Какие свойства липидов позволяют им формировать мембраны

Какие свойства липидов позволяют им формировать мембраны thumbnail

Определение

Липиды — сборная (разнородная) группа биологических соединений, растворимых в органических растворителях и нерастворимых в воде.

Таким образом, липиды — это гидрофобные соединения. В  эту группу входят вещества, достаточно сильно различающиеся по химическим свойствам. Мы рассмотрим три группы этих веществ: триглицериды, фосфолипиды  и стероиды. 

В составе многих липидов встречаются длинные гидрофобные цепи углеводородной структуры, например  $–CH_2–CH_2–CH_2–$. Прежде всего, такие цепи входят в состав молекул жирных кислот. Молекулы жирных кислот представляют собой такую длинную, как правило, неразветвленную цепь, на конце которой имеется карбоксильная группа $–COOH$, которая может диссоциировать на $H^+$ и $–COO^-$ — отрицательно заряженный анион кислоты. Поскольку атомы углерода и водорода не сильно различаются по степени электроотрицательности, то ковалентная связь, которую образуют между собой атомы углерода и водорода, является неполярной, то есть валентные электроны распределены между двумя этими атомами равномерно. Именно поэтому длинные углеводородные цепи являются гидрофобными.

Большая часть жирных кислот, содержащихся в организме, имеет четное количество атомов водорода, обычно жирнокислотные цепи содержат от 12 до 24 атомов углерода (чаще всего 16 или 18). Наряду с насыщенными жирными кислотами довольно часто встречаются жирные кислоты с двойными связями.

Какие свойства липидов позволяют им формировать мембраны

Рис. 1: слева — насыщенная жирная кислота (пальмитиновая), справа — ненасыщенная (олеиновая)

Наиболее простыми липидами (жирами) являются эфиры трехатомного спирта глицерина и жирных кислот, которые называются триацилглицеридами.

Какие свойства липидов позволяют им формировать мембраны

Рис. 2

Большинство природных триацилглицеридов содержат две или более различающиеся жирные кислоты. В организме запасенные жиры откладываются в цитоплазме в виде капель; особенно много таких капель в клетках жировой ткани. Окисление жиров до углекислого газа и воды дает большое количество энергии (38,9 кДж/г); этим обусловлена их энергетическая функция.

Физические свойства жирных кислот и соединений, в которые они входят, зависят от длины цепи и степени ее ненасыщенности, т. е. от количества двойных связей. Чем более длинная цепь у жирной кислоты, тем хуже она растворяется в воде. В то же время температура плавления жирных кислот снижается с увеличением в них количества двойных связей. Жиры с ненасыщенными жирными кислотами при комнатной температуре обычно находятся в жидком состоянии. Таковы растительные жиры — масла.  Жиры с насыщенными жирными кислотами при комнатной температуре обычно находятся в твердом состоянии. Таковы животные жиры. Есть и исключения — так, масло какао при комнатной температуре твердое, а норковое масло — жидкое.

Какие свойства липидов позволяют им формировать мембраны

Рис. 3

Основу биологических мембран составляют не жиры, а фосфолипиды. Это амфифильные молекулы, то есть молекулы, имеющие гидрофобную и гидрофильную части. Гидрофильная часть взаимодействует с водой, а гидрофобные «прячутся» от воды. В результате могут образовываться разные типы структур — мицеллы (их образуют молекулы мыла), липосомы и бислои — их образуют фосфолипиды. Липосомы можно получать искусственно и использовать для доставки лекарственных веществ в клетки организма.

Какие свойства липидов позволяют им формировать мембраны

Рис. 4

Это также могут быть эфиры глицерина и жирных кислот, но в этом случае с жирными кислотами в молекуле глицерина связаны только две спиртовые группы, а третья образует эфирную связь с остатком фосфорной кислоты, к которой присоединяются некоторые гидрофильные группы.

