Какие свойства окислительные или восстановительные проявляет железо
Учебно-методическое пособие для подготовки к ЕГЭ
Химия железа
Бражникова Алла Михайловна,
ГБОУ СОШ №332
Невского района Санкт-Петербурга
Содержание:
Настоящее пособие рассматривает вопросы по теме «Химия железа». Помимо традиционных теоретических вопросов рассматриваются вопросы, выходящие за рамки базового уровня. Содержатся вопросы для самоконтроля, которые дают возможность учащимся проверить уровень усвоения ими соответствующего учебного материала при подготовке к ЕГЭ.
ГЛАВА 1. ЖЕЛЕЗО – ПРОСТОЕ ВЕЩЕСТВО.
Строение атома железа.
Железо – d-элемент, находится в побочной подгруппе VIIIгруппы периодической системы. Самый распространенный в природе металлпосле алюминия. Входит в состав многих минералов: бурый железняк (гематит) Fe2O3, магнитный железняк (магнетит) Fe3O4, пирит FeS2.
Электронное строение:1s22s22p63s23p63d64s2.
Валентность: II, III, (IV).
Степени окисления: 0, +2, +3, +6 (только в ферратах K2FeO4).
Физические свойства.
Железо – блестящий, серебристо-белый металл, т. пл. – 1539 0С.
Получение.
Чистое железо можно получить восстановлением оксидов водородом при нагревании, а также электролизом растворов его солей. Доменный процесс – получение железа в виде сплавов с углеродом (чугун и сталь):
1) 3Fe2O3 + CO → 2Fe3O4 + CO2
2) Fe3O4 + CO → 3FeO + CO2
3) FeO + CO → Fe + CO2
Химические свойства.
I. Взаимодействие с простыми веществами – неметаллами
1) С хлором и серой (при нагревании). Более сильным окислителем хлором железо окисляется до Fe3+, более слабым – серой – до Fe2+:
2Fe2 + 3Cl → 2FeCl3
Fe + S → FeS
2) С углем, кремнием и фосфором (при высокой температуре).
3) В сухом воздухе окисляется кислородом, образуя окалину – смесь оксидов железа (II) и (III):
3Fe + 2O2 → Fe3O4 (FeO Fe2O3)
II. Взаимодействие со сложными веществами.
1) Во влажном воздухе протекает коррозия (ржавление) железа:
4Fe + 3O2+ 6H2O → 4Fe(OH)3
При высокой температуре (700 – 900 0С) в отсутствие кислорода железо реагирует с парами воды, вытесняя из неё водород:
3Fe+ 4H2O→ Fe3O4 + 4H2 ↑
2) Вытесняет водород из разбавленной соляной и серной кислот:
Fe+ 2HCl= FeCl2+ H2 ↑
Fe + H2SO4(разб.) = FeSO4 + H2 ↑
Высококонцентрированные серная и азотная кислоты при обычной температуре с железом не реагируют вследствие его пассивации.
Разбавленной азотной кислотой железо окисляется до Fe3+, продукты восстановления HNO3 зависят от её концентрации и температуры:
8Fe + 30HNO3(оч. разб.) →8Fe(NO3)3 + 3NH4NO3 + 9H2O
Fe + 4HNO3(разб.) → Fe(NO3)3 + NO↑ + 2H2O
Fe + 6HNO3(конц.) → (температура) Fe(NO3)3 + 3NO2 ↑+ 3H2O
3) Реакция с растворами солей металлов, стоящих правее железа в электрохимическом ряду напряжений металлов:
Fe + CuSO4 → Fe SO4 + Cu
ГЛАВА2. СОЕДИНЕНИЯ ЖЕЛЕЗА (II).
Оксид железа(II).
Оксид FeO– черный порошок, нерастворим в воде.
Получение.
Восстановление из оксида железа (III) при 500 0С действием оксида углерода (II):
Fe2O3+ CO→2FeO+ CO2
Химические свойства.
Основный оксид, ему соответствует гидрокосид Fe(OH)2 : растворяется в кислотах, образуя соли железа (II):
FeO+ 2HCl→ FeCl2+ H2O
Гидроксид железа (II).
