Какие свойства материалов относятся к химическим
Сайт строителя
Химические свойства строительных материалов характеризуют способность материалов реагировать на внешние воздействия, ведущие к изменению химической структуры, а также воздействовать в этом отношении на другие материалы.
Основные химические свойства:
растворимость и стойкость к коррозии
- кислотостойкость
- щелочестойкость
- газостойкость
Растворимость. Растворимость — это способность материала растворяться в жидких растворителях: воде, керосине, бензине, масле и других, образовывая новые растворы. Растворимость зависит от химического состава веществ, давления и температуры. Показателем растворимости является произведение растворимости, представляющее собой предельное содержание растворенного вещества в граммах на 100 мл раствора при нормальном давлении и заданной температуре.
Стойкость к коррозии. Стойкость к коррозии является свойством материала сохранять свои качества в условиях агрессивной среды. Такой средой могут быть вода, газы, растворы солей, щелочей, кислот, органические растворители, а также биологические организмы (бактерии, водоросли и т.п.). Древесина, пластмассы, битумы и некоторые другие органические материалы при обычных температурах относительно стойки к действию кислот и щелочей средней и слабой концентрации.
Адгезия. Адгезия представляет собой соединение, сцепление твердых и жидких материалов по поверхности. Это свойство обусловлено межмолекулярным взаимодействием. Адгезионные силы сцепления очень важны при получении строительных материалов, состоящих из многих компонентов, например железобетон.
Кристаллизация. Кристаллизация представляет собой процесс образования кристаллов из паров, растворов, расплавов при электролизе и химических реакциях, который сопровождается выделением тепла.
Долговечность. Долговечность представляет собой способность материала сопротивляться комплексному действию атмосферных и других факторов в условиях эксплуатации. Старение — это процесс постепенного изменения, ухудшения свойств материалов в условиях эксплуатации.
Знание этих и других свойств позволяет сравнивать материалы между собой и определять область их применения с учетом технико-экономической целесообразности. Так, в условиях эксплуатации гидротехнических сооружений строительные материалы, изделия и конструкции, из которых они построены, подвергаются периодическому или постоянному воздействию воды и агрессивных сред, поэтому к ним предъявляются повышенные требования по водостойкости, морозостойкости, водонепроницаемости, коррозионной стойкости и др.
Многие материалы под влиянием водопоглощения ярко проявляют повышенные пластические свойства. Практика строительства показывает, что выбор технически целесообразного материала обосновывают не только его прочностные характеристики, но стойкость к воздействию внешней среды, в которой работает конструкция. Обычно эта стойкость материала во времени (долговечность) неразрывно связана с его химическими и физико-химическими свойствами. Физико-химические в свою очередь тесно связаны со структурой материала и зависят от ее изменения под влиянием внешних и внутренних факторов.
Вследствие проникновения химических реагентов из внешней среды внутренние химические реакции с образованием новых соединений могут значительным образом отразиться на структуре. Изменение структуры (микроструктуры и макроструктуры) в первый период может привести к псевдоупрочнению, а в дальнейшем — к сокращению долговечности материала. Применяемый в строительстве материал обычно подвергают технологической обработке.
Способность поддаваться такой обработке является порой решающим показателем при выборе материала. Так, при массовой заготовке щебня для бетонных работ учитывается способность горной породы дробиться без образования плоских щебенок, поэтому при выборе материалов всегда учитывают его способность реагировать на отдельные или взятые в совокупности следующие факторы: физические, механические, внешнюю среду, температуру и ее колебания, химические реагенты, технологические операции и т.д. Эта способность материала реагировать на указанные факторы определяется его свойствами.
Оценить технические свойства и сравнить материалы между собой возможно по показателям, которые получают при испытании материалов в полевых, производственных или лабораторных условиях. Полученные знания основных технических свойств строительных материалов и изделий дают возможность рационально их использовать в строительстве. Например, по известным значениям истинной и средней плотности строительных материалов можно рассчитать, какой плотностью (или пористостью) обладают эти материалы, и составить достаточно полное представление о прочности, теплопроводности, водопоглощении и других важных характеристиках строительных материалов, чтобы в дальнейшем на этом основании решать вопрос об их применении в тех или иных сооружениях и конструкциях.
