Какие свойства не выполняются для алгебраических операций

Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно отно­сительно сложения. Аналогичными свойствами обладают объедине­ние и пересечение множеств.

Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозна­чать символами: * (читается — «звездочка») и о (читается — «кружок»).

Важнейшим свойством алгебраических операций является свойство ассоциативности.

Определение. Алгебраическая операция *, заданная на множествеX, называется ассоциативной, если для любых элементов х, у и z из множества X выполняется равенство

(x*y)*z=x*(y*z).

Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*у*z вместо (х*у)*z и х*(у*z).

Например, ассоциативно сложение натуральных чисел: для любых на­туральных чисел х, у и z выполняется равенство + у) + z = x + (у + z). Ассоциативно сложение рациональных и действительных чисел. По­этому сумму нескольких чисел можно записывать без скобок.

Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х — у) z ≠ х — (у — z). Например, (12 — 7) — 3 ≠ 12 — (7 — 3).

Ассоциативность алгебраической операции * позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но пере­ставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.

Определение. Алгебраическая операция * на множестве X называ­ется коммутативной, если для любых двух элементов х и у из мно­жества X выполняется равенство

х*у = у*х.

Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х · у = у · х. Эти равен­ства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.

Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х — у ≠ у — х. На­пример, 12-7≠7-12.

Если на множестве X заданы две алгебраические операции * и о, то они могут быть связаны друг с другом свойством дистрибутивности.

Определение. Алгебраическая операция оназывается дистрибу­тивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:

1) (х*y)оz = (x o z)*(y o z) и 2) z o(х*у) = (z o х)*(z о у).

Если выполняется только равенство 1), то операцию о называют дистрибутивной справа относительно операции *; если же выполняет­ся только равенство 2), то операцию о называют дистрибутивной слева относительно операции *.

Выясним, в каких случаях различают дистрибутивность справа и слева.

Рассмотрим на множестве натуральных чисел две операции: воз­ведение в степень (она соответствует операции о в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х·у)z — = хz-уz. Как известно из алгебры, полученное равенство справедливо для любых натураль­ных чисел х, у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получа­ем х уz = ху-хz. Но это равенство выполняется не всегда, т.е. опера­ция возведения в степень не является дистрибутивной слева отно­сительно умножения. Такая ситуация является следствием того, что возведение в степень — операция, не обладающая свойством коммутативности.

Если взять сложение и умножение натуральных чисел, то, как из­вестно, умножение дистрибутивно относительно сложения: для лю­бых натуральных чисел х, у и z выполняются равенства

(x+y)·z + x·z + y·z и z·(x+y) = z·x + z·y

А так как умножение коммутативно, то не имеет значения, где писать множитель z — справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.

Выясним роль свойства дистрибутивности в преобразованиях вы­ражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак °. Проиллюстрируем сказанное на при­мере преобразования выражения (x + у)·(z + р). Так как умножение дистрибутивно относительно сложения, то

(x + у)·(z + р)= x·(z + р) + у·(z + р)= (x·z + x·р) + (у·z + y·р).

А поскольку сложение ассоциативно, то последнюю запись можно за­писать без скобок. Следовательно, (x + у)·(z + р)= )=x·z + x·р +у·z + y·р.

Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре ней­тральными и поглощающими.

Определение. Элемент е из множества X называется нейтраль­ным относительно алгебраической операции *, если для любого эле­мента х из множества X выполняются равенства х*е=е*х =х.

Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.

Определение. Элемент р из множества X называется поглощаю­щим относительно алгебраической операции *, если для любого эле­мента х из множества X выполняются равенства х*р=р*х=р.

Если поглощающий элемент относительно алгебраической опера­ции существует, то он единственный.

Так, в множестве целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества выполняются равенства х + 0 = 0 + х = х. Это же число нуль является поглощающим элементом относительно умноже­ния: для любого x из множества верны равенства: х·0 = 0·х = 0.

Как известно, вычитание чисел является операцией, обратной сло­жению. Но чтобы дать определение обратной операции в общем виде, надоопределить понятие сократимой операции.

Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х =а*у и х*а =у*а следует, что х =у.

Например, сократимо сложение натуральных чисел: из равенств а+х=а+у и х+а=у+а следует, что х= у.

