Какие свойства материалов относятся к химическим

Сайт строителя

Химические свойства строительных материалов характеризуют способность материалов реагировать на внешние воздействия, ведущие к изменению химической структуры, а также воздействовать в этом отношении на другие материалы.

Основные химические свойства:

растворимость и стойкость к коррозии

  • кислотостойкость
  • щелочестойкость
  • газостойкость

Растворимость. Растворимость — это способность материала растворяться в жидких растворителях: воде, керосине, бензине, масле и других, образовывая новые растворы. Растворимость зависит от химического состава веществ, давления и температуры. Показателем растворимости является произведение растворимости, представляющее собой предельное содержание растворенного вещества в граммах на 100 мл раствора при нормальном давлении и заданной температуре.

Стойкость к коррозии. Стойкость к коррозии является свойством материала сохранять свои качества в условиях агрессивной среды. Такой средой могут быть вода, газы, растворы солей, щелочей, кислот, органические растворители, а также биологические организмы (бактерии, водоросли и т.п.). Древесина, пластмассы, битумы и некоторые другие органические материалы при обычных температурах относительно стойки к действию кислот и щелочей средней и слабой концентрации.

Адгезия. Адгезия представляет собой соединение, сцепление твердых и жидких материалов по поверхности. Это свойство обусловлено межмолекулярным взаимодействием. Адгезионные силы сцепления очень важны при получении строительных материалов, состоящих из многих компонентов, например железобетон.

Кристаллизация. Кристаллизация представляет собой процесс образования кристаллов из паров, растворов, расплавов при электролизе и химических реакциях, который сопровождается выделением тепла.

Долговечность. Долговечность представляет собой способность материала сопротивляться комплексному действию атмосферных и других факторов в условиях эксплуатации. Старение — это процесс постепенного изменения, ухудшения свойств материалов в условиях эксплуатации.

Знание этих и других свойств позволяет сравнивать материалы между собой и определять область их применения с учетом технико-экономической целесообразности. Так, в условиях эксплуатации гидротехнических сооружений строительные материалы, изделия и конструкции, из которых они построены, подвергаются периодическому или постоянному воздействию воды и агрессивных сред, поэтому к ним предъявляются повышенные требования по водостойкости, морозостойкости, водонепроницаемости, коррозионной стойкости и др.

Многие материалы под влиянием водопоглощения ярко проявляют повышенные пластические свойства. Практика строительства показывает, что выбор технически целесообразного материала обосновывают не только его прочностные характеристики, но стойкость к воздействию внешней среды, в которой работает конструкция. Обычно эта стойкость материала во времени (долговечность) неразрывно связана с его химическими и физико-химическими свойствами. Физико-химические в свою очередь тесно связаны со структурой материала и зависят от ее изменения под влиянием внешних и внутренних факторов.

Вследствие проникновения химических реагентов из внешней среды внутренние химические реакции с образованием новых соединений могут значительным образом отразиться на структуре. Изменение структуры (микроструктуры и макроструктуры) в первый период может привести к псевдоупрочнению, а в дальнейшем — к сокращению долговечности материала. Применяемый в строительстве материал обычно подвергают технологической обработке.

Способность поддаваться такой обработке является порой решающим показателем при выборе материала. Так, при массовой заготовке щебня для бетонных работ учитывается способность горной породы дробиться без образования плоских щебенок, поэтому при выборе материалов всегда учитывают его способность реагировать на отдельные или взятые в совокупности следующие факторы: физические, механические, внешнюю среду, температуру и ее колебания, химические реагенты, технологические операции и т.д. Эта способность материала реагировать на указанные факторы определяется его свойствами.