Какие свойства липидов позволяют им формировать мембраны

Рис. 5

Таким образом, в составе молекул всех фосфолипидов имеются гидрофобная (остатки жирных кислот) и гидрофильная (фосфорная кислота и присоединенные к ней группы) части, поэтому такие молекулы могут контактировать как с полярными, так и с неполярными растворителями (такие вещества называют амфифильными). Поскольку у большинства молекул фосфолипидов имеется гидрофильная голова и два гидрофобных хвоста, то их часто схематично представляют в виде кружка (гидрофильная часть) с двумя хвостами (гидрофобная часть). В воде и водных растворах фосфолипиды самопроизвольно формируют протяженные почти плоские двойные слои, в которых гидрофобные слои смотрят друг на друга, а гидрофильные головы – в водную среду. Такие слои являются основой всех биологических мембран (см. рис.). Таким образом, одной из основных функцией фосфолипидов является структурная функция — формирование биологических мембран.

К жироподобным веществам относятся воски, которые являются эфирами жирных кислот и многоатомных спиртов. У животных они вырабатываются кожными железами. Покрывая тонким слоем шерсть и перья, воски предохраняют их от намокания. Некоторые насекомые (пчелы) используют воски для постройки сот, в которых они хранят запасы пищи и выводят потомство. Соты, построенные из воска, полностью непроницаемы для воды. У растений воски создают защитный налет на листьях и плодах.

стероиды      

Особое место среди липидов занимают стероиды — полициклический спирт холестерол (чаще называемый холестерин) и его производные. Холестерин и его эфиры с жирными кислотами входят в состав биологических мембран клеток животных, придавая им определенную «жесткость» (структурная функция). У растений и грибов холестерин не встречается, его место у растений занимает стероид стигмастерол, а у грибов — эргостерол. Бактерии не синтезируют стероиды, хотя некоторые из них могут включать экзогенные (происходящие извне стероиды) в свои мембраны.

Читайте также:  Какие свойства и отношение объектов отражают модели а какие нет

У животных  в корковом слое надпочечников из холестерина образуются стероидные гормоны. У животных в клетках печени из холестерина образуются желчные кислоты, которые в кишечнике обеспечивают образование из жиров эмульсии (мелких жировых капель), что необходимо для нормального переваривания жиров. К липидам относят также жирорастворимые витамины К, Е, D, A, обладающие высокой биологической активностью.

Функции липидов

Биологические функции липидов крайне разнообразны.

  1. Жиры и масла представляют собой форму, в которой сохраняется энергия во многих организмах, фосфолипиды и стероиды представляют собой основные структурные элементы биологических мембран.

  2. Стероидные гормоны выполняют регуляторную функцию.

  3. Хиноны в мембранах митохондрий и хлоропластов являются переносчиками электронов.

  4. Жирные кислоты являются эмульсифицирующими агентами (детергентами), которые эмульгируют жиры в пищеварительной системе.

  5. В сетчатке глаза ретиналь (липид, производное витамина А) играет роль светопоглощающего пигмента и принимает участие в передаче сигнала.

  6. Освобождаемое при окислении жиров большое количество воды (при сжигании 1 г жира образуется 1,1 г воды) используется животными пустынь (верблюды) или впадающими в зимнюю спячку (сурки, суслики) для нужд метаболизма, поэтому эти животные могут длительное время обходиться без воды, используя свои жировые запасы. Таким образом, жиры могут служить также источником воды.

  7.  Теплоизоляционная функция: у животных нейтральные жиры откладываются в основном в подкожной клетчатке, где создают хороший теплоизоляционный слой, особенно развитый у морских млекопитающих — китообразных и ластоногих.

  8. Откладываясь в полости тела вокруг внутренних органов (например, вокруг почек), жировая подушка защищает их от механических повреждений при движении, прыжках, ударах и т. д. (защитная функция).

  9. Жирорастворимые витамины К, Е, D и А играют важные метаболические функции:

    • витамин К необходим для свертывания крови;

    • витамин Е играет функцию мембранного антиоксиданта и важен для размножения животных;

    • витамин D необходим для минерализации костей (при его недостатке в детском возрасте возникает рахит — нарушение развития скелета);

    • витамин А — предшественник ретиналя, компонента зрительного пигмента глаз.

Источник

Мембранные липиды — это амфипатические
молекулы, самопроизвольно формирующие бислои. Липиды нерастворимы в воде,
однако легко растворяются в органических растворителях. В большинстве животных
клеток они составляют около 5О% массы плазматической мембраны. В участке
липидного бислоя размером 1 х 1 мкм находится приблизительно 5 х 1ОО тыс.
молекул липидов. Следовательно плазматическая мембрана небольшой животной
клетки содержит примерно 1О липидных молекул. В клеточной мембране присутствуют
липиды трех главных типов:

1) фосфолипиды (наиболее распространенный тип);

2) холестерол и

3) гликолипиды .