Гидроксид железа Fe(OH)2 – нерастворимое в воде основание.
Получение.
Действие щелочей на соли железа () без доступа воздуха:
FeSO4 + NaOH → Fe(OH)2↓+ Na2SO4
Химические свойства.
Гидроксид Fe(OH)2 проявляет основные свойства, хорошо растворяется в минеральных кислотах, образуя соли.
Fe(OH)2 + H2SO4 →FeSO4 + 2H2O
При нагревании разлагается:
Fe(OH)2 → (температура) FeO+ H2O
Окислительно-восстановительные свойства.
Соединения железа (II) проявляют достаточно сильные восстановительные свойства, устойчивы только в инертной атмосфере; на воздухе (медленно) или в водном растворе при действии окислителей (быстро) переходят в соединения железа (III):
4 Fe(OH)2 (в осадок)+ O2+ 2H2O→ 4 Fe(OH)3↓
2FeCl2 + Cl2 → 2FeCl3
10FeSO4 + 2KMnO4 + 8H2SO4 → 5 Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8 H2O
Соединения железа (II) могут выступать и в роли окислителей:
FeO+ CO→ (температура) Fe+ CO
ГЛАВА 3. СОЕДИНЕНИЯ ЖЕЛЕЗА (III).
Оксид железа(III)
Оксид Fe2O3 – самое устойчивое природное кислородсодержащее соединение железа. Это амфотерный оксид, нерастворимый в воде. Образуется при обжиге пирита FeS2(см. 20.4 «Получение SO2».
Химические свойства.
1)Растворяясь в кислотах, образует соли железа (III):
Fe2O3 + 6HCl→ 2FeCl3+ 3H2O
2) При сплавлении с карбонатом калия образует феррит калия:
Fe2O3 + K2СO3 → (температура) 2KFeO2 + CO2 ↑
3) При действии восстановителей выступает как окислитель:
Fe2O3 + 3H2 ↑→ (температура) 2Fe+ 3H2O
Гидроксид железа (III)
Гидроксид железа Fe(OH)3 – красно-бурое вещество, нерастворимое в воде.
Получение.
Fe2(SO4)3 + 6NaOH → 2Fe(OH)3↓ + 3Na2SO4
Химические свойства.
Гидроксид Fe(OH)3 – более слабое основание, чем гидроксид железа (II), обладает слабо выраженной амфотерностью.
1) Растворяется в слабых кислотах:
2Fe(OH)3 + 3H2SO4→ Fe2(SO4)3 + 6H2O
2) При кипячении в 50% растворе NaOHобразует
Fe(OH)3 + 3NaOH → Na3[Fe(OH)6]
Соли железа (III).
Подвергаются сильному гидролизу в водном растворе:
Fe3+ + H2O ↔ Fe(OH)2+ + H+
Fe2(SO4)3 + 2H2O ↔ Fe(OH)SO4 + H2SO4
При действии сильных восстановителей в водном растворе проявляют окислительные свойства, переходя в соли железа (II):
2FeCl3 + 2KI → 2FeCl2 + I2 + 2KCl
Fe2(SO4)3 + Fe → 3 Fe
ГЛАВА4. КАЧЕСТВЕННЫЕ РЕАКЦИИ.
Качественные реакции на ионы Fe2+ и Fe3+.
- Реактивом на ион Fe2+ является гексацианоферрат (III) калия (красная кровавая соль), который дает с ним интенсивно синий осадок смешанной соли — гексацианоферрат (III) калия-железа (II) или турнбулева синь:
FeCl2 + K3[Fe(CN)6] → KFe2+[Fe3+(CN)6]↓ + 2KCl
- Реактивом на ион Fe3+ является тиоцианат-ион (роданид-ион) CNS-, при взаимодействии которого с солями железа (III) образуется вещество кроваво-красного цвета – роданид железа (III) :
FeCl3 + 3KCNS→ Fe(CNS)3 + 3KCl
3)Ионы Fe3+ можно обнаружить также с помощью гексацианоферрата (II) калия (желтая кровяная соль). При этом образуется нерастворимое в воде вещество интенсивного синего цвета — гексацианоферрат (II) калия-железа (III) или берлинская лазурь:
FeCl3 + K4[Fe(CN)6] → KFe3+[Fe2+(CN)6]↓ + 3KCl
ГЛАВА 5. МЕДИКО-БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ЖЕЛЕЗА.