Оценить технические свойства и сравнить материалы между собой возможно по показателям, которые получают при испытании материалов в полевых, производственных или лабораторных условиях. Полученные знания основных технических свойств строительных материалов и изделий дают возможность рационально их использовать в строительстве. Например, по известным значениям истинной и средней плотности строительных материалов можно рассчитать, какой плотностью (или пористостью) обладают эти материалы, и составить достаточно полное представление о прочности, теплопроводности, водопоглощении и других важных характеристиках строительных материалов, чтобы в дальнейшем на этом основании решать вопрос об их применении в тех или иных сооружениях и конструкциях.

Для расчета нагрузок при определении массы сооружений для транспортных расчетов и выбора емкости складских помещений необходимо знать величину средней плотности строительных материалов. Без данных о прочности применяемых материалов невозможны расчеты прочности и устойчивости сооружений и конструкций. Прогноз их долговечности невозможен без знания таких свойств материала, как отношение к влаге, воздействию окружающей среды, смене температур и др.

Свойства строительных материалов не остаются постоянными, а изменяются во времени в результате механических, физико-химических и биохимических воздействий среды, в которой эксплуатируется строительная конструкция или изделие. Эти изменения могут протекать и медленно (разрушение горных пород), и быстро (вымывание из бетона растворимых веществ). Следовательно, каждый материал должен обладать не только свойствами, позволяющими применять его по назначению, но и определенной стойкостью, обеспечивающей долговечную эксплуатацию изделия или конструкции.

Знание основных свойств строительных материалов необходимо также для выполнения расчетов, позволяющих оценить их качество, соответствие техническим требованиям, возможность применения в конкретных условиях эксплуатации.

Употребляемые в строительстве материалы должны удовлетворять определенным требованиям, которые устанавливаются государственными стандартами (ГОСТами). В строительстве соответствие поступающих материалов требованиям ГОСТа проверяют специальные лаборатории.

Любой вид продукции обладает определенными свойствами, представляющими интерес для потребителей. Для строительных материалов важны такие качества, как прочность, плотность, теплопроводность, морозостойкость, стойкость по отношению к действию воды, агрессивных сред и др. Качеством называется сумма свойств, определяющих пригодность материала и изделия для использования по назначению. Так, для кровельных материалов оценка их качества производится по сумме таких свойств, как водостойкость, водонепроницаемость, термостойкость, прочность на изгиб, атмосферостойкость и др.

Читайте также:  Какое свойство воздуха используется в пуховом одеяле

Контроль качества строительных материалов и изделий проводят по разработанным нормам, требованиям и правилам. В зависимости от контролируемого производственного этапа различают контроль входной, технологический и приемочный.

Входной контроль включает проверку соответствия поступающих материалов и изделий установленным требованиям. Например, на предприятиях сборного железобетона проверяют качество поступающих исходных материалов: заполнителей и цемента для бетона, арматурной стали, закладных деталей, отделочных и других материалов.

Технологический контроль состоит в проверке соответствия установленным требованиям температуры, давления, времени выдерживания, тщательности перемешивания и других показателей технологического процесса.

Приемочный контроль заключается в проверке соответствия готовых изделий требованиям стандартов или технических условий.

Все материалы и изделия выпускают по государственным и межгосударственным стандартам — ГОСТ, СТ СЭВ, ИСО, СТБ, СНБ. Деятельность стандартизации существует для повышения качества продукции, безопасности ее получения и безопасности. Методы испытаний также стандартизированы. Кроме этого, в строительстве существуют «Строительные нормы» и «Технические нормативные правовые акты», представляющие собой объединенные нормативные документы по проектированию, строительству и строительным материалам.

Свойства строительных материалов.

Источник

Õèìè÷åñêèé ìàòåðèàë – ýòî âñå âèäû ñûðüÿ, êîòîðûå èñïîëüçóþòñÿ äëÿ èçãîòîâëåíèÿ ðàçëè÷íûõ ïðîäóêòîâ. Òî åñòü òàê ìîæíî íàçâàòü ðåàêòèâû, ìèíåðàëüíûå ïîðîøêè, ñòðîèòåëüíûå ñìåñè, ìàñëà, ñìîëû, íåêîòîðûå âèäû ïîëåçíûõ èñêîïàåìûõ.