Для расчета нагрузок при определении массы сооружений для транспортных расчетов и выбора емкости складских помещений необходимо знать величину средней плотности строительных материалов. Без данных о прочности применяемых материалов невозможны расчеты прочности и устойчивости сооружений и конструкций. Прогноз их долговечности невозможен без знания таких свойств материала, как отношение к влаге, воздействию окружающей среды, смене температур и др.
Свойства строительных материалов не остаются постоянными, а изменяются во времени в результате механических, физико-химических и биохимических воздействий среды, в которой эксплуатируется строительная конструкция или изделие. Эти изменения могут протекать и медленно (разрушение горных пород), и быстро (вымывание из бетона растворимых веществ). Следовательно, каждый материал должен обладать не только свойствами, позволяющими применять его по назначению, но и определенной стойкостью, обеспечивающей долговечную эксплуатацию изделия или конструкции.
Знание основных свойств строительных материалов необходимо также для выполнения расчетов, позволяющих оценить их качество, соответствие техническим требованиям, возможность применения в конкретных условиях эксплуатации.
Употребляемые в строительстве материалы должны удовлетворять определенным требованиям, которые устанавливаются государственными стандартами (ГОСТами). В строительстве соответствие поступающих материалов требованиям ГОСТа проверяют специальные лаборатории.
Любой вид продукции обладает определенными свойствами, представляющими интерес для потребителей. Для строительных материалов важны такие качества, как прочность, плотность, теплопроводность, морозостойкость, стойкость по отношению к действию воды, агрессивных сред и др. Качеством называется сумма свойств, определяющих пригодность материала и изделия для использования по назначению. Так, для кровельных материалов оценка их качества производится по сумме таких свойств, как водостойкость, водонепроницаемость, термостойкость, прочность на изгиб, атмосферостойкость и др.
Контроль качества строительных материалов и изделий проводят по разработанным нормам, требованиям и правилам. В зависимости от контролируемого производственного этапа различают контроль входной, технологический и приемочный.
Входной контроль включает проверку соответствия поступающих материалов и изделий установленным требованиям. Например, на предприятиях сборного железобетона проверяют качество поступающих исходных материалов: заполнителей и цемента для бетона, арматурной стали, закладных деталей, отделочных и других материалов.
Технологический контроль состоит в проверке соответствия установленным требованиям температуры, давления, времени выдерживания, тщательности перемешивания и других показателей технологического процесса.
Приемочный контроль заключается в проверке соответствия готовых изделий требованиям стандартов или технических условий.
Все материалы и изделия выпускают по государственным и межгосударственным стандартам — ГОСТ, СТ СЭВ, ИСО, СТБ, СНБ. Деятельность стандартизации существует для повышения качества продукции, безопасности ее получения и безопасности. Методы испытаний также стандартизированы. Кроме этого, в строительстве существуют «Строительные нормы» и «Технические нормативные правовые акты», представляющие собой объединенные нормативные документы по проектированию, строительству и строительным материалам.
Свойства строительных материалов.
Õèìè÷åñêèé ìàòåðèàë – ýòî âñå âèäû ñûðüÿ, êîòîðûå èñïîëüçóþòñÿ äëÿ èçãîòîâëåíèÿ ðàçëè÷íûõ ïðîäóêòîâ. Òî åñòü òàê ìîæíî íàçâàòü ðåàêòèâû, ìèíåðàëüíûå ïîðîøêè, ñòðîèòåëüíûå ñìåñè, ìàñëà, ñìîëû, íåêîòîðûå âèäû ïîëåçíûõ èñêîïàåìûõ.