Роль железа в организме.
Железо участвует в образовании гемоглобина в крови, в синтезе гормонов щитовидной железы, в защите организма от бактерий. Оно необходимо для образования иммунных защитных клеток, требуется для «работы» витаминов группы В.
Железо входит в состав более чем 70 различных ферментов, в том числе дыхательных, обеспечивающих процессы дыхания в клетках и тканях, и участвующих в обезвреживании чужеродных веществ, поступающих в организм человека.
Кроветворение. Гемоглобин.
Газообмен в легких и тканях.
Железодефицитная анемия.
Недостаток железа в организме приводит к таким заболеваниям, как анемия, малокровие.
Железодефицитная анемия (ЖДА) — гематологический синдром, характеризующийся нарушением синтеза гемоглобина вследствие дефицита железа и проявляющийся анемией и сидеропенией. Основными причинами ЖДА являются кровопотери и недостаток богатой гемом пищи и питья.
Больного может беспокоить усталость, одышка и сердцебиение, особенно после физической нагрузки, часто – головокружение и головные боли, шум вушах, возможен даже обморок. Человек становится раздражительным,нарушается сон, снижается концентрация внимания. Поскольку кровоток в коже снижен, может развиватьсяповышенная чувствительность к холоду. Возникает симптоматика и со стороны желудочно-кишечного тракта – резкое снижение аппетита, диспепсические расстройства (тошнота, изменение характера и частоты стула).
Железо – составная часть жизненно важных биологических комплексов, таких как гемоглобин (транспорт кислорода и углекислого газа), миоглобин (запасание кислорода в мышцах), цитохромы(ферменты). В организме взрослого человека содержится 4-5 г железа.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
- К.Н. Зеленин, В.П. Сергутин, О.В. Солод «Сдаем экзамен по химии отлично». ООО «Элбль-СПб», 2001 год.
- К.А.Макаров «Медицинская химия». Издательство СПбГМУ Санкт-Петербурга, 1996 год.
- Н.Л. Глинка «Общая химия». Ленинград «Химия», 1985 год.
- В.Н. Доронькин, А.Г. Бережная, Т.В. Сажнева, В.А. Февралева «Химия. Тематические тесты для подготовки к ЕГЭ». Издательство «Легион», Ростов-на-Дону, 2012 год.
Железо – химический элемент четвертого периода и побочной подгруппы VIII группы периодической системы. Атом железа содержит восемь валентных электронов, однако в соединениях железо обычно проявляет степени окисления (+2) и (+3), редко – (+6). Имеются сообщения о получении соединений восьмивалентного железа.
Степень окисления +3 для железа является наиболее устойчивой. Соединения железа(III) могут быть восстановлены только под действием сильных восстановителей, таких как водород в момент выделения, сероводород. Эти реакции проводят в кислой среде:
$Fe_2(SO_4)_3 + H_2S = 2FeSO_4 + S + H_2SO_4$
Железо широко распространено в природе – это самый распространенный металл, после алюминия. Существует гипотеза о том, что внутреннее ядро Земли – целиком состоит из железа с примесью никеля и серы, а возможно и других элементов.
В природе железо встречается в виде руд — оксидов Fe$_2$O$_3$ (гематит, красный железняк) и Fe$_3$O$_4$ (магнетит, магнитный железняк), гидратированного оксида Fe$_2$O$_3 cdot$H$_2$O (лимонит, бурый железняк), карбоната FeCO$_3$ (сидерит), дисульфида FeS2 (пирит), редко встречается в виде самородков, попадающих на землю с метеоритами. Такое метеоритное железо было известно людям издревле. Освоение получения железа из железной руды послужило началом железного века.
