливания.
Гидроксид магния | |
---|---|
Систематическое наименование | Гидроксид магния |
Хим. формула | Mg(OH)2 |
Рац. формула | Mg(OH)2 |
Состояние | твёрдое |
Молярная масса | 58.35 г/моль |
Плотность | 2,3446 (20 °C) |
Температура | |
• плавления | 350 °C |
• вспышки | невоспламеняющийся °C |
Энтальпия | |
• образования | –925 кДж/моль |
Растворимость | |
• в воде | 0,0012 г/100 мл |
Показатель преломления | 1.559 |
Кристаллическая структура | тригональная |
Рег. номер CAS | 1309-42-8 |
PubChem | 73981 |
Рег. номер EINECS | 215-170-3 |
SMILES | [OH-].[Mg+2].[OH-] |
InChI | 1S/Mg.2H2O/h;2*1H2/q+2;;/p-2 VTHJTEIRLNZDEV-UHFFFAOYSA-L |
Кодекс Алиментариус | E528 |
RTECS | OM3570000 |
ChEBI | 6637 |
ChemSpider | 14107 и 21169899 |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. |
Гидроксид магния (Гидроокись магния) — неорганическое вещество, осно́вный гидроксид металла магния, имеет формулу Mg(OH)2. Слабое малорастворимое основание.
Описание
При стандартных условиях гидроксид магния представляет собой аморфное вещество. При температуре выше 350 °C разлагается на оксид магния и воду. Поглощает углекислый газ и воду из воздуха с образованием основного карбоната магния. Гидроксид магния практически нерастворим в воде, но растворим в солях аммония. Является слабым основанием, даже ничтожная его часть, растворившаяся в воде, сообщает раствору слабощелочную реакцию и окрашивает индикаторы, например, фенолфталеин, в розовый цвет. Встречается в природе в виде минерала брусита.
Получение
- Взаимодействие растворимых солей магния с щелочами:
В общем виде:
Mg2+ + 2 OH− ⟶ Mg(OH)2 ↓
Примеры:
MgCl2 + 2 NaOH ⟶ Mg(OH)2 ↓ + 2 NaCl
Mg(NO3)2 + 2 KOH ⟶ Mg(OH)2 ↓ + 2 KNO3
- Взаимодействие раствора хлорида магния с обожжённым доломитом:
MgCl2 + CaO ⋅ MgO + 2 H2O ⟶ 2 Mg(OH)2 ↓ + CaCl2
- Взаимодействие металлического магния с парами воды:
Mg + 2 H2O ⟶ Mg(OH)2 ↓ + H2 ↑
Химические свойства
- Как и все слабые основания, гидроксид магния термически неустойчив. Разлагается при нагревании до 350 °C:
Mg(OH)2 →ΔT MgO + H2O
- Взаимодействует с кислотами с образованием соли и воды (реакция нейтрализации):
Mg(OH)2 + 2 HCl ⟶ MgCl2 + 2 H2O
Mg(OH)2 + H2SO4 ⟶ MgSO4 + 2 H2O
- Взаимодействие с кислотными оксидами с образованием соли и воды:
Mg(OH)2 + SO3 ⟶ MgSO4 + H2O
- Взаимодействие с горячими концентрированными растворами щелочей с образованием гидроксомагнезатов:
Mg(OH)2 + 2 NaOH ⟶ Na2[Mg(OH)4]
Mg(OH)2 + Sr(OH)2 ⟶ Sr[Mg(OH)4]
В состав Магникора входит — Магния гидроксид.
Применение
Гидроксид магния применяется для связывания диоксида серы, как флокулянт для очистки сточных вод, в качестве огнезащитного средства в термопластических полимерах (полиолефины, ПВХ), как добавка в моющие средства, для получения оксида магния, рафинирования сахара, в качестве компонента зубных паст.
В медицине его применяют в качестве лекарства для нейтрализации кислоты в желудке, а также как очень сильное слабительное.
В Европейском союзе гидроксид магния зарегистрирован в качестве пищевой добавки E528.
Соединения магния | |
---|---|
|
Кислотные гидроксиды – это неорганические соединения гидроксильной группы –ОН и металла или неметалла со степенью окисления +5, +6. Другое название – кислородсодержащие неорганические кислоты. Их особенностью является отщепление протона при диссоциации.
Классификация гидроксидов
Гидроксиды также имеют название гидроокисей и водокисей. Они есть практически у всех химических элементов, некоторые имеют широкое распространение в природе, например, минералы гидраргиллит и брусит – это гидроокиси алюминия и магния соответственно.
Выделяют следующие виды гидроксидов:
- основные;
- амфотерные;
- кислотные.
