Какие свойства не выполняются для алгебраических операций
Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения. Аналогичными свойствами обладают объединение и пересечение множеств.
Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозначать символами: * (читается — «звездочка») и о (читается — «кружок»).
Важнейшим свойством алгебраических операций является свойство ассоциативности.
Определение. Алгебраическая операция *, заданная на множествеX, называется ассоциативной, если для любых элементов х, у и z из множества X выполняется равенство
(x*y)*z=x*(y*z).
Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*у*z вместо (х*у)*z и х*(у*z).
Например, ассоциативно сложение натуральных чисел: для любых натуральных чисел х, у и z выполняется равенство (х + у) + z = x + (у + z). Ассоциативно сложение рациональных и действительных чисел. Поэтому сумму нескольких чисел можно записывать без скобок.
Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х — у) — z ≠ х — (у — z). Например, (12 — 7) — 3 ≠ 12 — (7 — 3).
Ассоциативность алгебраической операции * позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но переставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.
Определение. Алгебраическая операция * на множестве X называется коммутативной, если для любых двух элементов х и у из множества X выполняется равенство
х*у = у*х.
Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х · у = у · х. Эти равенства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.
Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х — у ≠ у — х. Например, 12-7≠7-12.
Если на множестве X заданы две алгебраические операции * и о, то они могут быть связаны друг с другом свойством дистрибутивности.
Определение. Алгебраическая операция оназывается дистрибутивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:
1) (х*y)оz = (x o z)*(y o z) и 2) z o(х*у) = (z o х)*(z о у).
Если выполняется только равенство 1), то операцию о называют дистрибутивной справа относительно операции *; если же выполняется только равенство 2), то операцию о называют дистрибутивной слева относительно операции *.
Выясним, в каких случаях различают дистрибутивность справа и слева.
Рассмотрим на множестве натуральных чисел две операции: возведение в степень (она соответствует операции о в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х·у)z — = хz-уz. Как известно из алгебры, полученное равенство справедливо для любых натуральных чисел х, у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получаем х уz = ху-хz. Но это равенство выполняется не всегда, т.е. операция возведения в степень не является дистрибутивной слева относительно умножения. Такая ситуация является следствием того, что возведение в степень — операция, не обладающая свойством коммутативности.
Если взять сложение и умножение натуральных чисел, то, как известно, умножение дистрибутивно относительно сложения: для любых натуральных чисел х, у и z выполняются равенства
(x+y)·z + x·z + y·z и z·(x+y) = z·x + z·y
А так как умножение коммутативно, то не имеет значения, где писать множитель z — справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.
Выясним роль свойства дистрибутивности в преобразованиях выражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак °. Проиллюстрируем сказанное на примере преобразования выражения (x + у)·(z + р). Так как умножение дистрибутивно относительно сложения, то
(x + у)·(z + р)= x·(z + р) + у·(z + р)= (x·z + x·р) + (у·z + y·р).
А поскольку сложение ассоциативно, то последнюю запись можно записать без скобок. Следовательно, (x + у)·(z + р)= )=x·z + x·р +у·z + y·р.
Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре нейтральными и поглощающими.
Определение. Элемент е из множества X называется нейтральным относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*е=е*х =х.
Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.
Определение. Элемент р из множества X называется поглощающим относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*р=р*х=р.
Если поглощающий элемент относительно алгебраической операции существует, то он единственный.
Так, в множестве Zо целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества Zо выполняются равенства х + 0 = 0 + х = х. Это же число нуль является поглощающим элементом относительно умножения: для любого x из множества Zо верны равенства: х·0 = 0·х = 0.
Как известно, вычитание чисел является операцией, обратной сложению. Но чтобы дать определение обратной операции в общем виде, надоопределить понятие сократимой операции.
Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х =а*у и х*а =у*а следует, что х =у.
Например, сократимо сложение натуральных чисел: из равенств а+х=а+у и х+а=у+а следует, что х= у.
Определение. Пусть * — сократимая и коммутативная алгебраическая операция, заданная на множестве X. Тогда операция оназывается обратной для операции *, если х о у = z тогда и только тогда, когда у * z = х.
Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х — у тогда и только тогда, когда у + z = х.
Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество Zо целых неотрицательных чисел, которое является объединением множества натуральных чисел и нуля: Zо = N U{0}. На этом множестве рассматриваются алгебраические операции сложения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (Zо, +, •). Ее основные характеристики:
1) Сложение и умножение на множестве Zоассоциативно и коммутативно, а умножение дистрибутивно относительно сложения, т. е.:
(V х,у € Zо) х + у = у + х;
(V х,у € Zо) х·у = у·х;
(V х,у,z € Zо) (х + у) + z = х + (у + z);
(V х,у,z € Zо) (х·у)·z = х·(у·z);
(V х,у,z € Zо) (х +у)·z = х·z +у· z.