Получение железа
В настоящее время железную руду восстанавливают коксом в доменных печах, при этом расплавленное железо частично реагирует с углеродом, образуя карбид железа Fe3C (цементит), а частично растворяет его. При затвердевании расплава образуется чугун. Чугун, используемый для получения стали, называют передельным.
Запомнить! Сталь, в отличие от чугуна, содержит меньшее количество углерода.
При получении стали, лишний углерод, содержащийся в чугуне, необходимо выжечь. Этого добиваются, пропуская над расплавленным чугуном воздух, обогащенный кислородом. Существует и прямой метод получения железа, основанный на восстановлении окатышей магнитного железняка природным газом:
Fe$_3$O$_4$ + CH$_4$ = 3Fe + CO$_2$ + 2H$_2$O
Физические свойства
Железо – серебристо-белый, ковкий и пластичный тугоплавкий (т. пл. 1535°C, т. кип. 2870°C) металл, при температурах ниже 769°C притягивается магнитом, то есть обладает ферромагнетизмом. Ферромагнитные свойства вызваны наличием в структуре металла отдельных зон – доменов, магнитные моменты которых под действием внешнего магнитного поля ориентируются в одну и ту же сторону. Железо существует в форме нескольких полиморфных (аллотропных) модификаций. При температурах ниже $910^0C$ устойчиво железо с объемно-центрированной кристаллической решеткой ($alpha$-Fe, немагнитное α-железо существующее при $769 – 910^0C$ называют β-Fe), в интервале температур $910 – 1400^0C$ – более плотная модификация с кубической гранецентрированной ($gamma$-Fe), а выше этой температуры и вплоть до температуры плавления вновь становится устойчивой структура с объемно-центрированной ячейкой (δ-Fe).
Химические свойства железа
Запомнить!
Степень окисления +2 железо проявляет при взаимодействии со слабыми окислителями: серой, йодом, соляной кислотой, растворами солей.
Степень окисления +3 железо проявляет при взаимодействии с сильными окислителями: хлором, бромом.
Смешанную степень окисления железо проявляет при взаимодействии с кислородом, водяным паром.
1) с кислотами. На влажном воздухе окисляется, покрываясь коричневой коркой гидратированного оксида Fe$_2$O$_3 cdot $H$_2$O, ржавчины. Железо легко растворяется в разбавленных кислотах:
Fe + 2HCl = FeCl$_2$ + H$_2$
но пассивируется в холодных концентрированных растворах кислот-окислителях – серной и азотной.
2) с солями.Будучи металлом средней химической активности, железо вытесняет другие, менее активные металлы из растворов их солей:
Fe + CuSO$_4$ = FeSO$_4$ + Cu
При этом, как и при растворении в кислотах, образуются соли двухвалентного железа.
3) с парами воды.При температуре белого каления железо реагирует с водой. Пропуская перегретый водяной пар через раскаленный на жаровне чугунный пушечный ствол, Лавуазье получил водород:
3Fe + 4H$_2$O = Fe$_3$O$_4$ + 4H$_2$.
4) с кислородом.В кислороде железо сгорает с образованием черyого порошка железной окалины – оксида железа(II, III) Fe$_3$O$_4$,имеющей тот же состав, что и природный минерал магнитный железняк^
3Fe + 2O$_2$ = Fe$_3$O$_4$
Искры, вырывающиеся при заточке стальных ножей или при резке стальных листов ацетилено-кислородным пламенем , также представляют собой раскаленные куски железной окалины.
5) с неметаллами. Степень окисления железа в образующихся соединениях зависит от силы окислителя — неметалла. Так, при взаимодействии с хлором образуется хлорид FeCl$_3$:
2Fe + 3Cl$_2$ = 2FeCl$_3$,
с серой – сульфид FeS:
Fe + S = FeS.
Соединения железа(II)
Запомнить! Оксид и гидроксид железа(II) обладают основными свойствами.