Êëàññèôèêàöèÿ õèìè÷åñêèõ ìàòåðèàëîâ

Êëàññèôèöèðóþò õèìè÷åñêèå ìàòåðèàëû ïî íåñêîëüêèì ïðèçíàêàì:

  1. Ïî ïðîèñõîæäåíèþ. Äåëÿòñÿ íà ðàñòèòåëüíûå, æèâîòíûå è ìèíåðàëüíûå.
  2. Ïî ñîñòàâó: íà îðãàíè÷åñêèå è íåîðãàíè÷åñêèå ìàòåðèàëû.
  3. Ïî àãðåãàòíîìó ñîñòîÿíèþ: íà òâåðäûå ìàòåðèàëû, æèäêèå è ãàçîîáðàçíûå.

Ñòîèò îòìåòèòü, ÷òî ïîä ñòîéêîñòüþ ïîíèìàþò ñîõðàíÿþùóþ ñïîñîáíîñòü çàùèòíûõ ñâîéñòâ âåùåñòâà ïîä âîçäåéñòâèåì àãðåññèâíûõ õèìè÷åñêèõ ñðåä.

Ðàçëè÷íûå òðåáîâàíèÿ ê ñòîéêîñòè â îãðîìíîé ñòåïåíè çàâèñÿò îò îáëàñòè èõ äàëüíåéøåãî èñïîëüçîâàíèÿ.

Õèìè÷åñêàÿ ñòîéêîñòü ìàòåðèàëà â ïîëíîé ìåðå äîñòèãàåòñÿ ëèøü äëÿ íåêîòîðûõ ðàçíîâèäíîñòåé ïîëèìåðîâ ïðè îïðåäåëåííîé êîíöåíòðàöèè ñòàáèëèçàòîðîâ èëè ïðîäóêòîâ ðàñùåïëåíèÿ. Íî íà ïðàêòèêå äîñòèãíóòü åå â ñîâåðøåíñòâå ïðàêòè÷åñêè íåâîçìîæíî. Âåäü ñ îäíîé ñòîðîíû îíà çàâèñèò îò ðàçíîîáðàçíûõ òðåáîâàíèé, à ñ äðóãîé ÿâëÿåòñÿ êîìïëåêñíûì ñâîéñòâîì. Ïîòîìó õèìè÷åñêèé àíàëèç ìàòåðèàëîâ íóæåí äëÿ îïðåäåëåíèÿ äîáàâêè íóæíîãî êîëè÷åñòâà ñòàáèëèçèðóþùèõ ïðîäóêòîâ è ñîñòàâà ñàìîãî âåùåñòâà.

Ýòîò ìåòîä îñíîâûâàåòñÿ íà ðàçëè÷íûõ ðåàêöèÿõ, êîòîðûå ïîçâîëÿþò íàèáîëåå òî÷íî îïðåäåëèòü âåñü õèìè÷åñêèé ñîñòàâ ìàòåðèàëà.

Ôèçèêî-õèìè÷åñêèå è õèìè÷åñêèå ñâîéñòâà ìàòåðèàëîâ

Îòìåòèì, ÷òî èìåííî âî âðåìÿ ïðîâåäåíèÿ ðÿäà àíàëèçîâ âàæíî ñóìåòü íå òîëüêî âûÿâèòü âõîäÿùèå ýëåìåíòû, íî èõ êîëè÷åñòâî è ïðîïîðöèè. À äëÿ ýòîãî íóæíî îïðåäåëèòü õèìè÷åñêèå è ôèçèêî-õèìè÷åñêèå ñâîéñòâà ïðåäìåòîâ èññëåäîâàíèÿ.