Все они представляют собой
амфипатические молекулы, т.е. у них есть гидрофильный и гидрофобный концы.

Основная часть липидов
в мембранах представлена фосфолипидами, гликолипидами и холестерином.

Липиды мембран имеют в
структуре две различные части: неполярный гидрофобный «хвост» и
полярную гидрофильную «голову». Такую двойственную природу соединений
называют амфифильной. Липиды мембран образуют двухслойную структуру. Каждый
слой состоит из сложных липидов, расположенных таким образом, что неполярные
гидрофобные «хвосты» молекул находятся в тесном контакте друг с
другом. Так же контактируют гидрофильные части молекул. Все взаимодействия
имеют нековалентный характер. Два монослоя ориентируются «хвост к
хвосту» так, что образующаяся структура двойного слоя имеет внутреннюю
неполярную часть и две полярные поверхности.

Белки мембран включены
в липидный двойной слой двумя способами:

1.    
связаны с гидрофильной поверхностью липидного бислоя — поверхностные
мембранные белки погружены в гидрофобную область бислоя — интегральные
мембранные белки;

2.    
поверхностные белки своими гидрофильными радикалами аминокислот связаны нековалентными
связями с гидрофильными группами липидного бислоя. Интегральные белки
различаются по степени погруженности в гидрофобную часть бислоя. Они могут
располагаться по обеим сторонам мембраны и либо частично погружаются в
мембрану, либо прошивают мембрану насквозь. Погруженная часть интегральных
белков содержит большое количество аминокислот с гидрофобными радикалами,
которые обеспечивают гидрофобное взаимодействие с липидами мембран. Гидрофобные
взаимодействия поддерживают определенную ориентацию белков в мембране.
Гидрофильная выступающая часть белка не может переместиться в гидрофобный слой.
Часть мембранных белков ковалентно связаны с моносахаридными остатками или
олигосахаридными цепями и представляют собой гликопротеины.

Важнейшее из свойств липидного бислоя — это текучесть .То, что отдельные молекулы липидов
способны свободно диффундировать в пределах липидного бислоя, стало впервые
известно в начале 197О-х годов. Первоначально это было показано на
искусственных липидных бислоях. Для экспериментальных исследований оказались
полезными искусственные мембраны двух типов:

Читайте также:  Какие свойства характерны для организма биология

1) липосомы ,
имеющие форму сферических пузырьков, диаметром от 25 до 1 мкм в зависимости от
способа их получения, и

2) плоские бислои, называемые черными мембранами ,
закрывающие отверстие в перегородке между двумя отделениями сосуда,
заполненными водой.

    Поведение липидных молекул в клеточных мембранах в
основном сходно с поведением этих молекул в искусственных бислоях: липидный
компонент биологической мембраны представляет собой двумерную жидкость, в
которой отдельные молекулы липидов быстро перемещаются, но только в пределах
своего монослоя.

    Другим фактором помимо
температуры, определяющий текучесть мембраны,
являетсяхолестерол.
О том, что определенная текучесть мембраны имеет важное биологическое значение
свидетельствует факт, что бактерии, дрожжи и другие пойкилотермные организмы
изменяют жирнокислотный состав своих плазматических мембран таким образом,
чтобы текучесть мембраны оставалась примерно постоянной.

    Текучая структура липидного
бислоя дает возможность мембранным белкам быстро диффундировать и взаимодействовать между собой,
обеспечивает простой способ распространения мембранных компонентов от мест, где
они вошли в состав бислоя после того, как были синтезированы, в другие области
клетки. Текучесть позволяет мембранам сливаться друг с другом, причем
способность к регуляции их проницаемости не утрачивается.

От Наташи:

Общие принципы организации бислоя: Неполярные хвосты направлены внутрь мембраны и
высокоупорядочены. Полярные головки расположены в плоскости мембраны и могут
образовывать водородные связи. Хвосты фосфолипидов имеют два хвоста (похоже на цилиндр).
Присутствие молекул с одним хвостом (лизолецитин), имеющих в пространстве
форму, близкую к конусу, разрушает клеточные мембраны. Фосфолипидные молекулы,
лишенные одного из хвостов, образуют поры в бислойной мембране, т.е. нарушается
барьерная функция мембран.

