Какие свойства окислительные или восстановительные

Какие свойства окислительные или восстановительные thumbnail

Окислительно-восстановительные свойства отдельных атомов, а также ионов являются важным вопросом современной химии. Данный материал помогает объяснять активность элементов и веществ, проводить детальное сравнение химических свойств у разных атомов.

восстановительными свойствами обладают

Что такое окислитель

Многие задачи по химии, включая тестовые вопросы единого государственного экзамена в 11 классе, и ОГЭ в 9 классе, связаны с данным понятием. Окислителем считают атомы либо ионы, которые в процессе химического взаимодействия принимают электроны от другого иона либо атома. Если анализировать окислительные свойства атомов, нужна периодическая система Менделеева. В периодах, располагающихся в таблице слева направо, окислительная способность атомов возрастает, то есть меняется аналогично неметаллическим свойствам. В основных подгруппах подобный параметр уменьшается сверху вниз. Среди самых сильных простых веществ, обладающих окислительной способностью, лидирует фтор. Такой термин, как «электроотрицательность», то есть возможность атома принимать в случае химического взаимодействия электроны, можно считать синонимом окислительных свойств. Среди сложных веществ, которые состоят из двух и больше химических элементов, яркими окислителями можно считать: перманганат калия, хлорат калия, озон.

восстановительные свойства

Что такое восстановитель

Восстановительные свойства атомов характерны для простых веществ, проявляющих металлические свойства. В таблице Менделеева в периодах металлические свойства слева направо ослабевают, а в основных подгруппах (вертикально) они усиливаются. Суть восстановления в отдаче электронов, которые располагаются на внешнем энергетическом уровне. Чем большее количество электронных оболочек (уровней), тем легче отдать во время химического взаимодействия «лишние» электроны.

Отличными восстановительными свойствами обладают активные (щелочные, щелочно-земельные) металлы. Кроме того, веществ, проявляющих подобные параметры, выделим оксид серы (6), угарный газ. Для того чтобы приобрести максимальную степень окисления, данные соединения вынуждены проявлять восстановительные свойства.

Процесс окисления

Если во время химического взаимодействия атом либо ион отдает электроны иному атому (иону), идет речь о процессе окисления. Для анализа того, как меняются восстановительные свойства и окислительная способность, потребуется таблица элементов Менделеева, а также знание современных законов физики.

окислительно восстановительные свойства

Процесс восстановления

Восстановительные процессы предполагают принятие ионами либо атомами электронов от других атомов (ионов) во время непосредственного химического взаимодействия. Отличными восстановителями являются нитриты, сульфиты щелочных металлов. Восстановительные свойства в системе элементов меняются аналогично металлическим свойствам простых веществ.

Алгоритм разбора ОВР

Для того чтобы в готовой химической реакции учащийся мог расставить коэффициенты, необходимо воспользоваться специальным алгоритмом. Окислительно-восстановительные свойства помогают решать и разнообразные расчетные задачи в аналитической, органической, общей химии. Предлагаем порядок разбора любой реакции:

  1. Сначала важно определить у каждого имеющегося элемента степень окисления, используя правила.
  2. Далее определяют те атомы либо ионы, которые поменяли свою степень окисления, будут участвовать в реакции.
  3. Знаками «минус» и «плюс» указывают число отданных и принятых в ходе химической реакции свободных электронов.
  4. Далее между числом всех электронов определяется минимальное общее кратное, то есть целое число, которое без остатка делится на принятые и отданные электроны.
  5. Затем его делят на электроны, участвовавшие в химической реакции.
  6. Далее определяем, какие именно ионы либо атомы восстановительными свойствами обладают, а также определяют окислители.
  7. На завершающем этапе ставят коэффициенты в уравнении.

Применяя способ электронного баланса, расставим коэффициенты в данной схеме реакции:

NaMnO4 + сероводород + серная кислота= S + Mn SO4 +…+…

Алгоритм решения поставленной задачи

Выясним, какие именно должны после взаимодействия образоваться вещества. Так как в реакции уже есть окислитель (им будет марганец) и определен восстановитель (им будет сера), образуются вещества, в которых уже не меняются степени окисления. Так как основная реакция протекала между солью и сильной кислородсодержащей кислотой, то одним из конечных веществ станет вода, а вторым — соль натрия, точнее, сульфат натрия.