Классификация основывается на принадлежности оксида, образующего гидроокись, к основному, кислотному или амфотерному типу.
Общие свойства
Наибольший интерес вызывают кислотно-основные свойства оксидов и гидроксидов, так как от них зависит возможность протекания реакций. Будет ли гидроокись проявлять кислотные, основные или амфотерные свойства, зависит от прочности связи между кислородом, водородом и элементом.
На прочность влияют ионный потенциал, с увеличением которого ослабевают основные и усиливаются кислотные свойства гидроксидов.
Высшие гидроксиды
Высшими гидроокисями называют соединения, в которых образующий элемент находится в высшей степени окисления. Такие есть среди всех типов в классе. Пример основания – гидроксид магния. Гидроксид алюминия относится к амфотерным, а хлорная кислота может классифицироваться как кислотный гидроксид.
Изменение характеристик этих веществ в зависимости от образующего элемента можно проследить по периодической системе Д. И. Менделеева. Кислотные свойства высших гидроксидов усиливаются слева направо, а металлические, соответственно, ослабевают в этом направлении.
Основные гидроксиды
В узком смысле этот тип называется основанием, так как при его диссоциации отщепляется анион ОН. Самые известные из таких соединений – щелочи, например:
- Гашеная известь Са(ОН)2, используемая при побелке помещений, дублении кож, для приготовления противогрибковых жидкостей, строительных растворов и бетона, умягчения воды, производства сахара, хлорной извести и удобрений, каустификации карбонатов натрия и калия, нейтрализации кислых растворов, обнаружения углекислого газа, дезинфекции, снижения удельного сопротивления грунта, в качестве пищевой добавки.
- Каустический поташ КОН, применяемый в фотографии, нефтепереработке, пищевом, бумажном и металлургическом производстве, а также как щелочной элемент питания, нейтрализатор кислот, катализатор, газоочиститель, регулятор водородного показателя, электролит, компонент моющих средств, буровых растворов, красителей, удобрений, калийных органических и неорганических веществ, пестицидов, фармацевтических препаратов для лечения бородавок, мыла, синтетического каучука.
- Едкий натр NaOH, необходимый для целлюлозно-бумажной промышленности, омыления жиров при производстве моющих средств, нейтрализации кислот, изготовления биодизельного топлива, растворения засоров, дегазации отравляющих веществ, обработки хлопка и шерсти, мойки пресс-форм, пищевого производства, косметологии, фотографии.
Основные гидроксиды образуются как результат взаимодействия с водой соответствующих оксидов металлов, в подавляющем большинстве случаев со степенью окисления +1 или +2. К таким относятся щелочные, щелочноземельные и переходные элементы.
Кроме того, основания можно получить следующими способами:
- взаимодействием щелочи с солью малоактивного металла;
- реакцией между щелочным либо щелочноземельным элементом и водой;
- электролизом водного раствора соли.
Кислотные и основные гидроксиды взаимодействуют между собой с образованием соли и воды. Такая реакция называется нейтрализацией и имеет большое значение для титриметрического анализа. Кроме того, она используется в быту. При проливе кислоты нейтрализовать опасный реагент можно содой, а для щелочи используют уксус.
Кроме того, основные гидроокиси смещают ионное равновесие при диссоциации в растворе, что проявляется в изменении цветов индикаторов, и вступают в обменные реакции.
При нагревании нерастворимые соединения разлагаются на оксид и воду, а щелочи плавятся. Основный гидроксид и кислотный оксид образуют соль.
Амфотерные гидроксиды
Некоторые элементы в зависимости от условий проявляют то основные, то кислотные свойства. Гидроксиды на их основе называются амфотерными. Их легко определить по входящему в состав металлу, имеющему степень окисления +3, +4. Например, белое студенистое вещество – гидроксид алюминия Al(ОН)3, используемый при очистке воды благодаря его высокой адсорбирующей способности, изготовлении вакцин в качестве вещества, усиливающего иммунный ответ, в медицине для лечения кислотозависимых заболеваний желудочно-кишечного тракта. Также он часто включается в состав пластиков для подавления горения и выступает в качестве носителя для катализаторов.
Но есть и исключения, когда значение степени окисления элемента +2. Это характерно для бериллия, олова, свинца и цинка. Гидроксид последнего металла Zn(ОН)2 находит широкое применение в химических отраслях, в первую очередь, для синтеза различных соединений.
Получить амфотерную гидроокись можно, проведя реакцию между раствором соли переходного металла и разбавленной щелочью.
Амфотерный гидроксид и кислотный оксид, щелочь или кислота образуют соль при взаимодействии. Нагревание гидроокиси приводит к ее разложению на воду и метагидроксид, который при дальнейшем нагревании преобразуется в оксид.
