Какие свойства металлов обусловлены металлической связью

Металли́ческая связь — химическая связь между атомами в металлическом кристалле, возникающая за счёт перекрытия (обобществления) их валентных электронов. Металлическая связь описывается многими физическими свойствами металлов, такими как прочность, пластичность, теплопроводность, удельное электрическое сопротивление и проводимость, непрозрачность и блеск[1][2][3][4].
Механизм металлической связи[править | править код]
В узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа, движутся электроны проводимости, происходящие из атомов металлов при образовании ионов. Эти электроны играют роль «цемента», удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Когда металл принимает какую-либо форму или растягивается, он не разрушается, потому что ионы в его кристаллической структуре довольно легко смещаются относительно друг друга[5]. Силы связи не локализованы и не направлены. В металлах в большинстве случаев проявляются высокие координационные числа (например, 12 или 8).
Рис. 1. Расположение ионов в кристалле щелочного металла
Так, щелочные металлы кристаллизуются в кубической объёмно-центрированной решётке, и каждый положительно заряженный ион щелочного металла имеет в кристалле по восемь ближайших соседей — положительно заряженных ионов щелочного металла (рис. 1). Кулоновское отталкивание одноимённо заряженных частиц (ионов) компенсируется электростатическим притяжением к электронам связывающих звеньев, имеющих форму искажённого сплющенного октаэдра — квадратной бипирамиды, высота которой и рёбра базиса равны величине постоянной решётки aw кристалла щелочного металла (рис. 2).
Связывающие электроны становятся общими для системы из шести положительных ионов щелочных металлов и удерживают последние от кулоновского отталкивания.
Величина постоянной трансляционной решётки aw кристалла щелочного металла значительно превышает длину ковалентной связи молекулы щелочного металла, поэтому принято считать, что электроны в металле находятся в свободном состоянии:
Щелочной металл | Li | Na | K | Rb | Cs |
---|---|---|---|---|---|
Постоянная решётки aw, Å[6] | 3,502 | 4,282 | 5,247 | 5,690 | 6,084 |
Длина ковалентной связи для Me2, Å[7] | 2,67 | 3,08 | 3,92 | 4,10 | 4,30 |
Математическое построение, связанное со свойствами свободных электронов в металле, обычно отождествляют с «поверхностью Ферми», которую следует рассматривать как геометрическое место в k-пространстве, где пребывают электроны, обеспечивая основное свойство металла — проводить электрический ток[8]. Таким образом, электрический ток в металлах — это движение сорванных с орбитального радиуса электронов в поле положительно заряженных ионов, находящихся в узлах кристаллической решётки металла. Выход и вход свободных электронов в связывающее звено кристалла осуществляется через точки «0», равноудалённые от положительных ионов атомов (рис. 2).
Свободное движение электронов в металле подтверждено в 1916 году опытом Толмена и Стюарта по резкому торможению быстро вращающейся катушки с проводом — свободные электроны продолжали двигаться по инерции, в результате чего гальванометр регистрировал импульс электрического тока. Свободное движение электронов в металле обусловливает высокую теплопроводность металла и склонность металлов к термоэлектронной эмиссии, происходящей при умеренной температуре.
Колебание ионов кристаллической решётки создаёт сопротивление движению электронов по металлу, сопровождающееся разогревом металла. В настоящее время важнейшим признаком металлов считается положительный температурный коэффициент электрической проводимости, то есть понижение проводимости с ростом температуры. С понижением температуры электросопротивление металлов уменьшается, вследствие уменьшения колебаний ионов в кристаллической решётке. В процессе исследования свойств материи при низких температурах Камерлинг-Оннес открывает явление сверхпроводимости. В 1911 году ему удаётся обнаружить уменьшение электросопротивления ртути при температуре кипения жидкого гелия (4,2 К) до нуля. В 1913 году Камерлинг-Оннесу присуждается Нобелевская премия по физике со следующей формулировкой: «За исследование свойств веществ при низких температурах, которые привели к производству жидкого гелия».
Однако теория сверхпроводимости была создана позднее. В её основе лежит концепция куперовской электронной пары — коррелированного состояния связывающих электронов с противоположными спинамии и импульсами, и, следовательно, сверхпроводимость можно рассматривать как сверхтекучесть электронного газа, состоящего из куперовских пар электронов, через ионную кристаллическую решётку. В 1972 году авторам теории БКШ — Бардину, Куперу и Шрифферу присуждена Нобелевская премия по физике «За создание теории сверхпроводимости, обычно называемой БКШ-теорией».