2) Сложение и умножение сократимы (исключая сокращение произведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:
х + а= у + а => х = у
х·а = у·а => х = у.
3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:
(V х € Zо) х + 0 = 0 + х = x:;
(V х € Zо) х· 0 = 0· x = 0.
Единица является нейтральным элементом относительно умножения:
(V х,у € Zо) х •1 = 1•x = x.
4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в Zо частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умножению (исключая деление на нуль):
x-у = z ó у + z = x
х:у~2 ó у-z = х.
5) Вычитание и деление обладают свойствами:
(a-c)+b, если а≥с
(а+b) – c= a+(b-c), если b≥c
а — (b + с) = (а — b) — с = (a — с) — b, если a ≥ b + с;
(a+b):c = a:c+b:c, если a:c и b:c;
(a:c)·b, если а:с
(а·b) : c= a·(b:c), если b:c
а:(b-с) = (а:b):с= (а:с):b, если a:b и a:c
Названные характеристики алгебры (Zо, +, •) присутствует (явно или неявно) в любом начальном курсе математики.
Упражнения
1. Запишите, используя символы, что сложение и умножение коммутативно и ассоциативно на множестве Q рациональных чисел, а умножение дистрибутивно относительно сложения и вычитания.
2.Коммутативны ли следующие алгебраические операции:
а) возведение в степень на множестве N;
6) деление на множестве Q;
в) нахождение наибольшего общего делителя натуральных чисел?
3. Сократимо ли вычитание и деление на множестве Qрациональных чисел?
4.Какое множество является поглощающим элементом относительно пересечения множеств? Ответ обоснуйте.
5.Сформулируйте определение деления как операции, обратной умножению.
6.Выясните, как формулируются свойства сложения и умножения в различных учебниках по математике для начальной школы.
7.Запишите все свойства действий, характеризующих алгебру (Zо, +, •).
53. Основные выводы § 11
Изучив материал данного параграфа, мы познакомились со следующими понятиями:
— алгебраическая операция на множестве;
— множество, замкнутое относительно алгебраической операции;
— частичная алгебраическая операция;
— нейтральный элемент относительно алгебраической операции;
— поглощающий элемент относительно алгебраической операции;
— обратная операция.
Мы выяснили, что алгебраические операции могут обладать свойствами:
— коммутативности;
— ассоциативности;
— дистрибутивности (слева и справа);
— сократимости.
Установили, что в начальном курсе математики изучают алгебру (Zо, +, •).
Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения. Аналогичными свойствами обладают объединение и пересечение множеств.
Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозначать символами: * (читается — «звездочка») и ○ (читается — «кружок»).
Важнейшим свойством алгебраических операций является свойство ассоциативности.
Определение. Алгебраическая операция *, заданная на множестве X, называется ассоциативной, если для любых элементов x,y и z из множества X выполняется равенство
(x*y)*z =x*(y*z).
Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*y*z вместо (x*y)*z и х+(y*z).
Например, ассоциативно сложение натуральных чисел: для любых натуральных чисел х, у и z выполняется равенство (х + у) + z = х + (у + z). Ассоциативно сложение рациональных и действительных чисел. Поэтому сумму нескольких чисел можно записывать без скобок.
Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х -у) – z ≠ х — (у — z). Например, (12 — 7) — 3≠ 12 — (7 — 3).
Ассоциативность алгебраической операции позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но переставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.
Определение. Алгебраическая операция * на множестве X называется коммутативной, если для любых двух элементов х и у из множества X выполняется равенство
х*у =у*х.
Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х∙у = у∙х. Эти равенства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.
Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа хну, для которых х – у ≠ у — х. Например, 12-7 ≠ 7-12.
Если на множестве X заданы две алгебраические операции * и ○, то они могут быть связаны друг с другом свойством дистрибутивности.
Определение. Алгебраическая операция ○ называется дистрибутивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:
1) (х*у) ○ z = (z○ x)*(z○ y) и 2) z○(х*z)=( z○х) *(z○у).
Если выполняется только равенство 1), то операцию ○ называют дистрибутивной справа относительно операции *; если же выполняется только равенство 2), то операцию ○ называют дистрибутивной слева относительно операции *.
Выясним, в каких случаях различают дистрибутивность справа и слева.