Ацильные цепи расположены под некоторым углом к полярным
головкам.

Микровязкость мембраны у концов
липидных хвостов меньше, чем около полярных голов, высокая подвижность липидных
молекул обусловливает латеральную
(боковую) диффузию– это хаотическое тепловое перемещение молекул липидов
и белков в плоскости мембраны. Рядом расположенные молекулы липидов скачком
меняются местами и вследствие таких последовательных перескоков из одного места
в другое молекула перемещается вдоль поверхности мембраны. Среднее квадратичное
перемещение за секунду фосфолипидной молекулы по поверхности мембраны
эритроцита — 5 мкм, что сравнимо с размерами клеток. Таким образом, за секунду
молекула может обежать всю поверхность небольшой клетки. Частота перескоков- n = 3 ´ 107 с-1. Каждая молекула, таким образом, в
среднем претерпевает десятки миллионов перестановок в плоскости мембраны за
секунду, то есть характерное время одного перескока i= 10-7 – 10-8 с.

Флип-флоп — это диффузия молекул
мембранных фосфолипидов поперек мембраны.

Перескоки молекул с одной поверхности бис-лоя на другую
совершаются значительно медленнее Т ~ 1 час.

Сочетание быстрой диффузии молекул вдоль мембраны и очень
медленной диффузии поперек мембраны имеет большое значение для функционирования
мембран, а именно для матричной функции мембраны. Благодаря затрудненному
переходу поперек мембраны поддерживается упорядоченность в молекулярной
структуре мембраны, ее анизотропия, асимметрия (относительно плоскости мембраны)
расположения липидных и белковых молекул, определенная ориентация
белков-ферментов поперек мембраны. Это имеет большое значение, например, для
направленного переноса веществ через мембрану.

Фазовые переходы липидов. Липидная
мембрана представляет собой динамическую структуру, строение бислоя может
меняться в течении жизни или при изменении физических условий. Фазовые переходы
мембраны происходят между двумя состояниями: Гель и Жидкий кристалл.

1.                    
Гель:

·                       
Все Ацильные цепи полностью имеют
транс-конформацию и вытянуты параллельно друг другу.

·                       
Толщина мембраны больше.

·                       
Площадь, приходящаяся на 1 молекулу
меньше.

·                       
Мембрана в целом более компактна.

2.                    
Жидкий Кристалл:

·                       
Часто встречаются транс-гош-переходы,
кинки.

·                       
Толщина мембраны меньше.

·                       
Площадь, приходящаяся на 1 молекулу
больше.

·                       
Упорядоченность и компактность меньше,
Энтропия системы больше.

Переход между этими двумя фазами
является переходом 1 рода.

В матриксе одной фазы может
существовать большое количество микроскопических доменов другой фазы.

Фазовые
переходы происходят при определённой температуре, зависящей от состава липидов.
от -20
°С (для мембран из ненасыщенных липидов) до +60 °С (для насыщенных липидов). Также, чем
больше ненасыщенность связей, тем меньше плотность упаковки мембраны и больше
проницаемость мембраны.

При
фазовом переходе может происходить увеличение пассивной проводимости мембраны,
связанное с образованием каналов на границе участков мембраны, имеющих разное
фазовое состояние. Этот процесс лежит в основе терморецепции и хеморецепции.

Источник

Липиды мембран.

Мембранные липиды – амфифильные молекулы, т.е. в молекуле есть как гидрофильные группы (полярные головки), так и алифатические радикалы (гидрофобные хвосты), самопроизвольно формирующие бислой, в котором хвосты липидов обращены друг к другу. Толщина одного липидного слоя 2,5 нм, из которых 1 нм приходится на головку и 1,5 нм на хвост. В мембранах присутствуют три основных типа липидов: фосфолипиды, гликолипиды и холестерол. Среднее молярное отношение холестерол/фосфолипиды равно 0,3–0,4, но в плазматической мембране это соотношение гораздо выше (0,8–0,9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и белков.