Соединения железа(II) являются сильными восстановителями и на воздухе легко окисляются до соединений трехвалентного железа:
4FeSO$_4$ + O$_2$ + 2H$_2$O = 4Fe(OH)SO$_4$.
Белый осадок гидроксида железа(II) Fe(OH)2, образующийся при действии на соли железа(II) растворов щелочей, на воздухе мгновенно зеленеет, образуя «зеленую ржавчину» – смешанный гидроксид железа(II) и железа(III), который лишь через некоторое время приобретает характерный для Fe$_2$O$_3 cdot$H$_2$O ржавый цвет.
Соединения железа(III)
Гидроксид железа(III) выпадает в виде коричневого осадка при действии растворов щелочей, сульфидов, карбонатов на соли железа(III):
2FeCl$_3$ + 3Na$_2$CO$_3$ + 6H$_2$O = 2Fe(OH)$_3^-$ +3CO$_2$+ 6NaCl
Запомнить! Оксид и гидроксид железа(III) являются слабо амфотерными, с преобладанием основных свойств.
Так, при растворении гидроксида железа(III) в кислотах образуются соли железа(III), а при сплавлении оксида с оксидами активных металлов – ферриты (ферраты(+3)):
2Fe(OH)$_3$ + 2H$_2$SO$_4$ = Fe$_2$(SO$_4$)$_3$ + 3H$_2$O,
Fe$_2$O$_3$ + CaO = CaFe$_2$O$_4$.
В концентрированных щелочах Fe(OH)$_3$ медленно растворяется, образуя гидроксоферраты, например, Na$_3$[Fe(OH)$_6$]:
$Fe(OH)_3 + 3NaOH_{textrm{водн.}} =Na_3[Fe(OH)_6]$
При действии недостатка кислот они разлагаются в образованием осадка гидроксида железа(III):
$Na_3[Fe(OH)_6] + 3HCl_{textrm{нед.}} =3NaCl + Fe(OH)_3downarrow +3H_2O$
$Na_3[Fe(OH)_6] + 6HCl_{textrm{изб.}} =3NaCl + FeCl_3 +6H_2O$
При пропускании углекислого газа они разлагаются на гидроксид железа(III) и карбонат натрия:
$2Na_3[Fe(OH)_6] + 3CO_2uparrow=3Na_2CO_3 + 2Fe(OH)_3downarrow +3H_2O$
Запомнить! Соли железа(III) и некоторых слабых кислот, например, сернистой и угольной не могут быть выделены из водных растворов по причине полного необратимого гидролиза
$2FeCl_3 + 3Na_2CO_3 + 3H_2O = 2Fe(OH)_3 +3CO_2uparrow + 6NaCl$
О протекании реакции судят по выделению газа и образованию коричневого осадка гидроксида железа(III).
Окисление Fe(OH)3 бромом в щелочной среде приводит к образованию вишневых растворов ферратов (+6):
2Fe(OH)$_3$ + 3Br$_2$ + 10KOH = 2K$_2$FeO$_4$ + 6KBr + 8H$_2$O.
Запомнить! Ферраты содержат железо в степени окисления (+6), и являются сильными окислителями.
Применение железа
В виде чугуна и стали железо находит широкое применение в народном хозяйстве. Хлорид железа(III) используется при травлении медных плат, а сульфат железа(III) – в качестве хлопьеобразователя (коагулянта) при очистке воды. Ферриты двухвалентных металлов (магния, цинка, кобальта, никеля) со структурой шпинели применяют в радиоэлектронике, вычислительной технике.
Соли железа(III) образуют желто-коричневые растворы, цвет которых объясняется гидролизом, приводящим к образованию коллоидного раствора гидроксида железа(III). Многие из них, например, хлорид FeCl3×6H2O («хлорное железо») сильно гигроскопичны, и при хранении в неплотно закрытых склянках, отсыревают.