Составим теперь схему отдачи и принятия электронов:

— Mn+7 берет 5 e= Mn+2.

Вторая часть схемы:

— S-2 отдает2e= S0

Ставим в исходную реакцию коэффициенты, не забывая при этом суммировать все атомы серы в частях уравнения.

2NaMnO4 + 5H2S + 3H2SO4 = 5S + 2MnSO4 + 8H2O + Na2SO4.

восстановительные реакции

Разбор ОВР с участием перекиси водорода

Применяя алгоритм разбора ОВР, можно составить уравнение протекающей реакции:

перекись водорода + серная кислота + пермагнанат калия = Mn SO4 + кислород + …+…

Степени окисления изменили ион кислорода (в перекиси водорода) и катион марганца в перманганате калия. То есть восстановитель, а также окислитель у нас присутствуют.

Определим, что за вещества еще могут получиться после взаимодействия. Одно из них будет водой, что вполне очевидно, представлена реакция между кислотой и солью. Калий не образовал нового вещества, вторым продуктом станет соль калия, а именно сульфат, так как реакция шла с серной кислотой.

Схема:

2O – отдает 2 электрона и превращается в O20 5

Mn+7 принимает 5 электронов и становится ионом Mn+2 2

Поставим коэффициенты.

5H2O2 + 3H2SO4 + 2KMnO4 = 5O2 + 2Mn SO4 + 8H2O + K2SO4

восстановительные процессы

Пример разбора ОВР с участием хромата калия

Используя способ электронного баланса, составим уравнение с коэффициентами:

FeCl2 + соляная кислота + хромат калия = FeCl3+ CrCl3 + …+…

Степени окисления поменяли железо (в хлориде железа II) и ион хрома в бихромате калия.

Теперь постараемся выяснить, какие еще вещества образуются. Одно может быть солью. Поскольку калий не образовал никакого соединения, следовательно, вторым продуктом будет соль калия, точнее, хлорид, ведь реакция проходила с соляной кислотой.

Составим схему:

Fe+2 отдает e =Fe+3 6 восстановитель,

2Cr+6 принимает 6 e = 2Cr +3 1 окислитель.

Поставим коэффициенты в начальную реакцию:

6K2Cr2O7 + FeCl2 + 14HCl = 7H2O + 6FeCl3 + 2CrCl3 + 2KCl

задачи по химии

Пример разбора ОВР с участием иодида калия

Вооружившись правилами, составим уравнение:

перманганат калия + серная кислота + иодид калия…сульфат марганца + йод +…+…

Степени окисления изменили марганец и йод. То есть восстановитель и окислитель присутствуют.

Теперь выясним,что в итоге у нас образуется. Соединение будет у калия, то есть получим сульфат калия.

Восстановительные процессы протекают у ионов йода.

Составим схему передачи электронов:

— Mn+7 принимает 5 e = Mn+2 2 является окислителем,

— 2I- отдает2 e = I20 5 является восстановителем.

Расставляем коэффициенты в начальную реакцию, не забываем при этом суммировать все атомы серы в данном уравнении.

210KI + KMnO4 + 8H2SO4 = 2MnSO4 + 5I2 + 6K2SO4 + 8H2O

Пример разбора ОВР с участием сульфита натрия

Используя классический метод, составим для схемы уравнение:

— серная кислота + KMnO4 + сульфит натрия… сульфат натрия + сульфат марганца +…+…

После взаимодействия получим соль натрия, воду.

Составим схему:

— Mn+7 принимает 5 e= Mn+2 2,

— S+4 отдает 2 e = S+6 5.

Расставляем коэффициенты в рассматриваемую реакцию, не забываем складывать атомы серы при расстановке коэффициентов.

3H2SO4 + 2KMnO4 + 5Na2SO3 = K2SO4 + 2MnSO4 + 5Na2SO4 + 3H2O.

восстановительные свойства атомов

Пример разбора ОВР с участием азота

Выполним следующее задание. Пользуясь алгоритмом, составим полное уравнение реакции:

Читайте также:  Дистиллированная вода какие ее свойства

— нитрат марганца +азотная кислота+PbO2=HMnO4+Pb(NO3) 2+

Проанализируем, какое вещество еще образуется. Так как реакция проходила между сильным окислителем и солью, значит, веществом будет вода.