Рассмотрим на множестве натуральных чисел две операции возведение в степень (она соответствует операции ○ в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х∙у)z = хz∙уz. Как известно из алгебры, полученное равенство справедливо для любых натуральных чисел х,у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получаем xyz = xy∙xz. Но это равенство выполняется не всегда, т.е. операция возведения в степень не является дистрибутивной слева относительно умножения. Такая ситуация является следствием того, что возведение в степень — операция, не обладающая свойством коммутативности.
Если взять сложение и умножение натуральных чисел, то, как известно, умножение дистрибутивно относительно сложения: для любых натуральных чисел х, у и z выполняются равенства
(x + y) ∙z = x∙z + y∙z и z∙(x + y) = z∙x + z∙y.
А так как умножение коммутативно, то не имеет значения, где писать множитель z — справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.
Выясним роль свойства дистрибутивности в преобразованиях выражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак ○. Проиллюстрируем сказанное на примере преобразования выражения (х + y) ∙ (z + p). Так как умножение дистрибутивно относительно сложения, то
(x+y) ∙ (z+p) = x∙ (z+p) + y∙ (z+p) = (x∙z+x∙p) + (y∙z+y∙p).
А поскольку сложение ассоциативно, то последнюю запись можно записать без скобок. Следовательно, (x+y) ∙ (z+p) = x∙z+x∙p+y∙z+y∙p.
Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре нейтральными и поглощающими.
Определение. Элемент е из множества X называется нейтральным относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*е =е*х =х.
Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.
Определение. Элемент р из множества X называется поглощающим относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*р =р*х=р.
Если поглощающий элемент относительно алгебраической операции существует, то он единственный.
Так, в множестве Z целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества Z выполняются равенства x + 0 = 0 + x = х. Это же число нуль является поглощающим элементом относительно умножения: для любого х из множества Z верны равенства: х∙0 = 0∙х = 0.
Как известно, вычитание чисел является операцией, обратной сложению. Но чтобы дать определение обратной операции в общем виде, надо определить понятие сократимой операции.
Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х = а*у и х*а = у*а следует, что х =у.
Например, сократимо сложение натуральных чисел: из равенства а+х=а+у и х+а=у+а следует, что х = у.
Определение. Пусть * — сократимая и коммутативная алгебраическая операция, заданная на множестве X. Тогда операция ○ называется обратной для операции *, если х○ у = z тогда и только тогда, когда y*z=x.
Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х — у тогда и только тогда, когда у + z = х.
Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество Z целых неотрицательных чисел, которое является объединением натуральных чисел и нуля: Zo = N {0}. На этом множестве рассматриваются алгебраические операции сложения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (Zo, +, ∙). Ее основные характеристики:
1) Сложение и умножение на множестве Zo ассоциативно и коммутативно, а умножение дистрибутивно относительно сложения, т.е.:
( х, у Zo) x + у=у + х;
( х,y Zo) х∙у = у∙х;
( x,y,z Zo) (x + y) + z = x + (y + z);
( x,y,z Zo) (x∙y) ∙z = x∙ (y∙z)
( x,y,z Zo) (x + y) ∙z = x∙z + y∙z
2) Сложение и умножение сократимы (исключая сокращение произведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:
х+а=у+а х=у
х∙а=у∙а х=у
3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:
( х Zo) х + 0 = 0 + х = х;
( х Zo) x∙0 = 0∙x = 0.
Единица является нейтральным элементом относительно умножения:
( х Zo) х∙1 = l∙x = x.
4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в Zo частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умножению (исключая деление на нуль):
х-у =z <=> у + z = х
х:у = z <=> y∙z = х.
5) Вычитание и деление обладают свойствами:
Названные характеристики алгебры (Zo, +, ∙) присутствует (явно или неявно) в любом начальном курсе математики.
Дата добавления: 2017-03-12; просмотров: 913 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org — Контакты — Последнее добавление
КАТЕГОРИИ:
Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)
Упражнения
1. Сформулируйте условия, при которых операция, заданная на множестве X:
а) будет алгебраической; б) не будет алгебраической.
2.Объясните, почему сложение и умножение являются алгебраическими операциями на множестве 2 целых чисел, а деление не является.
3.На множестве X={-1,0,1} заданы сложение, умножение и вычитание. Являются ли они алгебраическими на этом множестве?
4.Являются ли алгебраическими операции: сложение, умножение,
деление и вычитание, заданные на множестве X, если:
a) Х— множество четных натуральных чисел;
б) X — множество нечетных натуральных чисел;
в) Х- множество натуральных чисел, кратных 5?
5. Среди следующих высказываний укажите истинные, ответ обоснуйте:
а) Множество N натуральных чисел замкнуто относительно умножения.