Амфотерные и кислотные гидроксиды одинаково ведут себя в щелочной среде. При взаимодействии с кислотами амфотерные гидроокиси выступают в роли оснований.
Кислотные гидроксиды
Этот тип характеризуется наличием в составе элемента в степени окисления от +4 до +7. В растворе они способны отдавать катион водорода или принимать электронную пару и образовывать ковалентную связь. Чаще всего они имеют агрегатное состояние жидкости, но есть среди них и твердые вещества.
Образует гидроксид кислотный оксид, способный к солеобразованию и содержащий в составе неметалл или переходный металл. Оксид получается в результате окисления неметалла, разложения кислоты или соли.
Кислотные свойства гидроксидов проявляются в их способности окрашивать индикаторы, растворять активные металлы с выделением водорода, реагировать с основаниями и основными оксидами. Их отличительной особенностью является участие в окислительно-восстановительных реакциях. Во время химического процесса они присоединяют к себе отрицательно заряженные элементарные частицы. Способность выступать в качестве акцептора электронов ослабевает при разбавлении и превращении в соли.
Таким образом, можно выделить не только кислотно-основные свойства гидроксидов, но и окислительные.
Азотная кислота
HNO3 считается сильной одноосновной кислотой. Она очень ядовита, оставляет язвы на коже с желтым окрашиванием покровов, а ее пары моментально раздражают слизистую дыхательных путей. Устаревшее название – крепкая водка. Она относится к кислотным гидроксидам, в водных растворах полностью диссоциирует на ионы. Внешне выглядит как бесцветная, дымящаяся на воздухе жидкость. Концентрированным считается водный раствор, в который входит 60 — 70 % вещества, а если содержание превышает 95 %, его называют дымящейся азотной кислотой.
Чем выше концентрация, тем более темной выглядит жидкость. Она может иметь даже бурую окраску из-за разложения на оксид, кислород и воду на свету или при небольшом нагревании, поэтому хранить ее следует в емкости из темного стекла в прохладном месте.
Химические свойства кислотного гидроксида таковы, что перегонять без разложения его можно лишь при пониженном давлении. С ним реагируют все металлы кроме золота, некоторых представителей платиновой группы и тантала, но конечный продукт зависит от концентрации кислоты.
Например, 60%-е вещество при взаимодействии с цинком дает диоксид азота в качестве преобладающего побочного продукта, 30%-е – монооксид, 20%-е – оксид диазота (веселящий газ). Еще меньшие концентрации в 10% и 3% дают простое вещество азот в виде газа и аммонийную селитру соответственно. Таким образом, на основе кислоты можно получать различные нитросоединения. Как видно из примера, чем меньше концентрация, тем глубже восстановление азота. Также на это влияет активность металла.
Растворить золото или платину вещество может только в составе царской водки – смеси из трех частей соляной и одной азотной кислот. Стекло и политетрафторэтилен к нему устойчивы.
Помимо металлов вещество вступает в реакцию с основными и амфотерными оксидами, основаниями, слабыми кислотами. Во всех случаях в результате получаются соли, с неметаллами – кислоты. Не все реакции происходят безопасно, так, амины и скипидар самовоспламеняются при контакте с гидроксидом в концентрированном состоянии.
Соли называются нитратами. При нагревании они разлагаются или проявляют окислительные свойства. На практике используются как удобрения. В природе практически не встречаются из-за высокой растворимости, поэтому все соли кроме калийных и натриевых получают искусственно.
Саму кислоту получают из синтезированного аммиака и в случае необходимости концентрируют несколькими способами:
- смещением равновесия путем повышения давления;
- нагреванием в присутствии серной кислоты;
- дистилляцией.
Далее ее используют в производстве минеральных удобрений, красителей и лекарств, военной промышленности, станковой графике, ювелирном деле, органическом синтезе. Изредка разбавленную кислоту применяют в фотографии для подкисления тонирующих растворов.
Серная кислота
Н2SO4 – сильная двухосновная кислота. Выглядит как бесцветная тяжелая маслянистая жидкость, не обладает запахом. Устаревшее название – купорос (водный раствор) или купоросное масло (смесь с сернистым ангидридом). Такое наименование было присвоено из-за того, что в начале XIX века серу производили на купоросных заводах. В дань традиции кристаллогидраты сульфатов по сей день называют купоросом.
Производство кислоты налажено в промышленных масштабах и составляет около 200 миллионов тонн в год. Ее получают окислением сернистого газа кислородом или диоксидом азота в присутствии воды либо взаимодействием сероводорода с сульфатом меди, серебра, свинца или ртути. Получающееся в итоге концентрированное вещество является сильным окислителем: вытесняет галогены из соответствующих кислот, преобразует углерод и серу в кислотные оксиды. Гидроксид при этом восстанавливается до сернистого газа, сероводорода или серы. Разбавленная кислота обычно не проявляет окислительных свойств и образует средние и кислые соли или эфиры.