Качественные реакции на катионы железа
На ионы железа существуют удобные качественные реакции. Если к раствору соли железа(III) прибавить разбавленный раствор роданида калия KCNS, то образуется интенсивно-красное окрашивание, вызванное образованием роданида железа(III):
$FeCl_3 + 3KSCN= Fe(SCN)_3 + 3KCl$
Другим реагентом на ионы железа(III) служит комплексное соединение гексацианоферрат(II) калия $K_4[Fe(CN)_6]$, часто называемый также «желтая кровяная соль». Такое странное на первый взгляд название связано с тем, что раньше эту соль получали нагреванием крови с поташом и железными опилками. С солями железа(III) она дает синий коллоидный раствор «берлинской лазури» или «турнбуллева синь»:
$K_4[Fe(CN)_6] + FeCl_3 = KFe[Fe(CN)_6] downarrow + 3KCl$
.
Аналогичное синие окрашивание осадка того же состава можно получить при взаимодействии ионов железа(II) с раствором «красной кровяной соли» — гексацианоферрат(III) калия $K_3[Fe(CN)_6]$:
$K_3[Fe(CN)_6] + FeCl_2 = KFe[Fe(CN)_6] downarrow + 2KCl$
.
Таким образом, красная кровяная соль служит реактивом на соли двухвалентного железа. При более высоких концентрациях растворов выделяется нерастворимая в воде форма «берлинской лазури» состава $Fe_4[Fe(CN)_6]_3$. Именно это вещество долгое время использовали при крашении тканей. При работе с кровяными солями следует помнить об их токсичности.
Соединения железа (II)
Соединения железа со степень окисления железа +2 малоустойчивы и легко окисляются до производных железа (III).
Оксид железа (II)– порошок черного цвета, в мелкораздробленном состоянии воспламеняется. Кристаллизуется в структурном типе хлорида натрия (кубическая гранецентрированная решетка).
Проявляет преимущественно основные свойства. В воде не растворяется, легко растворяется в неокисляющих кислотах:
FeO + 2HCl = FeCl2 + H2O.
Проявляет восстановительные свойства:
3FeO + 10HNO3 = 3Fe(NO3)3 + NO + 5H2O.
Получается разложением оксалата железа (II) в атмосфере азота или без доступа воздуха:
FeC2O4·3H2O = FeO + 3H2O + CO2 + CO
или в процессе восстановления оксида железа (III) водородом или оксидом углерода (II):
Fe2O3 + H2 = 2FeO + H2O,
Fe2O3 + CO = 2FeO + CO2.
Гидроксид железа (II) Fe(OH)2в свежеосажденном виде имеет серовато-зеленую окраску, в воде не растворяется, при температуре выше 150 °С разлагается, быстро темнеет вследствие окисления:
4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3.
Проявляет слабовыраженные амфотерные свойства с преобладанием основных, легко реагирует с неокисляющими кислотами:
Fe(OH)2 + 2HCl = FeCl2 + 2H2O.
Взаимодействует с концентрированными растворами щелочей при нагревании с образованием тетрагидроксоферрата (II):
Fe(OH)2 + 2NaOH = Na2[Fe(OH)4].
Проявляет восстановительные свойства, при взаимодействии с азотной или концентрированной серной кислотой образуются соли железа (III):
2Fe(OH)2 + 4H2SO4 = Fe2(SO4)3 + SO2 + 6H2O.
Получается при взаимодействии солей железа (II) с раствором щелочи в отсутствии кислорода воздуха:
FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4.
Соли железа (II). Железо (II) образует соли практически со всеми анионами. Обычно соли кристаллизуются в виде зеленых кристаллогидратов: Fe(NO3)2 · 6H2O, FeSO4 · 7H2O, FeBr2 · 6H2O, (NH4)2Fe(SO4)2 · 6H2O (соль Мора) и др. Растворы солей имеют бледно-зеленую окраску и, вследствие гидролиза, кислую среду:
Fe2+ + H2O = FeOH+ + H+.
Проявляют все свойства солей.
При стоянии на воздухе медленно окисляются растворенным кислородом до солей железа (III):
4FeCl2 + O2 + 2H2O = 4FeOHCl2.