б) Множество Q рациональных чисел замкнуто относительно деления (деление на нуль не рассматривается).
в) Множество Zцелых чисел замкнуто относительно вычитания и деления.
г) Множество Zцелых чисел замкнуто относительно вычитания или деления.
6. Являются ли алгебраическими на множестве натуральных чисел следующие операции:
а) возведение в степень;
б) нахождение наибольшего общего делителя двух чисел;
в) нахождение наименьшего общего кратного двух чисел?
7.Дано множество {а, Ь, с}. Составьте множество X всех его подмножеств. На этом множестве X рассмотрите операции пересечения и объединения. Являются ли они алгебраическими?
8.В начальном курсе математики сложение рассматривают сначала на отрезке натуральных чисел от 1 до 9 (включительно), затем на отрезке от 1 до 100, затем от 1 до 1000, Является ли оно алгебраической операцией на этих множествах?
Известно, что сложение и умножение чисел обладает свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения. Аналогичными свойствами обладают объединение и пересечение множеств.
Рассмотрим свойства алгебраических операций, определив их в общем виде. При этом условимся алгебраические операции обозначать символами: * (читается — «звездочка») и о (читается — «кружок»).
Важнейшим свойством алгебраических операций является свойство ассоциативности.
Определение. Алгебраическая операция *, заданная на множествеX, называется ассоциативной, если для любых элементов х, у и z из множества X выполняется равенство
(x*y)*z=x*(y*z).
Если операция * обладает свойством ассоциативности, то можно опускать скобки и писать x*у*z вместо (х*у)*z и х*(у*z).
Например, ассоциативно сложение натуральных чисел: для любых натуральных чисел х, у и z выполняется равенство (х + у) + z = x + (у + z). Ассоциативно сложение рациональных и действительных чисел. Поэтому сумму нескольких чисел можно записывать без скобок.
Существуют алгебраические операции, не обладающие свойством ассоциативности. Так, не является ассоциативным вычитание целых чисел: существуют целые числа х, у и z, для которых (х — у) — z ≠ х — (у — z). Например, (12 — 7) — 3 ≠ 12 — (7 — 3).
Ассоциативность алгебраической операции * позволяет записывать без скобок все выражения, содержащие лишь эту операцию, но переставлять входящие в это выражение элементы, вообще говоря, нельзя. Перестановка элементов возможна лишь в случае, когда операция * коммутативна.
Определение. Алгебраическая операция * на множестве X называется коммутативной, если для любых двух элементов х и у из множества X выполняется равенство
х*у = у*х.
Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х · у = у · х. Эти равенства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.
Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х — у ≠ у — х. Например, 12-7≠7-12.
Если на множестве X заданы две алгебраические операции * и о, то они могут быть связаны друг с другом свойством дистрибутивности.
Определение. Алгебраическая операция оназывается дистрибутивной относительно алгебраической операции *, если для любых элементов х, у и z из множества X выполняются равенства:
1) (х*y)оz = (x o z)*(y o z) и 2) z o(х*у) = (z o х)*(z о у).
Если выполняется только равенство 1), то операцию о называют дистрибутивной справа относительно операции *; если же выполняется только равенство 2), то операцию о называют дистрибутивной слева относительно операции *.
Выясним, в каких случаях различают дистрибутивность справа и слева.
Рассмотрим на множестве натуральных чисел две операции: возведение в степень (она соответствует операции о в равенствах 1 и 2) и умножение (она соответствует операции * в равенствах 1 и 2). Тогда, согласно равенству 1, имеем: (х·у)z — = хz-уz. Как известно из алгебры, полученное равенство справедливо для любых натуральных чисел х, у и z, т.е. возведение в степень дистрибутивно справа относительно умножения. В соответствии с равенством 2, получаем х уz = ху-хz. Но это равенство выполняется не всегда, т.е. операция возведения в степень не является дистрибутивной слева относительно умножения. Такая ситуация является следствием того, что возведение в степень — операция, не обладающая свойством коммутативности.
Если взять сложение и умножение натуральных чисел, то, как известно, умножение дистрибутивно относительно сложения: для любых натуральных чисел х, у и z выполняются равенства
(x+y)·z + x·z + y·z и z·(x+y) = z·x + z·y
А так как умножение коммутативно, то не имеет значения, где писать множитель z — справа от суммы х + у или слева от нее. Поэтому в школьном курсе математики не различают дистрибутивность слева и справа, а говорят просто о дистрибутивности умножения относительно сложения.