Покажем изменение числа электронов:

— Mn+2 отдает 5 e = Mn+7 2 проявляет свойства восстановителя,

— Pb+4 принимает 2 e = Pb+2 5 окислителем.

3. Расставляем коэффициенты в исходную реакцию, обязательно складываем весь азот, имеющийся в левой части исходного уравнения:

— 2Mn(NO3)2 + 6HNO3 + 5PbO2 = 2HMnO4 + 5Pb(NO3)2 + 2H2O.

В данной реакции не проявляются восстановительные свойства азота.

Второй образец окислительно-восстановительной реакции с азотом:

Zn + серная кислота + HNO3= ZnSO4 + NO+…

— Zn0 отдает 2 e = Zn+2 3 будет восстановителем,

N+5принимает 3 e = N+2 2 является окислителем.

Расставляем коэффициенты в заданную реакцию:

3Zn + 3H2SO4 + 2HNO3 = 3ZnSO4 + 2NO + 4H2O.

Значимость окислительно-восстановительных реакций

Самые известные восстановительные реакции — фотосинтез, характерный для растений. Как изменяются восстановительные свойства? Процесс происходит в биосфере, приводит к повышению энергии с помощью внешнего источника. Именно эту энергию и использует для своих нужд человечество. Среди примеров окислительных и восстановительных реакций, связанных с химическими элементами, особое значение имеют превращения соединений азота, углерода, кислорода. Благодаря фотосинтезу земная атмосфера имеет такой состав, который необходим для развития живых организмов. Благодаря фотосинтезу не увеличивается количество углекислого газа в воздушной оболочке, поверхность Земли не перегревается. Растение не только развивается с помощью окислительно-восстановительной реакции, но и образует такие нужные для человека вещества, как кислород, глюкоза. Без данной химической реакции невозможен полноценный круговорот веществ в природе, а также существование органической жизни.

Практическое применение ОВР

Для того чтобы сохранить поверхность металла, необходимо знать, что восстановительными свойствами обладают активные металлы, поэтому можно покрывать поверхность слоем более активного элемента, замедляя при этом процесс химической коррозии. Благодаря наличию окислительно-восстановительных свойств осуществляется очистка и дезинфекция питьевой воды. Ни одну задачу нельзя решить, не расставив правильно в уравнении коэффициенты. Для того чтобы избежать ошибок, важно иметь представление обо всех окислительно-восстановительных параметрах.

Защита от химической коррозии

Особую проблему для жизни и деятельности человека представляет коррозия. В результате данного химического превращения происходит разрушение металла, теряют свои эксплуатационные характеристики детали автомобиля, станков. Для того чтобы исправить подобную проблему, используется протекторная защита, покрытие металла слоем лака либо краски, применение антикоррозионных сплавов. Например, железная поверхность покрывается слоем активного металла — алюминия.

Заключение

Разнообразные восстановительные реакции происходят и в организме человека, обеспечивают нормальную работу пищеварительной системы. Такие основные процессы жизнедеятельности, как брожение, гниение, дыхание, также связаны с восстановительными свойствами. Обладают подобными возможностями все живые существа на нашей планете. Без реакций с отдачей и принятием электронов невозможна добыча полезных ископаемых, промышленное производство аммиака, щелочей, кислот. В аналитической химии все методы объемного анализа основаны именно на окислительно-восстановительных процессах. Борьба с таким неприятным явлением, как химическая коррозия, также основывается на знании этих процессов.

Источник

Какие свойства окислительные или восстановительные

Окислительно-восстановительными называют реакции, которые сопровождаются изменением степеней окисления химических элементов, входящих в состав реагентов.

Окислением называют процесс отдачи электронов атомом, молекулой или ионом, который сопровождается повышением степени окисления.

Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом, который сопровождается понижением степени окисления.

Окислителем называют реагент, который принимает электроны в ходе окислительно-восстановительной реакции. (Легко запомнить: окислитель — грабитель.)

Восстановителем называют реагент, который отдаёт электроны в ходе окислительно-восстановительной реакции.

Окислительно-восстановительные реакции делят на реакции межмолекулярного окисления-восстановления, реакции внутримолекулярного окисления-восстановления, реакции диспропорционирования и реакции конмутации.