Качественная реакция на катион Fe2+ – взаимодействие с гексацианоферратом (III) калия (красной кровяной солью) :
FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4
Fe2+ + K+ + [Fe(CN)6]3- = KFe[Fe(CN)6]↓
в результате реакции образуется осадок синего цвета – гексацианоферрат (II) железа (III) — калия.
Степень окисления +3 характерна для железа.
Оксид железа (III) Fe2O3 – вещество бурого цвета, существует в трех полиморфных модификациях.
Проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:
Fe2O3 + 6HCl = 2FeCl3 + 3H2O.
С растворами щелочей не реагирует, но при сплавлении образует ферриты:
Fe2O3 + 2NaOH = 2NaFeO2 + H2O.
Проявляет окислительные и восстановительные свойства. При нагревании восстанавливается водородом или оксидом углерода (II), проявляя окислительные свойства:
Fe2O3 + H2 = 2FeO + H2O,
Fe2O3 + CO = 2FeO + CO2.
В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):
Fe2O3 + 3KNO3 + 4KOH = 2K2FeO4 + 3KNO2 + 2H2O.
При температуре выше 1400°С разлагается:
6Fe2O3 = 4Fe3O4 + O2.
Получается при термическом разложении гидроксида железа (III):
2Fe(OH)3 = Fe2O3 + 3H2O
или окислением пирита:
4FeS2 + 11O2 = 2Fe2O3 + 8SO2.
Гидроксид железа (III) Fe(OH)3 – кристаллическое или аморфное вещество бурого цвета. Как и оксид, проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:
Fe(OH)3 + 3HCl = FeCl3 + 3H2O.
Реагирует с концентрированными растворами щелочей с образованием гексагидроксоферратов (III):
Fe(OH)3 + 3NaOH = Na3[Fe(OH)6],
при сплавлении со щелочами или щелочными реагентами образует ферриты:
Fe(OH)3 + NaOH = NaFeO2 + 2H2O,
2Fe(OH)3 + Na2CO3 = 2NaFeO2 + CO2 + 3H2O.
В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):
2Fe(OH)3 + 3Br2 + 10KOH = 2K2FeO4 + 6NaBr + 8H2O.
При нагревании разлагается:
Fe(OH)3 = FeO(OH) + H2O,
2FeO(OH) = Fe2O3 + H2O.
Получается при взаимодействии солей железа (III) с растворами щелочей:
Fe2(SO4)3 + 6NaOH = 2Fe(OH)3 + 3Na2SO4.
Соли железа (III). Железо (III) образует соли практически со многими анионами. Обычно соли кристаллизуются в виде бурых кристаллогидратов: Fe(NO3)3 · 6H2O, FeCl3 · 6H2O, NaFe(SO4)2 · 12H2O (железные квасцы) и др. В растворе соли железа (III) значительно более устойчивы, чем соли железа (II). Растворы солей имеют желто-бурую окраску и, вследствие гидролиза, кислую среду:
Fe3+ + H2O = FeOH2+ + H+.
Соли железа (III) гидролизуют в большей степени, чем соли железа (II), по этой причине соли железа (III) и слабых кислот нельзя выделить из раствора, они мгновенно гидролизуют с образованием гидроксида железа (III):
Fe2(SO4)3 + 3Na2CO3 + 3H2O = 2Fe(OH)3 + 3CO2 + 3Na2SO4.
Проявляют все свойства солей.
Обладают преимущественно восстановительными свойствами:
2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl.
Качественная реакция на катион Fe3+ – взаимодействие с гексацианоферратом (II) калия (желтой кровяной солью) :
FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + 3KCl
Fe3+ + K+ + [Fe(CN)6]4- = KFe[Fe(CN)6]↓
в результате реакции образуется осадок синего цвета – гексацианоферрат (III) железа (II) — калия.
Кроме того, ионы Fe3+ определяют по характерному кроваво-красному окрашиванию роданида железа (III), который образуется в результате взаимодействия соли железа (III) с роданидом калия или аммония:
FeCl3 + 3KCNS = Fe(CNS)3 + 3KCl,
Fe3+ + 3CNS- = Fe(CNS)3.