Характерные кристаллические решётки[править | править код]
Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.
В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.
В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt, Rh, γ-Fe, Cu, α-Co и др.
В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.
Другие свойства[править | править код]
Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Многие металлы обладают высокой твёрдостью, например хром, молибден, тантал, вольфрам и др. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.
Примечания[править | править код]
Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.
Механизм металлической связи
Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены.
Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. Если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.
Характерные кристаллические решётки
Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.
В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.
В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.
В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.
Другие свойства
Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.
Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой – металлической связью.
Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.
Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.
Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всему образцу с большой скоростью.
Становится понятной и электрическая проводимость металлов. Если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала: этот поток электронов, движущихся в одном направлении, и представляет собой всем знакомый электрический ток.
Сегодня разберем урок химии 10 — Металлы. Общая характеристика. Металлическая связь. Физические и химические свойства, методы получения. Коррозия металлов. Как обещал, даю ответы к тестовым заданиям урока химии 9: 1-3, 2-2, 3-2, 4-2, 5-3, 6-1, 7-1, 8-2, 9-4, 10-2, 11-2, 12-2, 13-2, 14-3, 15-1, 16-1, 17-1, 18-1, 19-4, 20-3, 21-3, 22-2, 23-1, 24-4, 25-1.
Теперь перейдем к уроку химии 10.
Общая характеристика. Из всех известных в настоящее время элементов около 80% относятся к металлам: s-элементы I и II групп, все d- и f- элементы и ряд p-элементов главных подгрупп периодической системы. Наиболее типичные металлы расположены в начале периодов (кроме первого). Главной особенностью элементов-металлов является наличие у них на внешних энергетических уровнях небольшого числа электронов.(1,2,3).
В природе металлы встречаются как в свободном виде, так и в виде соединений. В свободном виде существуют химически менее активные, трудно окисляющиеся кислородом металлы: платина, золото, серебро, ртуть, медь и др. Все металлы, за исключением ртути, при обычных условиях твердые вещества с характерным блеском, хорошо проводят электрический ток и тепло. Большинство металлов может коваться, тянуться и прокатываться. По цвету, все металлы условно подразделяются на две группы: черные и цветные. По плотности различают металлы легкие (ρ < 5) и тяжелые (ρ > 5). Примером легких металлов служат калий, натрий, кальций, алюминий и др. К тяжелым металлам относятся осмий, олово, свинец, никель, ртуть, золото, платина и т.д. Температура плавления металлов также различна: от -38.9 °С (ртуть) до 3380 °С (вольфрам). Металлы могут отличаться и по твердости: самыми мягкими металлами являются натрий и калий (режутся ножом), а самыми твердыми – никель, вольфрам, хром (последний режет стекло). Тепло и электричество различные металлы проводят неодинаково: лучшим проводником электричества является серебро, худшим – ртуть.
В расплавленном состоянии металлы могут распределяться друг в друге, образуя сплавы. Большинство расплавленных металлов могут смешиваться друг с другом в неограниченных количествах. При смешивании расплавленных металлов происходит либо простое растворение расплавов одного металла в другом, либо металлы вступают в химическое соединение. Чаше всего сплавы представляют собой смеси свободных металлов с их химическими соединениями. В состав сплавов могут входить также и неметаллы (чугун – сплав железа с углеродом). Свойства металлов существенно отличаются от свойств составляющих их элементов.
Известно, что у металлов на внешнем энергетическом уровне (ВЭУ) имеется 1-3 валентных электрона. Поэтому они сравнительно легко отдают свои электроны неметаллам, у которых на ВЭУ 5-7 электронов. Так, металлы непосредственно реагируют с галогенами. Большинство Ме хорошо реагируют с кислородом (исключая золото, платину, серебро), образуя оксиды и пероксиды; взаимодействуют с серой с образованием сульфидов. Щелочные и щелочноземельные металлы легко реагируют с водой с образованием растворимых в ней щелочей. Металлы средней активности реагируют с водой только при нагревании. Малоактивные металлы с водой вообще не реагируют. Большинство металлов растворяется в кислотах. Однако химическая активность различных металлов различна. Она определяется легкостью атомов металла отдавать валентные электроны.
Приводим таблицу газообразных продуктов реакций кислот и металлов. Ее надо запомнить, или иметь всегда под рукой.
Металлы | HCl Разбав | НСl Конц | H2SO4 Разбав | H2SO4 Конц | HNO3 Разбав | HNO3 Конц |
Li | H2 | H2 | H2 | H2S | NH3 | N2O |
K | H2 | H2 | H2 | H2S | NH3 | N2O |
Ca | H2 | H2 | H2 | H2S | NH3 | N2O |
Na | H2 | H2 | H2 | H2S | NH3 | N2O |
Mg | H2 | H2 | H2 | SO2 | NH3 | N2O |
Al | H2 | H2 | H2 | SO2 | NH3 | – |
Zn | H2 | H2 | H2 | SO2 | NO | NO2 |
Cr | H2 | H2 | H2 | SO2 | NO | – |
Fe | H2 | H2 | H2 | – | NH3 | – |
Ni | H2 | H2 | H2 | SO2 | NO | NO2 |
Sn | H2 | H2 | H2 | SO2 | NH3 | NO2 |
Pb | H2 | H2 | H2 | SO2 | NO | NO2 |
H | – | – | – | – | – | – |
Cu | – | – | – | SO2 | NO | NO2 |
Hg | – | – | – | SO2 | NO | NO2 |
Ag | – | – | – | SO2 | NO | NO2 |
Pt | – | – | – | – | – | – |
Au | – | – | – | – | – | – |
По своей активности все металлы расположены в определенной последовательности, образуя ряд активности или ряд стандартных электродных потенциалов:
Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Bi, Cu, Hg, Ag, Pd, Pt, Au.
В этом ряду каждый предыдущий металл вытесняет из соединений все последующие металлы.
Электролиз мы рассматривали ранее. Здесь же коротко напомним его основные моменты. Анод — положительный электрод, на нем происходит окисление; катод — отрицательный электрод, на нем происходит восстановление. При электролизе расплава происходит распределение ионов соли в анодном и катодном пространстве. Ион металла восстанавливается до металла, а кислотный остаток бескислородной кислоты окисляется до соответствующего газа или элемента. Электролиз растворов солей более сложен из-за возможности участия в электродных процессах молекул воды. На катоде: 1) ионы металлов от лития до алюминия не восстанавливаются, но идет процесс восстановления водорода из воды, 2) ионы металлов от алюминия до водорода восстанавливаются до металлов вместе с восстановлением водорода из воды, 3) ионы металлов от висмута до золота восстанавливаются до металлов. На аноде: 1) анионы бескислородных кислот окисляются до соответствующих элементов, 2) при электролизе солей кислородсодержащих кислот происходит окисление не кислотных остатков, а воды с выделением кислорода, 3) в щелочных растворах происходит окисление гидроксид-ионов до кислорода и воды, 4) при использовании растворимых анодов, на них образуются катионы металла, из которого сделан анод.
Металлическая связь. Связь между положительными ионами металлов и свободными электронами в кристаллической решетке металлов называется металлической связью.
Физические свойства. Для всех металлов характерны электро- и теплопроводность, пластичность, металлический блеск, обычно серый цвет и непрозрачность. Металлы различаются по плотности: самый легкий металл литий ( ρ = 0,53 г/см3).
Основные промышленные способы получения металлов:
- Пирометаллургический:
1) коксотермия Fe2O3 + 3CO → 2Fe + 3CO2
Fe(CO)3 → Fe + 3CO
2) алюмотермия Fe2O3 + 2Al → 2Fe + Al2O3
3) магнийтермия TiO2 + 2Mg → Ti + 2MgO
4) водородотермия CuO + H2 → Cu + H2O
2. Электрохимический:
1) электролиз расплавов: NiCl2 → Ni + Cl2
2) электролиз растворов: MnSO4 + 2H2O → Mn + O2 + H2 + H2SO4
3. Гидрометаллургический:
Cu + 2H2SO4 → CuSO4 + SO2 + 2H2O
CuSO4 + Fe → Cu + FeSO4.
Коррозия – это самопроизврольный процесс разрушения металлов при ввзаимодействии их с окружающей средой, например, железо на воздухе: 4Fe + 3O2 + 6H2O → 4Fe(OH)3
Коррозия наносит большой ущерб народному хозяйству. Поэтому с коррозией ведут борьбу. Существуют следующие методы защиты металлов от коррозии.
1. Исключение контакта металла с атмосферой и электролитами. Это может быть достигнуто нанесением защитных покрытий:
а) неметаллических – специальные лаки, краски, эмали;
б) химических – покрытий, к которым относятся искуственно создаваемые поверхностные пленки (оксидные, фосфатные, нитридные и др.);
в) металлических – покрытий, полученных электрохимическим осаждением на защищаемой детали тонкого слоя другого металла (хромирование, никелирование, цинкование, лужение и т.д.);
2. Электрохимические методы защиты:
а) протекторная – к защищаемому металлу присоединяется кусок более активного металла, который и разрушается в присутствии электролита;
б) катодная – металлоконструкции подсоединяются к катоду внешнего источника тока, что исключает возможность их анодного разрушения.
3. Специальная обработка электролита или среды, в которой находится защищаемая конструкция:
а) введение веществ-ингибиторов, замедляющих коррозию;
б) удаление растворенного воздуха в воде (деаэрация) – например, в воде, поступающей в котельные установки.
Это был урок химии 10 — Металлы. Общая характеристика. Металлическая связь. Физические и химические свойства, методы получения. Коррозия металлов.
{lang: ‘ru’}
Share this post for your friends:
Friend me:
1. Положение металлов в таблице элементов
Металлы располагаются в основном в левой и нижней части ПСХЭ. К ним относятся:
Деление элементов на металлы и неметаллы
2. Строение атомов металлов
У
атомов металлов на наружном энергоуровне обычно 1-3 электрона. Их атомы
обладают большим радиусом и легко отдают валентные электроны, т.е.
проявляют восстановительные свойства.
Металлы — восстановители
3. Физические свойства металлов
Изменение электропроводности металла при его нагревании и охлаждении
Металлическая связь – это связь, которую осуществляют свободные электроны между катионами в металлической кристаллической решётке.
4. Получение металлов
1. Восстановление металлов из
оксидов углем или угарным газом
MеxOy + C = CO2 + Me или MеxOy + CO = CO2
+ Me
2. Обжиг сульфидов с
последующим восстановлением
1
стадия – MеxSy+O2=MеxOy+SO2
2 стадия — MеxOy + C = CO2
+ Me или MеxOy + CO = CO2
+ Me
3 Алюминотермия
(восстановление более активным металлом)
MеxOy
+ Al = Al2O3 + Me
4.
Водородотермия — для получения металлов особой чистоты
MеxOy
+ H2 = H2O + Me
5. Восстановление металлов электрическим током
(электролиз)
1) Щелочные и щелочноземельные металлы получают в промышленности
электролизом расплавов солей (хлоридов):
2NaCl –расплав,электр.
ток. → 2 Na + Cl2↑
CaCl2 –расплав,электр.
ток.→ Ca + Cl2↑
расплавов
гидроксидов:
4NaOH –расплав, электр. ток.→ 4Na
+ O2↑ + 2H2O
2) Алюминий в промышленности получают в
результате электролиза расплава оксида алюминия в криолите Na3AlF6 (из бокситов):
2Al2O3
–расплав
в криолите, электр. ток.→ 4Al + 3 O2↑
3)
Электролиз водных растворов солей используют для получения металлов средней
активности и неактивных:
2CuSO4+2H2O –раствор, электр. ток. → 2Cu
+ O2 + 2H2SO4
5. Нахождение металлов в природе
Самый распространённый в земной коре металл – алюминий. Металлы встречаются как в соединениях, так и в свободном виде.
1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)
2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)
3. Благородные – в свободном виде (Au, Pt, Ag)
ХИМИЧЕСКИЕ
СВОЙСТВА МЕТАЛЛОВ
Общие химические свойства металлов представлены в
таблице:
Видео «Самовоспламенение никеля на воздухе»
1).
Металлы по — разному реагируют с водой:
Помните!!!
Алюминий реагирует с водой подобно активным
металлам, образуя основание:
2Al + 6H2O = 2Al(OH)3 + 3H2↑
2). Металлы особо реагируют с серной концентрированной и азотной кислотами:
H2SO4 (конц.) + Me = соль + H2O + Х
Щелочные и щелочноземельные | Fe, Cr, Al | Металлы до водорода Сd-Pb | Металлы после водорода (при t) | Au, Pt | |
X | H2S↑ могут S↓ или SO2↑ | 1)пассивируются на холоде; 2) при нагревании → SO2↑ | S↓ могут H2S илиSO2 | SO2↑ | — |
H2SO4
(разб) + Zn = ZnSO4 + H2↑
H2SO4
(разб) + Cu ≠
2H2SO4
(конц.) + Cu = CuSO4 + 2H2O + SO2↑
Внимание!
Pt,
Au + H2SO4 (конц.) → реакции
нет
Al, Fe, Cr + H2SO4 (конц.) холодная→ пассивация
Al,
Fe, Cr + H2SO4 (конц.) t˚C→ SO2
4HNO3
(k) + Cu = Cu(NO3)2 + 4H2O + 2NO2↑
8HNO3
(p) + 3Cu = 3Cu(NO3)2 + 4H2O + 2NO↑
Внимание!
Pt,
Au + HNO3 → реакции
нет
Al, Fe, Cr + HNO3 (конц) холодная→ пассивация
Al,
Fe, Cr + HNO3 (конц) t˚C→ NO2
Al, Fe, Cr + HNO3 (разб) → NO
3).
С растворами солей менее активных металлов
Ме
+ Соль = Новый металл + Новая соль
Вытеснение металла из соли другим металлом
ВИДЕО-ОПЫТ
Fe + CuCl2
= FeCl2 + Cu
FeCl2
+ Cu ≠
Активность
металла в реакциях с кислотами, водными растворами солей и др. можно
определить, используя электрохимический ряд, предложенный в 1865 г русским учёным Н. Н. Бекетовым:
Вытеснение водорода металлами
от
калия к золоту восстановительная способность (способность отдавать электроны)
уменьшается, все металлы, стоящие в ряду левее водорода, могут вытеснять его из
растворов кислот; медь, серебро, ртуть, платина, золото, расположенные правее,
не вытесняют водород.
Видео – Эксперимент «Взаимодействие хлорида олова (II) с цинком («Оловянный ежик»)»
ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ
№1. Закончить уравнения практически осуществимых реакций, назвать продукты реакции
Li+ H2O =
Cu + H2O =
Al + H2O =
Ba + H2O =
Mg + H2O =
Ca + HCl=
Na + H2SO4(К)=
Al + H2S=
Ca + H3PO4=
HCl + Zn =
H2SO4 (к)+ Cu=
H2S + Mg =
HCl + Cu =
HNO3 (K)+ Сu =
H2S + Pt =
H3PO4 + Fe =
HNO3 (p)+ Na=
Fe + Pb(NO3)2 =
№2. Закончите УХР, расставьте коэффициенты методом электронного баланса, укажите окислитель (восстановитель):
Al + O2 =
Li + H2O =
Na + HNO3 (k) =
Mg + Pb(NO3)2 =
Ni + HCl =
Ag + H2SO4 (k) =
№3. Вставьте вместо точек пропущенные знаки (<, > или =)
заряд ядра | Li…Rb | Na…Al | Ca…K |
число энергетических уровней | Li…Rb | Na…Al | Ca…K |
число внешних электронов | Li…Rb | Na…Al | Ca…K |
радиус атома | Li…Rb | Na…Al | Ca…K |
восстановительные свойства | Li…Rb | Na…Al | Ca…K |
№4. Закончите УХР, расставьте коэффициенты методом электронного баланса, укажите окислитель (восстановитель):
K+ O2 =
Mg+ H2O =
Pb+ HNO3 (p) =
Fe+ CuCl2 =
Zn + H2SO4 (p) =
Zn + H2SO4 (k) =
№5. Решите тестовые задания
1.Выберите А) Al, As, P; Б) Mg, Ca, Si; В) K, Ca, Pb 2. А) K2O, SO2, SiO2; Б) H2, Cl2, I2 ; В)Ca, Ba, HCl; 3. Укажите А) 2 Б) 1 В) 4. А) Б) В) 5. А) 6. К А) В) 7. Какое А) В) твердое Г) | ||
Часть В. Установите С
|