Для составления окислительно-восстановительных реакций используют метод электронного баланса.

Составление уравнения окислительно-восстановительной реакции осуществляют в несколько стадий.

  1. Записывают схему уравнения с указанием в левой и правой частях степеней окисления атомов элементов, участвующих в процессах окисления и восстановления.
  2. Определяют число электронов, приобретаемых или отдаваемых атомами или ионами.
  3. Уравнивают число присоединённых и отданных электронов введением множителей, исходя из наименьшего кратного для коэффициентов в процессах окисления и восстановления.
  4. Найденные коэффициенты (их называют основными) подставляют в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Пример 1. Реакция алюминия с серой. Записываем схему реакции и указываем изменение степеней окисления:

Атом серы присоединяет два электрона, изменяя свою степень окисления от 0 до –2. Он является окислителем. Атом алюминия отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 2. Окисление фосфора хлором. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления хлора изменяется от 0 до –1, при этом молекула хлора присоединяет два электрона. Хлор является окислителем.

Атом фосфора отдаёт пять электронов, изменяя свою степень окисления от 0 до +5. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Электронное уравнение для хлора записывают именно так, поскольку окислителем является молекула хлора, состоящая из двух атомов, и каждый из этих атомов изменяет свою степень окисления от 0 до –1. Коэффициент 5 относится к молекуле хлора в левой части уравнения, а количество атомов хлора в правой части уравнения 5 × 2 = 10.

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 3. Восстановление оксида железа (II, III) алюминием. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления железа изменяется от +8/3 до 0, при этом три иона железа (поскольку в исходном оксиде их содержится именно три) присоединяют восемь электронов (3 × 8/3 = 8). Железо является окислителем.

Алюминий отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединенных и отданных электронов:

Электронное уравнение для алюминия записывают именно так, поскольку в состав оксида алюминия входят два атома алюминия. Таким образом, в левой части уравнения основной коэффициент перед оксидом железа (II, III) будет равен 3, а перед алюминием 4 × 2 = 8.

Количество атомов железа в правой части уравнения реакции составит 3 × 3 = 9. Количество молекул оксида алюминия будет равно 8/2 = 4. Окончательно получаем:

Проверяем баланс по кислороду. В левой части уравнения 3 × 4 = 12. В правой части уравнения 4 × 3 = 12. Таким образом, число атомов каждого элемента в отдельности в левой и в правой части химического уравнения равны между собой, и реакция уравнена правильно.

Этот пример наглядно показывает, что дробная степень окисления хотя и не имеет физического смысла, но позволяет правильно уравнять окислительно-восстановительную реакцию.

Читайте также:  Какао какими свойствами обладает

Очень часто окислительно-восстановительные реакции проходят в растворах в нейтральной, кислой или щелочной среде. В этом случае химические элементы, входящие в состав вещества, образующего среду реакции, свою степень окисления не меняют.

Пример 4. Окисление йодида натрия перманганатом калия в среде серной кислоты. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Атом марганца принимает пять электронов, изменяя свою степень окисления от +7 до +2. Перманганат калия является окислителем.

Два йодид-иона отдают два электрона, образуя молекулу I20. Йодид натрия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Найденные коэффициенты подставим в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Серная кислота является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет, но сульфат-анион связывает выделяющиеся в результате реакции катионы калия, натрия и марганца. Подсчитаем число сульфат-ионов в правой части. Оно равно 2 + 1 + 5 = 8. Следовательно, перед серной кислотой следует поставить коэффициент 8. Число атомов водорода в левой части уравнения равно 8 × 2 = 16. Отсюда вычисляем коэффициент для воды: 16/2 = 8.

Таким образом, уравнение реакции будет иметь вид:

Правильность баланса проверяем по кислороду. В левой части его 2 × 4 = 8 (перманганат калия); в правой — 8 × 1 = 8 (вода). Следовательно, уравнение составлено правильно.

Пример 5. Окисление сульфида калия манганатом калия в водной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Ион марганца принимает два электрона, изменяя свою степень окисления от +6 до +4. Манганат калия является окислителем.