Определение. Пусть * — сократимая и коммутативная алгебраи­ческая операция, заданная на множестве X. Тогда операция оназы­вается обратной для операции *, если х о у = z тогда и только тогда, когда у * z = х.

Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х — у тогда и только тогда, когда у + z = х.

Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество целых неотрицательных чисел, которое являет­ся объединением множества натуральных чисел и нуля: = N U{0}. На этом множестве рассматриваются алгебраические операции сло­жения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (, +, •). Ее основ­ные характеристики:

1) Сложение и умножение на множестве ассоциативно и комму­тативно, а умножение дистрибутивно относительно сложения, т. е.:

(V х,у € ) х + у = у + х;

(V х,у € ) х·у = у·х;

Читайте также:  Какими свойствами обладает произведение вектора на число

(V х,у,z € ) (х + у) + z = х + (у + z);

(V х,у,z € ) (х·у)·z = х·(у·z);

(V х,у,z € ) (х +у)·z = х·z +у· z.

2) Сложение и умножение сократимы (исключая сокращение произ­ведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:

х + а= у + а => х = у

х·а = у·а => х = у.

3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:

(V х € ) х + 0 = 0 + х = x:;

(V х € ) х· 0 = 0· x = 0.

Единица является нейтральным элементом относительно умножения:

(V х,у € ) х •1 = 1•x = x.

4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умно­жению (исключая деление на нуль):

x-у = z ó у + z = x

х:у~2 ó у-z = х.

5) Вычитание и деление обладают свойствами:

(a-c)+b, если а≥с

(а+b) – c= a+(b-c), если b≥c

а — (b + с) = b) — с = (a — с) — b, если a ≥ b + с;

(a+b):c = a:c+b:c, если a:c и b:c;

(a:c)·b, если а:с

(а·b) : c= a·(b:c), если b:c

а:(b-с) = (а:b):с= (а:с):b, если a:b и a:c

Названные характеристики алгебры (, +, •) присутствует (явно или неявно) в любом начальном курсе математики.

Упражнения

1. Запишите, используя символы, что сложение и умножение ком­мутативно и ассоциативно на множестве Q рациональных чисел, а умножение дистрибутивно относительно сложения и вычитания.

2.Коммутативны ли следующие алгебраические операции:

а) возведение в степень на множестве N;

6) деление на множестве Q;

в) нахождение наибольшего общего делителя натуральных чисел?

3. Сократимо ли вычитание и деление на множестве Qрациональных чисел?

4.Какое множество является поглощающим элементом относительно пересечения множеств? Ответ обоснуйте.

5.Сформулируйте определение деления как операции, обратной умножению.

6.Выясните, как формулируются свойства сложения и умножения в различных учебниках по математике для начальной школы.

7.Запишите все свойства действий, характеризующих алгебру (, +, •).

53. Основные выводы § 11

Изучив материал данного параграфа, мы познакомились со сле­дующими понятиями:

— алгебраическая операция на множестве;

— множество, замкнутое относительно алгебраической операции;

— частичная алгебраическая операция;

— нейтральный элемент относительно алгебраической операции;

— поглощающий элемент относительно алгебраической операции;

— обратная операция.

Мы выяснили, что алгебраические операции могут обладать свой­ствами:

— коммутативности;

— ассоциативности;

— дистрибутивности (слева и справа);

— сократимости.

Установили, что в начальном курсе математики изучают алгебру (, +, •).

Источник

Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения. Аналогичными свойствами обладают объединение и пересечение множеств.

Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозначать символами: * (читается — «звездочка») и ○ (читается — «кружок»).

Важнейшим свойством алгебраических операций является свойство ассоциативности.

Определение. Алгебраическая операция *, заданная на множестве X, называется ассоциативной, если для любых элементов x,y и z из множества X выполняется равенство

(x*y)*z =x*(y*z).

Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*y*z вместо (x*y)*z и х+(y*z).

Например, ассоциативно сложение натуральных чисел: для любых натуральных чисел х, у и z выполняется равенство (х + у) + z = х + (у + z). Ассоциативно сложение рациональных и действительных чисел. Поэтому сумму нескольких чисел можно записывать без скобок.

Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х -у) – z ≠ х — (у — z). Например, (12 — 7) — 3≠ 12 — (7 — 3).