Êëàññèôèêàöèÿ õèìè÷åñêèõ ìàòåðèàëîâ
Êëàññèôèöèðóþò õèìè÷åñêèå ìàòåðèàëû ïî íåñêîëüêèì ïðèçíàêàì:
- Ïî ïðîèñõîæäåíèþ. Äåëÿòñÿ íà ðàñòèòåëüíûå, æèâîòíûå è ìèíåðàëüíûå.
- Ïî ñîñòàâó: íà îðãàíè÷åñêèå è íåîðãàíè÷åñêèå ìàòåðèàëû.
- Ïî àãðåãàòíîìó ñîñòîÿíèþ: íà òâåðäûå ìàòåðèàëû, æèäêèå è ãàçîîáðàçíûå.
Ñòîèò îòìåòèòü, ÷òî ïîä ñòîéêîñòüþ ïîíèìàþò ñîõðàíÿþùóþ ñïîñîáíîñòü çàùèòíûõ ñâîéñòâ âåùåñòâà ïîä âîçäåéñòâèåì àãðåññèâíûõ õèìè÷åñêèõ ñðåä.
Ðàçëè÷íûå òðåáîâàíèÿ ê ñòîéêîñòè â îãðîìíîé ñòåïåíè çàâèñÿò îò îáëàñòè èõ äàëüíåéøåãî èñïîëüçîâàíèÿ.
Õèìè÷åñêàÿ ñòîéêîñòü ìàòåðèàëà â ïîëíîé ìåðå äîñòèãàåòñÿ ëèøü äëÿ íåêîòîðûõ ðàçíîâèäíîñòåé ïîëèìåðîâ ïðè îïðåäåëåííîé êîíöåíòðàöèè ñòàáèëèçàòîðîâ èëè ïðîäóêòîâ ðàñùåïëåíèÿ. Íî íà ïðàêòèêå äîñòèãíóòü åå â ñîâåðøåíñòâå ïðàêòè÷åñêè íåâîçìîæíî. Âåäü ñ îäíîé ñòîðîíû îíà çàâèñèò îò ðàçíîîáðàçíûõ òðåáîâàíèé, à ñ äðóãîé ÿâëÿåòñÿ êîìïëåêñíûì ñâîéñòâîì. Ïîòîìó õèìè÷åñêèé àíàëèç ìàòåðèàëîâ íóæåí äëÿ îïðåäåëåíèÿ äîáàâêè íóæíîãî êîëè÷åñòâà ñòàáèëèçèðóþùèõ ïðîäóêòîâ è ñîñòàâà ñàìîãî âåùåñòâà.
Ýòîò ìåòîä îñíîâûâàåòñÿ íà ðàçëè÷íûõ ðåàêöèÿõ, êîòîðûå ïîçâîëÿþò íàèáîëåå òî÷íî îïðåäåëèòü âåñü õèìè÷åñêèé ñîñòàâ ìàòåðèàëà.
Ôèçèêî-õèìè÷åñêèå è õèìè÷åñêèå ñâîéñòâà ìàòåðèàëîâ
Îòìåòèì, ÷òî èìåííî âî âðåìÿ ïðîâåäåíèÿ ðÿäà àíàëèçîâ âàæíî ñóìåòü íå òîëüêî âûÿâèòü âõîäÿùèå ýëåìåíòû, íî èõ êîëè÷åñòâî è ïðîïîðöèè. À äëÿ ýòîãî íóæíî îïðåäåëèòü õèìè÷åñêèå è ôèçèêî-õèìè÷åñêèå ñâîéñòâà ïðåäìåòîâ èññëåäîâàíèÿ.
Îñíîâíûå õèìè÷åñêèå ñâîéñòâà ìàòåðèàëîâ:
- ñïîñîáíîñòü âñòóïàòü â ðåàêöèþ ñ ëåòó÷èìè âåùåñòâàìè è êèñëîðîäîì;
- êèñëîòîñòîéêîñòü;
- ùåëî÷åñòîéêîñòü.