Читайте также:  Какие бывают свойства модели

Фосфолипиды можно разделить на глицерофосфолипиды и сфингофосфолипиды. Наиболее распространенные глицерофосфолипиды мембран – фосфатидилхолины и фосфатидилэтаноламины. Каждый глицерофосфолипид, например фосфатидилхолин, представлен несколькими десятками фосфатидилхолинов, отличающихся друг от друга строением жирнокислотных остатков.

На долю глицерофосфолипидов приходится 2–8% всех фосфолипидов мембран. Наиболее распространенными являются фосфатидилинозитолы.

Специфические фосфолипиды внутренней мембраны митохондрий – кардиолипины (дифосфатидглицеролы), построенные на основе глицерола и двух остатков фосфатидной кислоты, составляют около 22% от всех фосфолипидов митохондриальных мембран.

В миелиновой оболочке нервных клеток в значительных количествах содержатся сфингомиелины.

Гликолипиды мембран представлены цереброзидами и ганглиозидами, в которых гидрофобная часть представлена церамидом. Гидрофильная группа – углеводный остаток – гликозидной связью присоединен к гидроксильной группе первого углеродного атома церамида. В значительных количествах гликолипиды находятся в мебранах клеток мозга, эпителия и эритроцитов. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей и проявляют антигенные свойства.

Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является полярной головкой.

Функции мембранных липидов.

Фосфо- и гликолипиды мембран, помимо участия в формировании липидного бислоя, выполняют ряд других функций. Липиды мембран формируют среду для функционирования мембранных белков, принимающих в ней нативную конформацию.

Некоторые мембранные липиды – предшественники вторичных посредников при передаче гормональных сигналов. Так фосфатидилинозитолдифосфат под действием фосфолипазы С гидролизируется до диацилглицерола и инозитолтрифосфата, являющихся вторичными посредниками гормонов.

Ряд липидов участвует в фиксации заякоренных белков. Примером заякоренного белка является ацетилхолинэстераза, которая фиксируется на постсинаптической мембране к фосфатитилинозитолу.

Данный текст является ознакомительным фрагментом.

Похожие главы из других книг:

Глава 12
Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы
Пер. А. НеизвестногоВ предыдущей главе мы обсудили возможные сценарии возникновения клеток и (будем надеяться) достигли

Химический состав мембран.
Мембраны состоят из липидных и белковых молекул, относительное количество которых у разных мембран широко колеблется. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5%-10% веществ мембраны. Согласно жидкостно-мозаичной

Белки мембран.
Мембранные белки отвечают за функциональную активность мембран и на их долю приходится от 30 до 70%. Белки мембран отличаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его – интегральные белки, разными

Липиды
Основные липиды пищи – триацилглицеролы (нейтральные жиры), фосфолипиды, холестерол и высшие жирные кислоты. Суточная потребность 100 г. Они являются источниками энергии (при их разрушении образуется 9,3 ккал/г, в то время как при сгорании белков и углеводов – 4,1

Глава 19. Липиды тканей, переваривание и транспорт липидов
Липиды – неоднородная в химическом отношении группа веществ биологического происхождения, общим свойством которых является гидрофобность и способность растворяться в неполярных органических растворителях.

Липиды тканей человека.
Липиды составляют около 10–12% массы тела человека. В среднем в теле взрослого человека содержится около 10–12 кг липидов, из них 2–3 кг приходится на структурные липиды, а остальное количество – на резервные. Основная масса резервных липидов (около

Липиды пищи, их переваривание и всасывание.
Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности

Липиды
Липиды – это обширная группа неполярных, нерастворимых в воде органических соединений. Они отличаются большим разнообразием, но в общем виде представляют собой сложные эфиры какого-либо спирта и жирной кислоты.Жирные кислоты – это карбоновые кислоты с длинной

4.1. Образование мембран – основа начала жизни
Рассматривая гигантское многообразие современных живых организмов, можно прийти к выводу, что существовало множество путей развития, берущих начало от реликтовых форм жизни. На самом деле исследования молекулярной эволюции

7. Органические вещества. Общая характеристика. Липиды
Вспомните!В чём особенность строения атома углерода?Какую связь называют ковалентной?Какие вещества называют органическими?Какие продукты питания содержат большое количество жира?Общая характеристика

Источник