Сульфид-ион отдаёт два электрона, образуя молекулу S0. Сульфид калия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Основные коэффициенты в уравнении реакции равны единице:

Вода является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Гидроксид-ионы связывают выделяющиеся в результате реакции катионы калия. Таких катионов четыре (2 × 2), число атомов водорода также 4 (4 × 1), поэтому перед молекулой воды ставим коэффициент два (4/2 = 2):

Пример 6. Окисление аммиака хлоратом калия в щелочной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Хлор принимает шесть электронов, изменяя свою степень окисления от +5 до –1. Хлорат калия является окислителем.

Азот отдаёт восемь электронов, изменяя свою степень окисления от –3 до +5. Аммиак является восстановителем.

Составляем уравнение электронного баланса, уравниваем число присоединённых и отданных электронов введением множителей, сокращаем кратные коэффициенты:

Проставляем найденные основные коэффициенты в уравнение реакции:

Гидроксид калия является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Катионы калия связывают выделяющиеся в результате реакции нитрат-ионы. Таких анионов три. Следовательно, перед гидроксидом калия ставим коэффициент три:

Число атомов водорода в левой части уравнения равно девяти в аммиаке (3 × 3) = 9 и трём в гидроксиде калия (3 × 1), а их общее число 9 + 3 = 12. Следовательно, перед водой ставим коэффициент (12/2) = 6. Окончательно уравнение реакции будет иметь вид:

Убеждаемся ещё раз в правильности расстановки коэффициентов, сравнивая число атомов кислорода в левой и правой его частях. Оно равно 15.

Довольно часто одно и то же вещество одновременно является окислителем и создаёт среду реакции. Такие реакции характерны для концентрированной серной кислоты и азотной кислоты в любой концентрации. Кроме того, в подобные реакции, но в качестве восстановителя, вступают галогенводородные кислоты с сильными окислителями.

Пример 7. Окисление магния разбавленной азотной кислотой. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления азота изменяется от +5 до +1, при этом два атома азота присоединяют восемь электронов. Азотная кислота является окислителем.

Магний отдаёт два электрона, изменяя свою степень окисления от 0 до +2. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 4 × 2 = 8 нитрат-ионов, не изменивших свою степень окисления. Очевидно, что для этого в правую часть уравнения реакции следует добавить ещё 8 молекул HNO3. Тогда общее количество молекул азотной кислоты в правой части уравнения составит 2 + 8 = 10.

В этих молекулах содержатся 10 × 1 = 10 атомов водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Следовательно, перед молекулой воды следует подставить коэффициент 10/2 = 5, и уравнение окончательно будет иметь вид:

Окончательно проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части 10 × 3 = 30. В правой части (2 × 3) × 4 = 24 в нитрате магния, 1 в оксиде азота (I) и 5 × 1 = 5 в молекуле воды. Итого 24 + 1 + 5 = 30. Таким образом, реакция полностью уравнена.

Пример 8. Взаимодействие соляной кислоты с оксидом марганца (IV). Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления марганца изменяется от +4 до +2, при этом марганец присоединяет два электрона. Оксид марганца (IV) является окислителем.

Два хлорид-иона отдают два электрона, образуя молекулу Cl20, хлористый водород является восстановителем.

Составляем электронное уравнение и уравниваем число присоединённых и отданных электронов, сокращаем кратные коэффициенты:

При этом коэффициент 1 изначально относится к двум хлорид-ионам и к одной молекуле Cl2. Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 1 × 2 = 2 хлорид-иона, не изменивших свою степень окисления. Эти хлорид-ионы в окислительно-восстановительной реакции не участвовали. Очевидно, что для этого в правую часть уравнения реакции следует добавить 2 молекулы HCl. Тогда общее количество молекул HCl в правой части уравнения составит 2 + 2 = 4. В этих молекулах будет содержаться 4 × 1 = 4 атома водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Тогда перед молекулой воды следует подставить коэффициент 4/2 = 2, и уравнение в окончательном виде будет иметь вид:

Проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части оно составляет 1 × 2 = 2 в оксиде марганца (IV), а в правой части 2 × 1 = 2 в молекуле воды. Таким образом, реакция полностью уравнена.

Читайте также:  Какими свойствами обладает нектарин

В качестве окислителя могут выступать нейтральные атомы и молекулы, положительно заряженные ионы металлов, сложные ионы и молекулы, содержащие атомы металлов и неметаллов в состоянии положительной степени окисления и др.

