Общее свойство металлов и сплавов — их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве. Для описания атомно-кристал­лической структуры используют понятие кристаллической решетки, являющейся воображаемой пространст­венной сеткой с ионами (атомами) в узлах.

Атомно-кристаллическая структура может быть представлена не ря­дом периодически повторяющихся объемов, а одной элементарной ячейкой. Так называется ячейка, повторяющаяся во всех трех измерениях.

В кристалле элементарные частицы (атомы, ионы) сближены до соприкосновения. Для упрощения пространственное изображение принято заменять схемами, где центры тяжести частиц представлены точками. В точках пересечения прямых линий располагаются атомы; они называются узлами решетки. Расстояния a, b и c между центрами атомов, находящихся в соседних узлах решетки, называют параметрами, или периодами решетки. Величина их в металлах порядка 0,1–0,7 нм, размеры элементарных ячеек — 0,2–0,3 нм.

Для однозначного описания элементарной ячейки кристаллической решетки необходимо знание величин параметров a, b, c и углов между ними.

В 1848 г. Французский ученый Бравэ показал, что изученные трансляционные структуры и элементы симметрии позволяют выделить 14 типов кристаллических решеток.

Для характеристики кристаллических решеток вводят понятия координационного числа и коэффициента компактности. Координационным числом I называется число атомов, находящихся на наиболее близком и равном расстоянии от данного атома. Для ОЦК решетки координационное число равно 8, для решеток ГЦК и ГП оно составляет 12. Из этого следует, что решетка ОЦК менее компактна, чем решетки ГЦК и ГП. В решетке ОЦК каждый атом имеет всего 8 ближайших соседей, а в решетках ГЦК и ГП их 12.

Если принять, что атомы в решетке представляют собой упругие соприкасающиеся шары, то нетрудно видеть, что в решетке, помимо атомов, имеется значительное свободное пространство. Плотность кристаллической решетки, т. Е. объем, занятый атомами, характеризуется коэффициентом компактности.

Коэффициент компактности Q равен отношению суммарного объема атомов, входящих в решетку, к объему решетки: где R — радиус атома (иона); n — базис, или число атомов, приходящихся на одну элементарную ячейку; V — объем элементарной ячейки.

Для простой кубической решетки n = (1/8) ? 8 = 1; V = a3 = (2R)3, коэффициент компактности Q = 52 %.

На решетку ОЦК приходится два атома: один центральный и один как сумма от вершин куба, так как ячейке принадлежит 1/8 атома от каждого угла.

Для ОЦК решетки n = (1/8) ? 8 + 1 = 2. Учитывая, что атомы соприкасаются по диагонали куба, длина которой равна 4 атомным радиусам, параметр решетки а коэффициент компактности QОЦК = 68 %.

Проведя аналогичные вычисления, найдем QГЦК = 74 %, QГП = 74 %.

Таким образом, решетки ГЦК и ГП более компактны, чем ОЦК.

Читайте также:  Какой водяной пар свойства

Некоторые металлы при разных температурах могут иметь различную кристаллическую решетку. Способность металла существовать в различных кристаллических формах носит название полиморфизма или аллотропии. Принято обозначать полиморфную модификацию, устойчивую при более низкой температуре, индексом a (a-Fe), при более высокой индексом b, затем y и т.д (где а – альфа, b – бетта и y – гамма).

Известны полиморфные превращения железа:

Fea << Feg (a-Fe<< g-Fe, титана Tia << Tig
(a-Ti<< g- Ti) и других элементов.

Температура превращения одной кристаллической модификации в дру­гую называется температурой полиморфного превращения.

При полиморфном превращении меняются форма и тип кристалли­ческой решетки. Это явление называется перекристаллизацией. Так, при температуре ниже 911 °С устойчиво Fea, в интервале 911–1392 °С устойчи­во Feg. При нагреве выше 911 °С атомы решетки ОЦК перестраиваются, образуя решетку ГЦК. На явлении полиморфизма основана термическая обработка.

При переходе из одной полиморфной формы в другую меняются свой­ства, в частности плотность и соответственно объем вещества. Например, плотность Feg на 3 % больше плотности Fea, а удельный объем соответст­венно меньше. Эти изменения объема необходимо учитывать при термооб­работке.

Полиморфизм олова явился одной из причин гибели полярной экспедиции английского исследователя Р. Скотта. Оловом были запаяны канистры с керосином. При низкой температуре произошло полиморфное превращение пластичного белого олова с образованием хрупкого порошка серого олова. Горючее вылилось и испарилось, и на обратном пути экспедиция осталась без топлива. Превращение белого олова в серое называют «оловянной чумой».

Типы кристаллических решеток важнейших металлических эле­ментов приведены в табл. 1.1.

Таблица 1.1.
Типы кристаллических решеток важнейших металлических элементов

А. Металлы с одним типом решетки

ТИП РЕШЕТКИКООРДИНАЦИОННОЕ ЧИСЛОКОЭФФИЦИЕНТ КОМПАКТНОСТИМЕТАЛЛ
ГЦК1274Ag,Au,Pt, Cu,Al,Pb,Ni
ОЦК868Na, K,V,Nb, Cr, Mo, W
ГП1274Be,Mg,Zn,Cd

Б. Металлы с полиморфным превращением

МЕТАЛЛТИП РЕШЕТКИТЕМПЕРАТУРА ПРЕВРАЩЕНИЯ, °С
CaГЦК << ГП450
CeГП <<ГЦК477
ZrГП <<ОЦК882
TiГП <<ОЦК882
FeОЦК<<ГЦК<<ОЦК911, 1 392

Свойства материалов зависят от природы атомов, из которых они со­стоят, и силы взаимодействия между ними. Аморфные материалы характе­ризуются хаотическим расположением атомов. Поэтому свойства их в раз­личных направлениях одинаковы, или, другими словами, аморфные мате­риалы изотропны. В кристаллических материалах расстояния между ато­мами в разных кристаллографических направлениях различны. Напри­мер, в ОЦК решетке в кристаллографической плоскости, проходящей через грань куба, находится всего один атом, так как четыре атома в вершинах одновременно принадлежат четырем соседним элементарным ячейкам: (1/4) 4 = 1 атом. В то же время в плоскости, проходящей через диагональ куба, будут находиться два атома: 1 + (1/4) 4 = 2.

Из-за неодинаковой плотности атомов в различных направлениях кри­сталла наблюдаются разные свойства. Различие свойств в кристалле в за­висимости от направления испытания называется анизотропией.

Разница в физико-химических и механических свойствах в разных направлениях может быть весьма существенной. При измерении в двух взаимно перпендикулярных направлениях кристалла цинка значения температурного коэффициента линейного расширения различаются в 3–4 раза, а прочности кристалла железа — более, чем в два раза.

Анизотропия свойств характерна для одиночных кристаллов или для так называемых монокристаллов. Большинство же технических литых ме­таллов, затвердевших в обычных условиях, имеют поликристаллическое строение. Они состоят из большого числа кристаллов или зерен. При этом каждое отдельное зерно анизотропно. Различная ориентировка отдельных зерен приводит к тому, что в целом свойства поликристалличе­ского металла являются усредненными.

Поликристаллическое тело характеризуется квазиизотропностью — ка­жущейся независимостью свойств от направления испытания. Квази­изотропность сохраняется в литом состоянии, а при обработке давлением (прокат­ке, ковке), особенно, если она ведется без нагрева, большинство зерен ме­талла приобретает примерно одинаковую ориентировку — так называемую текстуру, после чего металл становится анизотропным. Свойства деформированного металла вдоль и поперек направления главной деформации могут существенно различаться. Анизотропия может приводить к дефектам ме­талла (расслою, волнистости листа). Анизотропию необходимо учитывать при конструировании и разработке технологии получения деталей.