Ñâîéñòâà ìàòåðèàëîâ õàðàêòåðèçóþò ñïîñîáíîñòü âçàèìîäåéñòâîâàòü ñ íèìè èëè ïðîòèâîäåéñòâîâàòü ðàçðóøèòåëüíûì ñâîéñòâàì ýòèõ ðàñòâîðîâ.
Ôèçèêî-õèìè÷åñêèå ñâîéñòâà ìàòåðèàëîâ:
- öâåò è ïëîòíîñòü;
- òåìïåðàòóðà, ïðè êîòîðîé ìàòåðèàë ïëàâèòñÿ è ðàñïàäàåòñÿ;
- òåïëîïðîâîäíîñòü è ýëåêòðîïðîâîäèìîñòü ìàòåðèàëà;
- ìàãíèòíûå ñâîéñòâà è óñòîé÷èâîñòü ê êîððîçèè, åñëè ïðèñóòñòâóþò ìåòàëëû.
Õèìè÷åñêèå ìàòåðèàëû â ðàìêàõ îäíîèìåííîé âûñòàâêè «Ýêñïîöåíòðà»
Âñå ýòè ñâîéñòâà â ïîëíîé ìåðå îáÿçàòåëüíî ó÷èòûâàþòñÿ ïðè èçãîòîâëåíèè ðàçëè÷íûõ ïðîäóêòîâ è èçäåëèé. Îñîáåííî ýòî îòíîñèòñÿ ê äåòàëÿì, êîòîðûå áóäóò èñïîëüçîâàòüñÿ â àãðåññèâíûõ ñðåäàõ. È åæåãîäíàÿ òåìàòè÷åñêàÿ ýêñïîçèöèÿ «Õèìèÿ» øèðîêî íàïðàâëåíà íà îáìåí îïûòîì äëÿ äàëüíåéøåãî óëó÷øåíèÿ òåõíîëîãèé è ìåòîäèê èçãîòîâëåíèÿ â ñâîåé îáëàñòè.
Íà ïðîòÿæåíèè ìíîãèõ ëåò èìåííî â ïàâèëüîíàõ Öåíòðàëüíîãî âûñòàâî÷íîãî êîìïëåêñà «Ýêñïîöåíòð» ïðîâîäèòñÿ èíòåðíàöèîíàëüíàÿ ýêñïîçèöèÿ «Õèìèÿ», êîòîðàÿ íàïðàâëåíà íà ìàêñèìàëüíîå ðàçâèòèå äàííîé èíäóñòðèè.
Îòäåëüíûì ïðåäìåòîì ðàññìîòðåíèÿ ýòîãî âûñòàâî÷íîãî ôîðóìà ÿâëÿþòñÿ õèìè÷åñêèå ìàòåðèàëû è âåùåñòâà.
×èòàéòå äðóãèå íàøè ñòàòüè:
Óòèëèçàöèÿ õèìè÷åñêèõ ðåàêòèâîâ
Õèìè÷åñêèå ðåàêòèâû
Ïðîèçâîäèòåëè õèìè÷åñêèõ ðåàêòèâîâ
Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.
Прочность — это способность материала сопротивляться разрушающему воздействию внешних сил.
Твердость — это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки.
Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок.
Упругость — это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки.
Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.
Хрупкость — это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.
При статических испытаниях на растяжение определяют величины, характеризующие прочность, пластичность и упругость материала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диаметром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:
σ = P/F0,
Деформация характеризует изменение размеров образца под действием нагрузки, %:
ε = [(l1-l0)/l0] · 100,
где l1 — длина растянутого образца.
Деформация может быть упругой (исчезающей после снятия нагрузки) и пластической (остающейся после снятия нагрузки).
При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения испытаний определяются следующие характеристики механических свойств.
Предел упругости σу — это максимальное напряжение при котором в образце не возникают пластические деформации.
Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв — это напряжение, отвечающее максимальной нагрузке, которую выдерживает образец при испытании.
Относительное удлинение после разрыва δ — отношение приращения длины образца при растяжении к начальной длине l0, %:
δ = [(lk-l0)/l0]·100,
где lк — длина образца после разрыва.