Ниже приведены сведения о некоторых наиболее распространенных окислителях, имеющих важное практическое значение.

Кислород. Сильный окислитель, окислительная способность значительно возрастает при нагревании. Кислород взаимодействует непосредственно с большинством простых веществ, кроме галогенов, благородных металлов Ag, Au, Pt и благородных газов, с образованием оксидов:

Взаимодействие натрия с кислородом приводит к пероксиду натрия:

Более активные щелочные металлы (K, Rb, Cs) при взаимодействии с кислородом дают надпероксиды типа ЭО2:

В своих соединениях кислород, как правило, проявляет степень окисления –2. Применяется кислород в химической промышленности, в различных производственных процессах в металлургической промышленности, для получения высоких температур. С участием кислорода идут многочисленные чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие живые организмы, называемые анаэробными, могут обходиться без кислорода.

Реакции, иллюстрирующие окислительные свойства кислорода при его взаимодействии с различными неорганическими веществами, приведены в уроке 14.

Озон. Обладает ещё большей по сравнению с кислородом окислительной способностью. Озон окисляет все металлы, за исключением золота, платины и некоторых других, при этом, как правило, образуются соответствующие высшие оксиды элементов, реже — пероксиды и озониды, например:

Озон окисляет оксиды элементов с промежуточной степенью окисления в высшие оксиды.

Перманганат калия. Является сильным окислителем, широко применяется в лабораторной практике. Характер восстановления перманганата калия зависит от среды, в которой протекает реакция. В кислой среде перманганат калия восстанавливается до солей Mn2+, в нейтральной или слабощелочной — до MnO2, а в сильнощелочной он переходит в манганат-ион MnO42–. Данные переходы описываются следующими уравнениями

Перманганат калия способен окислять сульфиды в сульфаты, нитриты в нитраты, бромиды и йодиды — до брома и йода, соляную кислоту до хлора и т. д.:

Хромат и бихромат калия. Эти соединения широко применяют в качестве окислителей в неорганических и органических синтезах. Взаимные переходы хромат- и бихромат-ионов очень легко протекают в растворах, что можно описать следующим уравнением обратимой реакции:

Соединения хрома (VI) — сильные окислители. В окислительно-восстановительных процессах они переходят в производные Cr (III). В нейтральной среде образуется гидроксид хрома (III), например:

В кислой среде образуются ионы Cr3+:

В щелочной — производные анионного комплекса [Cr(OH)6]3–:

В качестве восстановителя могут выступать нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления, электрический ток на катоде и др.

Ниже приведены сведения о некоторых наиболее распространённых восстановителях, имеющих важное практическое значение.

Углерод. Углерод широко применяют в качестве восстановителя в неорганических синтезах. При этом в качестве продуктов окисления может образовываться углекислый газ, или оксид углерода (II). При восстановлении оксидов металлов могут образовываться свободные металлы, реже — карбиды металлов.

Восстановительные свойства углерод проявляет также в реакции получения водяного газа:

Полученную смесь водорода и оксида углерода (II) широко применяют для синтеза органических соединений.

Оксид углерода (II). Широко применяют в металлургии при восстановлении металлов из их оксидов, например:

Водород. Широко применяют в качестве восстановителя в неорганических синтезах (водородотермия) для получения чистого вольфрама, молибдена, галлия, германия и т. д.:

Тренировочные задания

Используя метод электронного баланса, расставьте коэффициенты, определите окислитель и восстановитель в уравнении реакции, схема которой:

1. Al + H2O + KNO3 + KOH → K[Al(OH)4] + NH3↑.

2. KNO3 + Al → KAlO2 + Al2O3 + N2.

3. Na2O2 + H2SO4 + KMnO4 → O2↑ + MnSO4 + Na2SO4 + K2SO4 + H2O.

4. NaCl + H2SO4 + MnO2 → Cl2 + MnSO4 + Na2SO4 + H2O.

5. NaCl + H2SO4 + KMnO4 → Cl2 + MnSO4 + Na2SO4 + K2SO4 + H2O.

6. KNO2 + H2SO4 + MnO2 → MnSO4 + KNO + H2O.

7. KI + H2SO4 + KMnO4 → I2 + MnSO4 + K2SO4 + H2O.

8. KI + K2Cr2O7 + H2SO4 → I2 + Cr2(SO4)3 + K2SO4 + H2O.

9. C + K2Cr2O7 + H2SO4 → CO2 + Cr2(SO4)3 + K2SO4 + H2O.

10. PbO2 + HNO3 + KI → Pb(NO3)2 + I2 + KNO3 + H2O.

11. PbO2 + HNO3 + Mn(NO3)2 → Pb(NO3)2 + HMnO4 + H2O.

12. NaNO2 + KMnO4 + H2SO4 → NaNO3 + MnSO4 + K2SO4 + H2O.

13. KNO2 + KMnO4 + H2SO4 → KNO3 + MnSO4 + K2SO4 + H2O.

14. KNO2 + K2Cr2O7 + H2SO4 → KNO3 + Cr2(SO4)3 + K2SO4 + H2O.

15. KNO2 + KI + H2SO4 → NO + I2 + K2SO4 + H2O.

16. KNO2 + FeSO4 + H2SO4 → NO + Fe2(SO4)3 + K2SO4 + H2O.

17. Ca3(PO4)2 + C + SiO2 → CaSiO3 + P + CO.

18. Sb + HNO3 → Sb2O5 + NO2 + H2O.

19. H2O2 + H2SO4 + KMnO4 → MnSO4 + O2 + H2O + K2SO4.

20. S + HNO3 → H2SO4 + NO2 + H2O.

21. H2S + HNO3 → H2SO4 + NO2 + H2O.

22. H2S + KMnO4 → MnO2 + S + H2O + KOH.

23. H2S + K2Cr2O7 + H2SO4 → S + Cr2(SO4)3 + K2SO4 + H2O.

24. KMnO4 + Na2SO3 + H2SO4 → MnSO4 + Na2SO4 + K2SO4 + H2O.

25. KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH.

26. KMnO4 + Na2SO3 + KOH → K2MnO4 + Na2SO4 + H2O.

27. K2Cr2O7 + K2SO3 + H2SO4 → Cr2(SO4)3 + K2SO4 + H2O.

28. H2SO4 + C → SO2 + CO2 + H2O.

29. H2SO4 + Zn → ZnSO4 + H2S + H2O.

30. H2SO4 + KBr → SO2 + Br2 + KHSO4 + H2O.

31. H2SO4 + KI → H2S + I2 + K2SO4 + H2O.

32. PbO2 + HCl → PbCl2 + Cl2 + H2O.

33. K2Cr2O7 + HCl → CrCl3 + Cl2 + KCl + H2O.

34. KMnO4 + HCl → MnCl2 + Cl2 + KCl + H2O.

35. KClO3 + HCl → KCl + Cl2 + H2O.

36. HClO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + HCl + H2O.

37. NaBrO3 + NaBr + H2SO4 → Br2 + Na2SO4 + H2O.

38. HNO3 + I2 → HIO3 + NO2 + H2O.

39. HNO3 + I2 → HIO3 + NO + H2O.

40. H2SO4 + HI → I2 + H2S + S + H2O.

41. Fe2(SO4)3 + HI → FeSO4 + I2 + H2SO4.

42. HIO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + I2 + H2O.

43. NaIO3 + NaI + H2SO4 → I2 + Na2SO4 + H2O.

44. KMnO4 + Cu2O + H2SO4 → MnSO4 + CuSO4 + K2SO4 + H2O.

45. HNO3 + Cu2S → CuSO4 + Cu(NO3)2 + NO2 + H2O.

46. H2SO4 + Cu2S → CuSO4 + SO2 + H2O.

47. Ag + HNO3 → AgNO3 + NO + H2O.

48. Zn + HNO3 → Zn(NO3)2 + N2O + H2O.

49. PH3 + KMnO4 + H2SO4 → H3PO4 + MnSO4 + K2SO4 + H2O.

50. FeSO4 + KMnO4 + H2SO4 → Fe2(SO4)3 + MnSO4 + K2SO4 + H2O.

51. H2S + KMnO4 + H2SO4 → S + MnSO4 + K2SO4 + H2O.

52. Ca3P2 + KMnO4 + H2SO4 → CaSO4 + H3PO4 + MnSO4 + K2SO4 + H2O.

Ответы

Источник