Îñíîâíûå õèìè÷åñêèå ñâîéñòâà ìàòåðèàëîâ:

  • ñïîñîáíîñòü âñòóïàòü â ðåàêöèþ ñ ëåòó÷èìè âåùåñòâàìè è êèñëîðîäîì;
  • êèñëîòîñòîéêîñòü;
  • ùåëî÷åñòîéêîñòü.

Ñâîéñòâà ìàòåðèàëîâ õàðàêòåðèçóþò ñïîñîáíîñòü âçàèìîäåéñòâîâàòü ñ íèìè èëè ïðîòèâîäåéñòâîâàòü ðàçðóøèòåëüíûì ñâîéñòâàì ýòèõ ðàñòâîðîâ.

Ôèçèêî-õèìè÷åñêèå ñâîéñòâà ìàòåðèàëîâ:

  • öâåò è ïëîòíîñòü;
  • òåìïåðàòóðà, ïðè êîòîðîé ìàòåðèàë ïëàâèòñÿ è ðàñïàäàåòñÿ;
  • òåïëîïðîâîäíîñòü è ýëåêòðîïðîâîäèìîñòü ìàòåðèàëà;
  • ìàãíèòíûå ñâîéñòâà è óñòîé÷èâîñòü ê êîððîçèè, åñëè ïðèñóòñòâóþò ìåòàëëû.

Õèìè÷åñêèå ìàòåðèàëû â ðàìêàõ îäíîèìåííîé âûñòàâêè «Ýêñïîöåíòðà»

Âñå ýòè ñâîéñòâà â ïîëíîé ìåðå îáÿçàòåëüíî ó÷èòûâàþòñÿ ïðè èçãîòîâëåíèè ðàçëè÷íûõ ïðîäóêòîâ è èçäåëèé. Îñîáåííî ýòî îòíîñèòñÿ ê äåòàëÿì, êîòîðûå áóäóò èñïîëüçîâàòüñÿ â àãðåññèâíûõ ñðåäàõ. È åæåãîäíàÿ òåìàòè÷åñêàÿ ýêñïîçèöèÿ «Õèìèÿ» øèðîêî íàïðàâëåíà íà îáìåí îïûòîì äëÿ äàëüíåéøåãî óëó÷øåíèÿ òåõíîëîãèé è ìåòîäèê èçãîòîâëåíèÿ â ñâîåé îáëàñòè.

Íà ïðîòÿæåíèè ìíîãèõ ëåò èìåííî â ïàâèëüîíàõ Öåíòðàëüíîãî âûñòàâî÷íîãî êîìïëåêñà «Ýêñïîöåíòð» ïðîâîäèòñÿ èíòåðíàöèîíàëüíàÿ ýêñïîçèöèÿ «Õèìèÿ», êîòîðàÿ íàïðàâëåíà íà ìàêñèìàëüíîå ðàçâèòèå äàííîé èíäóñòðèè.

Îòäåëüíûì ïðåäìåòîì ðàññìîòðåíèÿ ýòîãî âûñòàâî÷íîãî ôîðóìà ÿâëÿþòñÿ õèìè÷åñêèå ìàòåðèàëû è âåùåñòâà.

×èòàéòå äðóãèå íàøè ñòàòüè:

Óòèëèçàöèÿ õèìè÷åñêèõ ðåàêòèâîâ
Õèìè÷åñêèå ðåàêòèâû
Ïðîèçâîäèòåëè õèìè÷åñêèõ ðåàêòèâîâ

Источник

Механические свойства характеризуют способность материа­лов сопротивляться действию внешних сил. К основным механичес­ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность — это способность материала сопротивляться раз­рушающему воздействию внешних сил.

Твердость — это способность материала сопротивляться вне­дрению в него другого, более твердого тела под действием нагрузки.

Вязкостью называется свойство материала сопротивляться раз­рушению под действием динамических нагрузок.

Упругость — это свойство материалов восстанавливать свои раз­меры и форму после прекращения действия нагрузки.

Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

Хрупкость — это свойство материалов разрушаться под дей­ствием внешних сил без остаточных деформаций.

При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диа­метром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:

σ = P/F0,

Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

ε = [(l1-l0)/l0] · 100,

где l1 — длина растянутого образца.

Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

Читайте также:  Какими свойствами обладает калина красная

Предел упругости σу — это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв — это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

Относительное удлинение после разрыва δ — отношение при­ращения длины образца при растяжении к начальной длине l0, %:

δ = [(lk-l0)/l0]·100,

где lк — длина образца после разрыва.

Рис. 1. Статические испытания на растяжение: а – схема испытания;

б – диаграмма растяжения

Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

ψ = [(F0-Fk)/F0]·100,

где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Твердость металлов измеряется путем вдавливания в испытуе­мый образец твердого наконечника различной формы.

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м2:

KC=A/F

Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

К физическим свойствам материалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.

Плотностью называется отношение массы однородного матери­ала к единице его объема.

Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые кон­струкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плав­ления, сварки и тем они дешевле.

Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.

Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.

Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства харак­теризуются способностью металлов и сплавов в расплавленном состоя­нии хорошо заполнять полость литейной формы и точно воспроизво­дить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различ­ным видам обработки давлением без разрушения. Свариваемость опре­деляется способностью материалов образовывать прочные сварные сое­динения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.

Теория сплавов

Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обла­дающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.

Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного распо­ложения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строе­ние с присущими им характерными особенностями.

Читайте также:  Какие свойства характерны водной среде обитания

Виды сплавов по структуре. По характеру взаимодействия ком­понентов все сплавы подразделяются на три основных типа: механи­ческие смеси, химические соединения и твердые растворы.

Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристалличес­кую решетку. Структура механических смесей неоднородная, состо­ящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения ком­понентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.

Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химичес­кой формуле АmВn . Химическое соединение имеет свою кристалли­ческую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структу­ру, состоящую из одинаковых по составу и свойствам зерен.

При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы заме­щения образуются в результате частичного замещения атомов крис­таллической решетки одного компонента атомами второго (рис. 6, б).

Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную струк­туру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определен­ном соотношении компонентов, а в интервале концентраций. Обо­значают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.

Диаграмма состояния

Диаграмма состояния показывает строе­ние сплава в зависимости от соотношения компонентов и от темпера­туры. Она строится экспериментально по кривым охлаждения спла­вов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начина­ется кристаллизация. В нижней критической точке, которая называ­ется точкой солидус (tc), кристаллизация завершается. Кривая охлаж­дения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики.

Эвтектикой на­зывают механическую смесь двух фаз, одновременно кристаллизовав­шихся из жидкого сплава. Эвтектика имеет определенный химичес­кий состав и образуется при постоянной температуре.

Диаграмму состояния строят в координатах температура-концен­трация. Линии диаграммы разграничивают области одинаковых фазо­вых состояний. Вид диаграммы зависит от того, как взаимодейству­ют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов раз­личных концентраций. При построении диаграммы критические точ­ки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на ко­торой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.

Виды диаграмм состояния

Диаграмма состояния сплавов, обра­зующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом спла­ве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоян­ной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.

Сплавы, расположенные на диаграмме левее эвтектического, называ­ются доэвтектическими, их структура состоит из зерен А и эвтекти­ки. Те сплавы которые на диаграмме расположены правее эвтектичес­кого, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.

Диаграмма состояния сплавов с неограниченной растворимос­тью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твер­дого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух пре­дыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтек­тический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вслед­ствие уменьшения растворимости с понижением температуры). Про­цесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.

Диаграмма состояния сплавов, образующих химическое соеди­нение (рис. 12) характеризуется наличием вертикальной линии, соот­ветствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рас­сматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изоб­ражена диаграмма для случая, когда каждый из компонентов образу­ет с химическим соединением механическую смесь.

Источник