Ассоциативность алгебраической операции позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но переставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.

Определение. Алгебраическая операция * на множестве X называется коммутативной, если для любых двух элементов х и у из множества X выполняется равенство

х*у =у*х.

Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х∙у = у∙х. Эти равенства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.

Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа хну, для которых х – у ≠ у — х. Например, 12-7 ≠ 7-12.

Если на множестве X заданы две алгебраические операции * и ○, то они могут быть связаны друг с другом свойством дистрибутивности.

Определение. Алгебраическая операция ○ называется дистрибутивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:

1) (х*у) ○ z = (z○ x)*(z○ y) и 2) z○(х*z)=( z○х) *(z○у).

Если выполняется только равенство 1), то операцию ○ называют дистрибутивной справа относительно операции *; если же выполняется только равенство 2), то операцию ○ называют дистрибутивной слева относительно операции *.

Выясним, в каких случаях различают дистрибутивность справа и слева.

Рассмотрим на множестве натуральных чисел две операции возведение в степень (она соответствует операции ○ в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х∙у)z = хz∙уz. Как известно из алгебры, полученное равенство справедливо для любых натуральных чисел х,у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получаем xyz = xy∙xz. Но это равенство выполняется не всегда, т.е. операция возведения в степень не является дистрибутивной слева относительно умножения. Такая ситуация является следствием того, что возведение в степень — операция, не обладающая свойством коммутативности.

Если взять сложение и умножение натуральных чисел, то, как известно, умножение дистрибутивно относительно сложения: для любых натуральных чисел х, у и z выполняются равенства

(x + y) ∙z = x∙z + y∙z и z∙(x + y) = z∙x + z∙y.

А так как умножение коммутативно, то не имеет значения, где писать множитель z — справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.

Выясним роль свойства дистрибутивности в преобразованиях выражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак ○. Проиллюстрируем сказанное на примере преобразования выражения (х + y) ∙ (z + p). Так как умножение дистрибутивно относительно сложения, то

Читайте также:  Какие свойства ионной связи отличают ее от

(x+y) ∙ (z+p) = x∙ (z+p) + y∙ (z+p) = (x∙z+x∙p) + (y∙z+y∙p).

А поскольку сложение ассоциативно, то последнюю запись можно записать без скобок. Следовательно, (x+y) ∙ (z+p) = x∙z+x∙p+y∙z+y∙p.

Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре нейтральными и поглощающими.

Определение. Элемент е из множества X называется нейтральным относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*е =е*х =х.

Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.

Определение. Элемент р из множества X называется поглощающим относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*р =р*х=р.

Если поглощающий элемент относительно алгебраической операции существует, то он единственный.

Так, в множестве Z целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества Z выполняются равенства x + 0 = 0 + x = х. Это же число нуль является поглощающим элементом относительно умножения: для любого х из множества Z верны равенства: х∙0 = 0∙х = 0.

Как известно, вычитание чисел является операцией, обратной сложению. Но чтобы дать определение обратной операции в общем виде, надо определить понятие сократимой операции.

Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х = а*у и х*а = у*а следует, что х =у.

Например, сократимо сложение натуральных чисел: из равенства а+х=а+у и х+а=у+а следует, что х = у.

Определение. Пусть * — сократимая и коммутативная алгебраическая операция, заданная на множестве X. Тогда операция ○ называется обратной для операции *, если х○ у = z тогда и только тогда, когда y*z=x.

Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х — у тогда и только тогда, когда у + z = х.

Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество Z целых неотрицательных чисел, которое является объединением натуральных чисел и нуля: Zo = N {0}. На этом множестве рассматриваются алгебраические операции сложения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (Zo, +, ∙). Ее основные характеристики:

1) Сложение и умножение на множестве Zo ассоциативно и коммутативно, а умножение дистрибутивно относительно сложения, т.е.:

( х, у Zo) x + у=у + х;

( х,y Zo) х∙у = у∙х;

( x,y,z Zo) (x + y) + z = x + (y + z);

( x,y,z Zo) (x∙y) ∙z = x∙ (y∙z)

( x,y,z Zo) (x + y) ∙z = x∙z + y∙z

2) Сложение и умножение сократимы (исключая сокращение произведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:

х+а=у+а х=у

х∙а=у∙а х=у

3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:

( х Zo) х + 0 = 0 + х = х;

( х Zo) x∙0 = 0∙x = 0.