Выясним роль свойства дистрибутивности в преобразованиях выражений. Если операция о дистрибутивна относительно операции * и обе операции ассоциативны, то в любом выражении, содержащем лишь эти две операции, можно раскрыть все скобки, перед которыми (или за которыми) стоит знак °. Проиллюстрируем сказанное на примере преобразования выражения (x + у)·(z + р). Так как умножение дистрибутивно относительно сложения, то
(x + у)·(z + р)= x·(z + р) + у·(z + р)= (x·z + x·р) + (у·z + y·р).
А поскольку сложение ассоциативно, то последнюю запись можно записать без скобок. Следовательно, (x + у)·(z + р)= )=x·z + x·р +у·z + y·р.
Часто в множестве, на котором рассматривается алгебраическая операция, выделяются особые элементы, называемые в алгебре нейтральными и поглощающими.
Определение. Элемент е из множества X называется нейтральным относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*е=е*х =х.
Доказано, что если нейтральный элемент относительно алгебраической операции существует, то он единственный.
Определение. Элемент р из множества X называется поглощающим относительно алгебраической операции *, если для любого элемента х из множества X выполняются равенства х*р=р*х=р.
Если поглощающий элемент относительно алгебраической операции существует, то он единственный.
Так, в множестве Zо целых неотрицательных чисел нуль является нейтральным элементом относительно сложения, поскольку для любого х из множества Zо выполняются равенства х + 0 = 0 + х = х. Это же число нуль является поглощающим элементом относительно умножения: для любого x из множества Zо верны равенства: х·0 = 0·х = 0.
Как известно, вычитание чисел является операцией, обратной сложению. Но чтобы дать определение обратной операции в общем виде, надоопределить понятие сократимой операции.
Определение. Алгебраическая операция *, заданная на множестве X, называется сократимой, если из условий а*х =а*у и х*а =у*а следует, что х =у.
Например, сократимо сложение натуральных чисел: из равенств а+х=а+у и х+а=у+а следует, что х= у.
Определение. Пусть * — сократимая и коммутативная алгебраическая операция, заданная на множестве X. Тогда операция оназывается обратной для операции *, если х о у = z тогда и только тогда, когда у * z = х.
Тот факт, что вычитание на множестве целых чисел есть операция, обратная сложению, означает: z = х — у тогда и только тогда, когда у + z = х.
Множество X с заданными на нем алгебраическими операциями принято называть алгеброй. В начальном курсе математики в основном изучают множество Zо целых неотрицательных чисел, которое является объединением множества натуральных чисел и нуля: Zо = N U{0}. На этом множестве рассматриваются алгебраические операции сложения и умножения. Используя язык современной математики, можно сказать, что в начальной школе изучают алгебру (Zо, +, •). Ее основные характеристики:
1) Сложение и умножение на множестве Zоассоциативно и коммутативно, а умножение дистрибутивно относительно сложения, т. е.:
(V х,у € Zо) х + у = у + х;
(V х,у € Zо) х·у = у·х;
(V х,у,z € Zо) (х + у) + z = х + (у + z);
(V х,у,z € Zо) (х·у)·z = х·(у·z);
(V х,у,z € Zо) (х +у)·z = х·z +у· z.
2) Сложение и умножение сократимы (исключая сокращение произведения на нуль), т.е. для любых целых неотрицательных чисел х,у и а справедливы утверждения:
х + а= у + а => х = у
х·а = у·а => х = у.
3) Нуль является нейтральным элементом относительно сложения и поглощающим относительно умножения:
(V х € Zо) х + 0 = 0 + х = x:;
(V х € Zо) х· 0 = 0· x = 0.
Единица является нейтральным элементом относительно умножения:
(V х,у € Zо) х •1 = 1•x = x.
4) Сократимость сложения и умножения целых неотрицательных чисел позволяет определить в Zо частичные алгебраические операции вычитания и деления как обратные соответственно сложению и умножению (исключая деление на нуль):
x-у = z ó у + z = x
х:у~2 ó у-z = х.
5) Вычитание и деление обладают свойствами:
(a-c)+b, если а≥с
(а+b) – c= a+(b-c), если b≥c
а — (b + с) = (а — b) — с = (a — с) — b, если a ≥ b + с;
(a+b):c = a:c+b:c, если a:c и b:c;
(a:c)·b, если а:с
(а·b) : c= a·(b:c), если b:c
а:(b-с) = (а:b):с= (а:с):b, если a:b и a:c
Названные характеристики алгебры (Zо, +, •) присутствует (явно или неявно) в любом начальном курсе математики.
Дата добавления: 2014-01-06; Просмотров: 8567; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Рекомендуемые страницы:
Читайте также: