Какие свойства металлов и сплавов

Какие свойства металлов и сплавов thumbnail

Физические свойства материалов (их показатели):

  • • цвет;
  • • плотность;
  • • теплопроводность;
  • • температура плавления;
  • • электропроводность;
  • • магнетизм;
  • • расширение при нагревании.

К химическим свойствам материалов относится межатомное взаимодействие материала с другими веществами.

Механические свойства материалов:

  • • прочность;
  • • твердость;
  • • упругость;
  • • пластичность;
  • • вязкость.

Физические свойства

Цвет металла (сплава) является одним из показателей, позволяющих судить о его свойствах. При нагревании металла по цвету поверхности можно примерно определить, до какой температуры он нагрет. Это используется при сварочных работах. Однако некоторые металлы (например, алюминий) при нагревании не изменяют цвет. Поверхность окисленного металла имеет иной цвет, чем неокисленного.

Плотность — отношение массы вещества к его объему. Плотность материала является одной из важнейших его характеристик, которая учитывается при проектировании, поскольку конструкции должны быть не только прочными, но и легкими.

Теплопроводность (теплообмен) — способность материала переносить тепловую энергию при неравномерном нагревании, имеет атомно-молекулярный характер, измеряется в Вт/(м • К).

Температура плавления — температура, при которой материал переходит из твердого состояния в жидкое. Чистые металлы имеют постоянную температуру плавления.

Электропроводность — способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля. Так как в автомобилях используются в основном металлические детали, электрическая сеть автомобилей выполняется по однопроводной схеме, вторым проводом является сам автомобиль, т. е. его «масса».

Магнитные свойства металлов широко используются в электрооборудовании автомобиля (генераторе, системе зажигания, электродвигателях, контрольно-измерительных приборах).

Способность металлов расширяться при нагревании — важное свойство, которое также учитывается при коструировании. Например, при сварке происходит местное нагревание лишь небольшого участка, и так как деталь в различных частях имеет не одинаковую температуру, то она деформируется. Детали, изготовленные из разных материалов, при нагревании расширяются по-разному. Это тоже может привести к деформациям и даже к разрушению конструкции.

Усадка — уменьшение объема расплавленного металла при его охлаждении. Вследствие усадки сварного шва, например, происходит коробление детали, появляются трещины или образуются усадочные раковины. Чем больше усадка, тем труднее получить качественное соединение.

Механические свойства

Механические свойства материалов, как правило, являются основными показателями, которые определяют его пригодность в различных условиях эксплуатации.

Прочность — способность материала в определенных условиях и пределах не разрушаться, воспринимая те или иные воздействия (нагрузки, неравномерное нагревание, магнитные и электрические поля).

Твердость — способность материала сопротивляться местной пластической деформации, возникающей при внедрении в него более твердого тела.

Упругость — свойство тела восстанавливать свою форму и объем после прекращения действия внешней силы (нагрузки, нагревания). Большой упругостью, например, должны обладать рессоры и пружины, поэтому они изготовляются из специальных сплавов.

Пластичность — способность тела необратимо изменять форму (деформироваться) под действием механических нагрузок. Пластичность — свойство, обратное упругости. Чем больше пластичность металла, тем он легче куется, штампуется, прокатывается.

Вязкость — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали несущей системы, подвески, колес автомобилей).

Химические свойства

Химические свойства металлов характеризуют их способность вступать в соединение с различными веществами (химическими элементами), и в первую очередь с кислородом. Чем легче металл вступает в соединение с различными химическими элементами, тем легче он разрушается. Разрушение металлов вследствие химического воздействия среды называется коррозией. Для достижения высокой коррозионной стойкости изготавливаются специальные стали: коррозионно- и кислотостойкие).

Технологические свойства

Совокупность физических, механических и химических свойств оказывает влияние на технологические свойства материала.

Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций и определяют пригодность металла к обработке тем или иным способом.

Свариваемость — свойство металлов создавать доброкачественные соединения при сварке, характеризующиеся отсутствием трещин и других пороков металла в швах и прилегающих зонах, причем иногда металл хорошо сваривается одним методом и неудовлетворительно — другим. Например, дюралюминий хорошо сваривается точечной сваркой и плохо — газовой, чугун хорошо сваривается газовой сваркой с подогревом и плохо — дуговой и т. д.

Жидкотекучесть — способность расплавленных металлов и сплавов заполнять литейную форму.

Ковкость — способность металлов и сплавов изменять свою форму при обработке давлением.

Обрабатываемость резанием — способность металла обрабатываться путем механической обработки (резание, фрезерование и т. д.), т. е. острым режущим инструментом (резцом, фрезой, ножовкой и т. д.).

Источник

Подробности

Подробности

Опубликовано 27.05.2012 13:19

Просмотров: 57593

Чтобы машина работала долго и надежно в различных условиях, необходимо ее детали изготовлять из материалов, имеющих определенные физические, механические, технологические и химические свойства.

Физические свойства. К этим свойствам относятся: цвет, удельный вес, теплопроводность, электропроводность, температура плавления, расширение при нагревании.

Цвет металла или сплава является одним из признаков, позволяющих судить о его свойствах. При нагреве по цвету поверхности металла можно примерно определить, до какой температуры он нагрет, что особо важно для сварщиков. Однако некоторые металлы (алюминий) при нагреве не меняют цвета.

Поверхность окисленного металла имеет иной цвет, чем не окисленного.

Удельный вес — вес одного кубического сантиметра вещества, выраженный в граммах. Например, углеродистая сталь имеет удельный вес, равный 7,8 г/см. В авто- и авиастроении вес деталей является одной из важнейших характеристик, поскольку конструкции должны быть не только прочными, но и легкими. Чем больше удельный вес металла, тем более тяжелым (при равном объеме) получается изделие.

Читайте также:  Какие свойства имеет температуру

Теплопроводность — способность металла проводить тепло — измеряется количеством тепла, которое проходит по металлическому стержню сечением в 1 см2 за 1 мин. Чем больше теплопроводность, тем труднее нагреть кромки свариваемой детали до нужной температуры.

Температура плавления — температура, при которой металл переходит из твердого состояния в жидкое. Чистые металлы плавятся при одной постоянной температуре, а сплавы — в интервале температур.

Расширение металлов при нагревании является важной характеристикой. Поскольку при сварке происходит местный нагрев (нагрев лишь небольшого участка изделия), то изделие в различных частях нагревается до разных температур, что приводит к деформированию (короблению) изделия. Две детали, изготовленные из разных металлов и нагретые до одинаковой температуры, будут расширяться по-разному. Поэтому, если эти детали будут скреплены между собой, то при нагревании могут изогнуться и даже разрушиться.

Усадка — уменьшение объема расплавленного металла при его охлаждении. В процессе усадки металла сварного шва наблюдается коробление детали, появляются трещины или образуются усадочные раковины. Каждый металл имеет свою величину усадки. Чем она больше, тем труднее получить качественное соединение.

Механические свойства. К механическим свойствам металлов и сплавов относятся прочность, твердость, упругость, пластичность, вязкость.

Эти свойства обычно являются решающими показателями, по которым судят о пригодности металла к различным условиям работы.

Прочность — способность металла сопротивляться разрушению при действии на него нагрузки.

Твердость — способность металла сопротивляться внедрению в его поверхность другого более твердого тела.

Упругость — свойство металла восстанавливать свою форму и размеры после прекращения действия нагрузки. Высокой упругостью должна обладать, например, рессоры и пружины, поэтому они изготовляются из специальных сплавов.

Пластичность — способность металла изменять форму и размеры под действием внешней нагрузки и сохранять новую форму и размеры после прекращения действия сил. Пластичность — свойство, обратное упругости. Чем больше пластичность, тем легче металл куется, штампуется, прокатывается.

Вязкость — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали вагонов, автомобилей и т. п.).

Механические свойства выявляются при воздействии на металл растягивающих, изгибающих или других сил. Механические свойства металлов характеризуются: 1) пределом прочности в кг/мм2; 2) относительным удлинением в %;3) ударной вязкостью в кгм/см2; 4) твердостью; 5) углом загиба. Перечисленные основные свойства металлов определяются следующими испытаниями: 1) на растяжение; 2) на загиб; 3) на твердость; 4) на удар. Все эти испытания производятся на образцах металла при помощи специальных машин.

Испытание на растяжение. Испытанием на растяжение определяют предел прочности и относительное удлинение металла. Пределом прочности называется усилие, которое надо приложить на единицу площади поперечного сечения образца металла, чтобы разорвать его.

Для испытания на растяжение изготовляют образцы, форма и размеры которых установлены ГОСТ 1497-42. На рисунке представлены размеры и форма цилиндрических образцов для испытания на растяжение на специальных разрывных машинах» Головки образца закрепляют в захваты машины, после чего дают нагрузку, растягивающую образец до разрушения. Если величину разрушающего усилия выраженного в килограммах, разделить на число квадратных миллиметров поперечного сечения образца Fo9 то получим величину предела прочности в килограммах на квадратный миллиметр (предел прочности обозначается ов):

Для испытания листового металла изготовляют плоские образцы. На рисунке, в показаны размеры и форма плоских образцов для испытания сварных соединений. Малоуглеродистые стали имеют предел прочности около 40 кг/мм2 стали повышенной прочности и специальные — 150 кг/мм2. Для вычисления относительного удлинения, обозначаемого Ъ, определяют сначала абсолютное удлинение образца. Для этого разорванные части образца плотно прикладывают друг к другу и замеряют расстояние между метками границ расчетной длины (получают размер /). Затем из полученной длины вычитают первоначальную расчетную длину образца /о, остаток делят на первоначальную расчетную длину и умножают на 100.

Относительное удлинение металла есть выраженное в процентах отношение остающегося после разрыва увеличения длины образца К его первоначальной длине.

Относительное удлинение малоуглеродистой стали примерно равно 20%. Относительное удлинение характеризует пластичность металла, оно снижается с повышением предела прочности.

Испытание на твердость. В нашей промышленности для определения твердости металла чаще всего применяется прибор Бринеля или Роквелла. Твердость по Бринелю определяют следующим образом. Твердый стальной шарик диаметром 10,5 или 2,5 мм вдавливается под прессом в испытуемый металл. Затем при помощи бинокулярной трубки измеряют диаметр отпечатка, который получился под шариком на испытуемом металле. По диаметру отпечатка и по соответствующей таблице определяют твердость по Бринелю.

Твердость некоторых сталей в единицах по Бринелю:

Малоуглеродистая сталь……ИВ 120—130

Сталь повышенной прочности …. ИВ 200—300 Твердые закаленные стали…..ИВ 500—600

Читайте также:  Какие свойства имеет каштан

С увеличением твердости пластичность металла снижается. Испытание на удар. Этим испытанием определяют способность металла противостоять ударным нагрузкам. Испытанием на удар определяют ударную вязкость металла.

Ударная вязкость определяется путем испытания образцов на специальных маятниковых копрах. Для испытания применяются специальные квадратные образцы с надрезом (фиг. 11,е). Чем меньше ударная вязкость, тем более хрупок и тем менее надежен в работе такой металл. Чем выше ударная вязкость, тем металл лучше. Хорошая малоуглеродистая сталь имеет ударную вязкость, равную 10—15 кгм/см2.

Во многих случаях для проверки пластичности металлов или сварных соединений применяют технологические испытания образцов, к которым относятся испытания на угол загиба, на сплющивание, продавливание и др.

Испытания на загиб. Для проведения испытания на загиб образец из металла укладывается на шарнирных опорах и нагрузкой, приложенной посредине, изгибается до появления трещин на выпуклой стороне образца. После этого испытание прекращают и измеряют величину внешнего угла а. Чем больше угол загиба, тем пластичнее металл. Качественная малоуглеродистая сталь дает угол загиба 180°.

Для определения пластичности сварного соединения вырезают такой же плоский образец со сварным швом, расположенным посредине, и со снятым усилением.

Испытанием на сплющивание определяют способность металла деформироваться при сплющивании. Этой пробе обычно подвергают отрезки сварных труб диаметром 22—52 мм со стенками толщиной от 2,5 до 10 мм. Проба заключается в сплющивании образца под прессом до получения просвета между внутренними стенками трубы, равного учетверенной толщине стенки трубы. При этом испытании образец не должен давать трещин.

Технологические свойства. В эту группу свойств входят свариваемость, жидкотекучесть, ковкость, обрабатываемость резанием и другие. Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций и определяют пригодность металла к обработке тем или иным способом.

Свариваемость — свойство металлов давать доброкачественные соединения при сварке, характеризующиеся отсутствием трещин и других пороков металла в швах и прилегающих зонах, причем иногда металл хорошо сваривается одним методом и неудовлетворительно— другим. Например, дюралюминий удовлетворительно сваривается точечной сваркой и плохо — газовой, чугун хорошо сваривается газовой сваркой с подогревом и плохо — дуговой и т. д.

Жидкотекучесть — способность расплавленных металлов и сплавов заполнять литерную форму.

Ковкость — способность металлов и сплавов изменять свою форму при обработке давлением.

Обрабатываемость резанием — способность металла более или менее легко обрабатываться острым режущим инструментом (резцом, фрезой, ножовкой и т. д.) при различных операциях механической обработки (резание, фрезерование и т. д.).

Химические свойства. Под химическими свойствами металлов подразумевается их способность вступать в соединение с различными веществами и в первую очередь с кислородом. Чем легче металл вступает в соединение с вредными для него элементами, тем легче он разрушается. Разрушение металлов под действием окружающей их среды (воздуха, влаги, растворов солей, кислот, щелочей) называется коррозией. Для достижения высокой коррозионной стойкости изготавливаются специальные стали (нержавеющие, кислотостойкие и т. п.).

Источник

Вопрос

Механические свойства

К основным механическим свойства относят:
— прочность
— пластичность
— твердость

Прочность – способность материала сопротивляться разрушению под действием нагрузок.
Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.
Твердость – способность материала сопротивляться проникновению в него другого тела.

Физические свойства

К физическим свойства относят:
— цвет
— плотность
— температуру плавления
— теплопроводность
— электропроводность
— магнитные свойства

Цвет – способность металлов отражать излучение с определенной длиной волны. Например, медь имеет розовато-красный цвет, алюминий – серебристо-белый.

Плотность металла определяется отношением массы к единице объема. По плотности металлы делят на легкие (менее 4500 кг/м3) и тяжелые.

Температура плавления – температура, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам – 3416 оС, тантал – 2950 оС и др.) и легкоплавкие (олово – 232 оС, свинец – 327 оС). В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводность – способность металлов передавать тепло от более нагретых участков тела к менее нагретым. Большой теплопроводностью обладают серебро, медь, алюминий. В единицах СИ теплопроводность имеет размерность Вт/(м·К).

Способность металлов проводить электрический ток оценивают двумя противоположными характеристиками – электрической проводимостью и электрическим сопротивлением.
Электропроводность оценивается в системе СИ в сименсах (См). Электросопротивление выражают в омах (Ом). Хорошая электропроводность необходима, например, для токонесущих проводов (их изготавливают из меди, алюминия). При изготовлении электронагревательных приборов и печей необходимы сплавы с высоким электросопротивлением (из нихрома, константана, манганина). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.
Магнитные свойства выражаются в способности металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, которые называют ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.

К химическим свойствам относят:
— коррозионную стойкость
— жаростойкость

Читайте также:  Какие важнейшие свойства присущи всем живым организмам

Коррозионная стойкость – способность металлов сопротивляться химическому разрушению под действием на их поверхность внешней агрессивной среды (коррозия происходит при вступлении в химическое взаимодействие с другими элементами).

Жаростойкость – способность металлов сопротивляться окислению при высоких температурах

Химические свойства учитывают в первую очередь для изделий или деталей, работающих в химически агрессивных средах:
— емкости для перевозки химических реактивов
— трубопроводы химических веществ
— приборы и инструменты в химической промышленности

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

1. Литейные свойства — характеризуют способность материала к получению из него качественных отливок.
Жидкотекучесть – характеризует способность расплавленного металла заполнять литейную форму.
Усадка (линейная и объемная)– характеризует способность материала изменять свои линейные размеры и объем в процессе затвердевания и охлаждения. Для предупреждения линейной усадки при создании моделей используют нестандартные метры.
Ликвация – неоднородность химического состава по объему.

2. Способность материала к обработке давлением — это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь.Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб.Критерием годности материала является отсутствие дефектов после испытания.

3. Свариваемость — это способность материала образовывать неразъемные соединения требуемого качества. Оценивается по качеству сварного шва.

4. Способность к обработке резанием — характеризует способность материала поддаваться обработке различным режущим инструментом. Оценивается по стойкости инструмента и по качеству поверхностного слоя.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

1. Износостойкость– способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

2. Коррозионная стойкость (см. Электрохимическая и химическая коррозия металлов) – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

3. Жаростойкость (см. Жаростойкость. Жаростойкая сталь. Жаростойкие сплавы.) – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

4. Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

5. Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

6. Антифрикционность – способность материала прирабатываться к другому материалу.

Вопрос

Кристаллизация металлов и сплавов

Процесс кристаллизации.
При переходе металла из жидкого состояния в твердое образуются кристаллы. Такой процесс называют кристаллизацией.

Процесс кристаллизации металла можно рассматривать по кривым охлаждения, которые обычно получают опытным путем. Например, для чистого металла, охлаждаемого очень медленно, кривая охлаждения показывает, что, если металл находится в жидком состоянии, температура понижается почти равномерно. Если металл охладить до температуры плавления Тпл (точка а на кривой), то начинается кристаллизация ипадение температуры прекращается, несмотря на непрерывную отдачу тепла окружающей атмосфере. Получаемый горизонтальный участок на кривой охлаждения показывает, что в металле происходит процесс образования кристаллов с выделением тепла, называемый теплотой кристаллизации.Кристаллизация протекает от точки а до точки б, где она заканчивается и металл затвердевает. Дальнейшее падение температуры на кривой указывает на охлаждение затвердевшего слитка (рис. А).
В металлических сплавах кривая охлаждения имеет несколько иной вид. Охладившись до температуры плавления ТПл, сплав еще некоторое время остается жидким. Кристаллизация сплава начинается при температуре переохлаждения Тп, лежащей ниже теоретической температуры плавления. Разность между теоретической и фактической температурами кристаллизации называют степенью переохлаждения.Она зависит от природы сплава, его чистоты и скорости охлаждения. Чем больше скорость охлаждения сплава, тем больше степень переохлаждения. Петля на кривой охлаждения показывает, что кристаллизация сопровождается выделением тепла, которое повышает температуру сплава до температуры плавления, поддерживая ее до полного затвердевания металла. (рис.Б)
Аморфные тела затвердевают постепенно. В этом случае кривая охлаждениябудет плавной, без горизонтальных площадок. (рис.В)
Процесс образования кристаллов состоит из двух одновременно протекающих стадий: появления зародышей — устойчивых центров кристаллизации и роста кристалликов вокруг этих центров.
Сначала каждый кристаллик в жидкости растет свободно, сохраняя правильную геометрическую форму. Так как одновременно образуется много кристаллических центров и рост кристалликов идет по всем направлениям, то смежные кристаллы, увеличиваясь, начинают непосредственно соприкасаться друг с другом и правильная форма их нарушается. В результате кристалл приобретает округленную форму, напоминающую зерно. Такие кристаллы принято называть кристаллитами или зернами.
В зависимости от условий затвердевания зерна могут быть крупными, хорошо различимыми невооруженным глазом, и мелкими, которые можно рассмотреть только при помощи металлографического микроскопа.
Процесс кристаллизации может быть описан количественно, если известны зарождение центров кристаллизации и скорость роста кристалликов. Число центров кристаллизации и скорость роста кристалликов зависят от степени переохлаждения металла. С увеличением степени переохлаждения ∆T число центров и скорость роста также возрастают, достигая максимального значения. Однако характер роста величин числа центров и скорости роста различен.
Если степень переохлаждения невелика, то скорость роста преобладает над числом центров, в результате чего образуется крупнозернистая структура.С увеличением степени переохлаждения скорость роста не изменяется, число центров продолжает расти, что приводит к образованию мелкозернистой структуры.

Источник