Обнаружить и идентифицировать вещество можно по реакции с растворимыми солями бария, в результате которой выпадает белый осадок сульфата.
В дальнейшем кислота используется в обработке руд, производстве минеральных удобрений, химических волокон, красителей, дымообразующих и взрывчатых веществ, различных отраслях промышленности, органическом синтезе, в качестве электролита, для получения минеральных солей.
Но применение сопряжено с определенными опасностями. Едкое вещество вызывает химические ожоги при соприкосновении с кожей или слизистыми оболочками. При вдыхании сначала появляется кашель, а впоследствии — воспалительные заболевания гортани, трахеи, бронхов. Превышение предельно допустимой концентрации в 1 мг на кубический метр смертельно опасно.
Столкнуться с сернокислотными парами можно не только на специализированных производствах, но и в атмосфере города. Такое случается, когда химические и металлургические предприятия осуществляют выбросы оксидов серы, которые затем выпадают в виде кислотных дождей.
Все эти опасности привели к тому, что оборот серной кислоты, содержащей более 45% массовой концентрации, в России ограничен.
Сернистая кислота
Н2SO3 — более слабая кислота по сравнению с серной. Ее формула отличается всего на один атом кислорода, но это делает ее неустойчивой. В свободном состоянии она не выделена, существует только в разбавленных водных растворах. Идентифицировать их можно по специфическому резкому запаху, напоминающему прогоревшую спичку. А подтвердить наличие сульфит-иона — по реакции с перманганатом калия, в результате которой красно-фиолетовый раствор обесцвечивается.
Вещество в разных условиях может выступать в роли восстановителя и окислителя, образовывать кислые и средние соли. Применяется оно для пищевого консервирования, получения целлюлозы из древесины, а также для деликатного отбеливания шерсти, шелка и других материалов.
Ортофосфорная кислота
Н3РО4 – кислота средней силы, которая выглядит как бесцветные кристаллы. Также ортофосфорной кислотой называют 85%-ный раствор этих кристаллов в воде. Он выглядит как сиропообразная жидкость без запаха, склонная к переохлаждению. Нагревание выше 210 градусов Цельсия приводит к ее превращению в пирофосфорную кислоту.
Ортофосфорная кислота хорошо растворяется в воде, нейтрализуется щелочами и гидратом аммиака, реагирует с металлами, образует полимерные соединения.
Получить вещество можно разными способами:
- растворением красного фосфора в воде под давлением, при температуре 700-900 градусов, с использованием платины, меди, титана или циркония;
- кипячением красного фосфора в концентрированной азотной кислоте;
- добавлением горячей концентрированной азотной кислоты к фосфину;
- окислением фосфина кислорода при 150 градусах;
- воздействием на декаоскид тетрафосфора температурой в 0 градусов, затем ее постепенным повышением до 20 градусов и плавным переходом к кипячению (на всех этапах нужна вода);
- растворением пентахлорида или оксид-трихлорида фосфора в воде.
Применение у получаемого продукта широкое. С его помощью снижают поверхностное натяжение и удаляют оксиды с поверхностей, готовящихся к пайке, очищают металлы от ржавчины и создают на их поверхности защитную пленку, препятствующую дальнейшей коррозии. Кроме того, ортофосфорную кислоту используют в промышленных морозильных установках и для исследований в молекулярной биологии.
Также соединение входит в состав авиационных гидрожидкостей, пищевых добавок и регуляторов кислотности. Применяется в звероводстве для профилактики мочекаменной болезни у норок и в стоматологии для манипуляций, предшествующих пломбированию.
Пирофосфорная кислота
Н4Р2О7 – кислота, характеризующаяся как сильная по первой ступени и слабая по остальным. Плавится она без разложения, так как для этого процесса нужно нагревание в вакууме или присутствие сильных кислот. Нейтрализуется щелочами и реагирует с перекисью водорода. Получают ее одним из следующих способов:
- разложением декаоксида тетрафосфора в воде при нулевой температуре, а затем его нагреванием до 20 градусов;
- нагреванием ортофосфорной кислоты до 150 градусов;
- взаимодействием концентрированной фосфорной кислоты с декаоксидом тетрафосфора при 80-100 градусах.
Применяется продукт в основном для производства удобрений.
Помимо этих, есть множество других представителей кислотных гидроокисей. Каждая из них имеет свои особенности и характеристики, но в общем кислотные свойства оксидов и гидроксидов заключаются в их способности отщеплять водород, разлагаться, взаимодействовать с щелочами, солями и металлами.