Рис. 1. Статические испытания на растяжение: а – схема испытания;
б – диаграмма растяжения
Относительным сужением после разрыва ψ называется уменьшение площади поперечного сечения образца, отнесенное к начальному сечению образца, %:
ψ = [(F0-Fk)/F0]·100,
где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.
Твердость металлов измеряется путем вдавливания в испытуемый образец твердого наконечника различной формы.
Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердости по Бринеллю НВ определяется отношением нагрузки, действующей на шарик, к площади поверхности полученного отпечатка.
Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавливание производится под действием двух нагрузок — предварительной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.
В методе Виккерса применяют вдавливание алмазной четырехгранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.
Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сечения F; Дж/м2:
KC=A/F
Испытания проводятся ударом специального маятникового копра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.
К физическим свойствам материалов относится плотность, температура плавления, электропроводность, теплопроводность, магнитные свойства, коэффициент температурного расширения и др.
Плотностью называется отношение массы однородного материала к единице его объема.
Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.
Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плавления, сварки и тем они дешевле.
Электропроводностью называется способность материала хорошо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, особенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важным свойством, используемом в электроизоляционных материалах.
Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.
Магнитными свойствами т.е. способностью хорошо намагничиваться обладают только железо, никель, кобальт и их сплавы.
Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании. Это свойство важно учитывать при строительстве мостов, прокладке железнодорожных и трамвайных путей и т.д.
Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способностью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.
К эксплуатационным (служебным) свойствам относятся жаростойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.
Жаростойкость характеризует способность металлического материала сопротивляться окислению в газовой среде при высокой температуре.
Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.
Износостойкость — это способность материала сопротивляться разрушению его поверхностных слоев при трении.
Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.
Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различным видам обработки давлением без разрушения. Свариваемость определяется способностью материалов образовывать прочные сварные соединения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.
Теория сплавов
Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обладающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.
Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного расположения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.
Виды сплавов по структуре. По характеру взаимодействия компонентов все сплавы подразделяются на три основных типа: механические смеси, химические соединения и твердые растворы.
Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристаллическую решетку. Структура механических смесей неоднородная, состоящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения компонентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.
Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химической формуле АmВn . Химическое соединение имеет свою кристаллическую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структуру, состоящую из одинаковых по составу и свойствам зерен.
При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы замещения образуются в результате частичного замещения атомов кристаллической решетки одного компонента атомами второго (рис. 6, б).
Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную структуру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определенном соотношении компонентов, а в интервале концентраций. Обозначают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.
Диаграмма состояния
Диаграмма состояния показывает строение сплава в зависимости от соотношения компонентов и от температуры. Она строится экспериментально по кривым охлаждения сплавов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начинается кристаллизация. В нижней критической точке, которая называется точкой солидус (tc), кристаллизация завершается. Кривая охлаждения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики.
Эвтектикой называют механическую смесь двух фаз, одновременно кристаллизовавшихся из жидкого сплава. Эвтектика имеет определенный химический состав и образуется при постоянной температуре.
Диаграмму состояния строят в координатах температура-концентрация. Линии диаграммы разграничивают области одинаковых фазовых состояний. Вид диаграммы зависит от того, как взаимодействуют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов различных концентраций. При построении диаграммы критические точки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на которой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.
Виды диаграмм состояния
Диаграмма состояния сплавов, образующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом сплаве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоянной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.
Сплавы, расположенные на диаграмме левее эвтектического, называются доэвтектическими, их структура состоит из зерен А и эвтектики. Те сплавы которые на диаграмме расположены правее эвтектического, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.
Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твердого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.
Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух предыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтектический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вследствие уменьшения растворимости с понижением температуры). Процесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.
Диаграмма состояния сплавов, образующих химическое соединение (рис. 12) характеризуется наличием вертикальной линии, соответствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рассматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изображена диаграмма для случая, когда каждый из компонентов образует с химическим соединением механическую смесь.