Единица является нейтральным элементом относительно умножения:

( х Zo) х∙1 = l∙x = x.

4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в Zo частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умножению (исключая деление на нуль):

х-у =z <=> у + z = х

х:у = z <=> y∙z = х.

5) Вычитание и деление обладают свойствами:

Названные характеристики алгебры (Zo, +, ∙) присутствует (явно или неявно) в любом начальном курсе математики.

Дата добавления: 2017-03-12; просмотров: 913 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Упражнения

1. Сформулируйте условия, при которых операция, заданная на множестве X:

а) будет алгебраической; б) не будет алгебраической.

2.Объясните, почему сложение и умножение являются алгебраиче­скими операциями на множестве 2 целых чисел, а деление не является.

3.На множестве X={-1,0,1} заданы сложение, умножение и вычитание. Являются ли они алгебраическими на этом множестве?

4.Являются ли алгебраическими операции: сложение, умножение,
деление и вычитание, заданные на множестве X, если:

a) Х— множество четных натуральных чисел;

б) X — множество нечетных натуральных чисел;

в) Х- множество натуральных чисел, кратных 5?

5. Среди следующих высказываний укажите истинные, ответ обос­нуйте:

а) Множество N натуральных чисел замкнуто относительно умножения.

б) Множество Q рациональных чисел замкнуто относительно де­ления (деление на нуль не рассматривается).

в) Множество Zцелых чисел замкнуто относительно вычитания и деления.

г) Множество Zцелых чисел замкнуто относительно вычитания или деления.

6. Являются ли алгебраическими на множестве натуральных чисел следующие операции:

а) возведение в степень;

б) нахождение наибольшего общего делителя двух чисел;

в) нахождение наименьшего общего кратного двух чисел?

7.Дано множество {а, Ь, с}. Составьте множество X всех его подмножеств. На этом множестве X рассмотрите операции пересечения и объединения. Являются ли они алгебраическими?

8.В начальном курсе математики сложение рассматривают сначала на отрезке натуральных чисел от 1 до 9 (включительно), затем на отрезке от 1 до 100, затем от 1 до 1000, Является ли оно алгебраиче­ской операцией на этих множествах?

Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно отно­сительно сложения. Аналогичными свойствами обладают объедине­ние и пересечение множеств.

Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозна­чать символами: * (читается — «звездочка») и о (читается — «кружок»).

Важнейшим свойством алгебраических операций является свойство ассоциативности.

Определение. Алгебраическая операция *, заданная на множествеX, называется ассоциативной, если для любых элементов х, у и z из множества X выполняется равенство

(x*y)*z=x*(y*z).

Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*у*z вместо (х*у)*z и х*(у*z).

Например, ассоциативно сложение натуральных чисел: для любых на­туральных чисел х, у и z выполняется равенство + у) + z = x + (у + z). Ассоциативно сложение рациональных и действительных чисел. По­этому сумму нескольких чисел можно записывать без скобок.

Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х — у) z ≠ х — (у — z). Например, (12 — 7) — 3 ≠ 12 — (7 — 3).

Ассоциативность алгебраической операции * позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но пере­ставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.

Определение. Алгебраическая операция * на множестве X называ­ется коммутативной, если для любых двух элементов х и у из мно­жества X выполняется равенство

х*у = у*х.

Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х · у = у · х. Эти равен­ства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.

Читайте также:  Какие кошки полезные свойства

Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х — у ≠ у — х. На­пример, 12-7≠7-12.

Если на множестве X заданы две алгебраические операции * и о, то они могут быть связаны друг с другом свойством дистрибутивности.

Определение. Алгебраическая операция оназывается дистрибу­тивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:

1) (х*y)оz = (x o z)*(y o z) и 2) z o(х*у) = (z o х)*(z о у).

Если выполняется только равенство 1), то операцию о называют дистрибутивной справа относительно операции *; если же выполняет­ся только равенство 2), то операцию о называют дистрибутивной слева относительно операции *.

Выясним, в каких случаях различают дистрибутивность справа и слева.

Рассмотрим на множестве натуральных чисел две операции: воз­ведение в степень (она соответствует операции о в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х·у)z — = хz-уz. Как известно из алгебры, полученное равенство справедливо для любых натураль­ных чисел х, у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получа­ем х уz = ху-хz. Но это равенство выполняется не всегда, т.е. опера­ция возведения в степень не является дистрибутивной слева отно­сительно умножения. Такая ситуация является следствием того, что возведение в степень — операция, не обладающая свойством коммутативности.

Если взять сложение и умножение натуральных чисел, то, как из­вестно, умножение дистрибутивно относительно сложения: для лю­бых натуральных чисел х, у и z выполняются равенства

(x+y)·z + x·z + y·z и z·(x+y) = z·x + z·y

А так как умножение коммутативно, то не имеет значения, где писать множитель z — справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.

Выясним роль свойства дистрибутивности в преобразованиях вы­ражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак °. Проиллюстрируем сказанное на при­мере преобразования выражения (x + у)·(z + р). Так как умножение дистрибутивно относительно сложения, то

(x + у)·(z + р)= x·(z + р) + у·(z + р)= (x·z + x·р) + (у·z + y·р).

А поскольку сложение ассоциативно, то последнюю запись можно за­писать без скобок. Следовательно, (x + у)·(z + р)= )=x·z + x·р +у·z + y·р.

Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре ней­тральными и поглощающими.

Определение. Элемент е из множества X называется нейтраль­ным относительно алгебраической операции *, если для любого эле­мента х из множества X выполняются равенства х*е=е*х =х.

Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.

Определение. Элемент р из множества X называется поглощаю­щим относительно алгебраической операции *, если для любого эле­мента х из множества X выполняются равенства х*р=р*х=р.

Если поглощающий элемент относительно алгебраической опера­ции существует, то он единственный.

Так, в множестве целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества выполняются равенства х + 0 = 0 + х = х. Это же число нуль является поглощающим элементом относительно умноже­ния: для любого x из множества верны равенства: х·0 = 0·х = 0.

Как известно, вычитание чисел является операцией, обратной сло­жению. Но чтобы дать определение обратной операции в общем виде, надоопределить понятие сократимой операции.

Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х =а*у и х*а =у*а следует, что х =у.

Например, сократимо сложение натуральных чисел: из равенств а+х=а+у и х+а=у+а следует, что х= у.

Определение. Пусть * — сократимая и коммутативная алгебраи­ческая операция, заданная на множестве X. Тогда операция оназы­вается обратной для операции *, если х о у = z тогда и только тогда, когда у * z = х.

Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х — у тогда и только тогда, когда у + z = х.

Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество целых неотрицательных чисел, которое являет­ся объединением множества натуральных чисел и нуля: = N U{0}. На этом множестве рассматриваются алгебраические операции сло­жения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (, +, •). Ее основ­ные характеристики:

1) Сложение и умножение на множестве ассоциативно и комму­тативно, а умножение дистрибутивно относительно сложения, т. е.:

(V х,у € ) х + у = у + х;

(V х,у € ) х·у = у·х;

(V х,у,z € ) (х + у) + z = х + (у + z);

(V х,у,z € ) (х·у)·z = х·(у·z);

(V х,у,z € ) (х +у)·z = х·z +у· z.

2) Сложение и умножение сократимы (исключая сокращение произ­ведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:

х + а= у + а => х = у

х·а = у·а => х = у.

3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:

(V х € ) х + 0 = 0 + х = x:;

(V х € ) х· 0 = 0· x = 0.

Единица является нейтральным элементом относительно умножения:

(V х,у € ) х •1 = 1•x = x.

4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умно­жению (исключая деление на нуль):

x-у = z ó у + z = x

х:у~2 ó у-z = х.

5) Вычитание и деление обладают свойствами:

(a-c)+b, если а≥с

(а+b) – c= a+(b-c), если b≥c

а — (b + с) = b) — с = (a — с) — b, если a ≥ b + с;

(a+b):c = a:c+b:c, если a:c и b:c;

(a:c)·b, если а:с

(а·b) : c= a·(b:c), если b:c

а:(b-с) = (а:b):с= (а:с):b, если a:b и a:c

Названные характеристики алгебры (, +, •) присутствует (явно или неявно) в любом начальном курсе математики.

Дата добавления: 2014-01-06; Просмотров: 8567; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник