Какие свойства лежат в основе применения фенола

Какие свойства лежат в основе применения фенола thumbnail

Фенол — простейший представитель класса фенолов

Фено́лы — органические соединения ароматического ряда, в молекулах которых гидроксильные группы OH− связаны с атомами углерода ароматического кольца.

Классификация[править | править код]

По числу ароматических ядер различают собственно фенолы, нафтолы (2 конденсированных ядра), антролы (3 ядра), фенантролы (3 ядра), бензотетролы (4 ядер),

По числу ОН-групп различают:

  • одноатомные фенолы (аренолы): фенол (C6H5OH) и его гомологи;
  • двухатомные фенолы (арендиолы): пирокатехин, резорцин, гидрохинон (соответственно 1,2-, 1,3- и 1,4-дигидроксибензолы);
  • трёхатомные фенолы (арентриолы): пирогаллол, гидроксигидрохинон, флороглюцин (соответственно 1,2,3-, 1,2,4- и 1,3,5-тригидроксибензолы),
  • многоатомные фенолы

Изомерия[править | править код]

Возможны 2 типа изомерии:

  • изомерия положения заместителей в бензольном кольце;
  • изомерия боковой цепи (строения алкильного радикала и числа радикалов).

Электронное строение[править | править код]

Фенолы представляют собой полярные соединения (диполи). Бензольное кольцо является отрицательным концом диполя, группа — OH — положительным. Дипольный момент направлен в сторону бензольного кольца.

Электронное строение фенола

Как известно, гидроксильная группа -OH является заместителем I рода, то есть она способствует повышению электронной плотности в бензольном кольце (особенно в орто- и пара-положениях). Это обусловлено тем, что одна из неподелённых пар электронов атома кислорода OH-группы вступает в сопряжение с π-системой бензольного кольца. Смещение неподелённой пары электронов атома кислорода в сторону бензольного кольца приводит к увеличению полярности связи O-H.
Таким образом, имеет место взаимное влияние атомов и атомных групп в молекуле фенола. Это взаимное влияние отражается в свойствах фенола.[1]

Во-первых, повышается способность к замещению атомов водорода в орто- и пара-положениях бензольного ядра, и в результате реакций замещения обычно образуются три-замещённые производные фенола.

Во-вторых, увеличение полярности связи O-H под действием бензольного ядра и появление достаточно большого положительного заряда на атоме водорода приводит к тому, что молекулы фенола диссоциируют в водных растворах по кислотному типу.

Фенол является слабой кислотой. В этом состоит главное отличие фенолов от спиртов, которые являются неэлектролитами.

Физические свойства[править | править код]

Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления.
Фенол C6H5OH (карболовая кислота) — бесцветное кристаллическое вещество на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол — токсичное вещество, вызывает ожоги кожи, является антисептиком.

В живых организмах[править | править код]

Фенол является окончанием боковой группы стандартной аминокислоты тирозина, и поэтому входит в состав практически каждой белковой молекулы[2].

Химические свойства[править | править код]

1. Реакции с участием гидроксильной группы[править | править код]

Кислотные свойства

  1. Диссоциация в водных растворах с образованием фенолят-ионов и ионов водорода;
  2. Взаимодействие со щелочами с образованием фенолятов (отличие от спиртов);
  3. Взаимодействие с активными металлами с образованием фенолятов (образующиеся в результате реакций 2 и 3) феноляты легко разлагаются при действии кислот. Даже такая слабая кислота, как угольная, вытесняет фенол из фенолятов, следовательно, фенол — ещё более слабая кислота, чем угольная).

При взаимодействии фенолятов с галогенпроизводными образуются простые и сложные эфиры (реакция Фриделя — Крафтса).

2. Реакции с участием бензольного кольца[править | править код]

Реакции замещения

  1. Галогенирование (взаимодействие с галогенами)
  2. Нитрование (взаимодействие с азотной кислотой)
  3. Сульфирование (взаимодействие с серной кислотой)

Реакции присоединения

  1. Гидрирование (восстановление водородом до циклогексанола)

Качественные реакции на фенолы

В водных растворах одноатомные фенолы взаимодействуют с хлоридом железа(III) с образованием комплексных фенолятов, которые имеют фиолетовую окраску; окраска исчезает после прибавления синильной кислоты

Способы получения[править | править код]

1. Из каменноугольной смолы.
Каменноугольную смолу, содержащую в качестве одного из компонентов фенол, обрабатывают вначале раствором щелочи (образуются феноляты), а затем — кислотой.

2. Сплавление аренсульфокислот со щелочью:
C6H5-SO3Na + NaOH → C6H5-OH + Na2SO3

3. Взаимодействие галогенпроизводных ароматических углеводородов со щелочами:
C6H5-Cl + NaOH → C6H5-OH + NaCl

Читайте также:  Определить у какого элемента сильнее выражены металлические свойства

или с водяным паром:
C6H5-Cl + H2O → C6H5-OH + HCl

Применение фенолов[править | править код]

Фенолы широко применяются в производстве пластмасс, резин, лекарств, моющих средств, ядохимикатов, топлива и др. Основное применение фенолы находят в производстве различных феноло-альдегидных смол, полиамидов, полиарилатов, полиариленсульфонов, поликарбонатов, эпоксидных смол, антиоксидантов, бактерицидов и пестицидов (например, нитрафен). Алкилфенолы используют в производстве ПАВ, стабилизаторов и присадок к топливам. Двухатомные фенолы и их производные входят в состав дубителей для кожи и меха, модификаторов и стабилизаторов резин и каучуков, применяются для обработки кино- и фотоматериалов. В медицине фенолы и их производные используют в качестве антимикробных (фенол, резорцин), противовоспалительных (салол, осарсол), спазмолитических (адреналин, папаверин), жаропонижающих (аспирин, салициловая кислота), слабительных (фенолфталеин), адреномиметических (мезатон), вяжущих (таннины) и других лекарственных средств, а также витаминов E и P.

Литература[править | править код]

Синович А. Д., Павлов Г. П. Фенолы // Химическая энциклопедия: в 5 т. / Н. С. Зефиров (гл. ред.). — М.: Большая Российская энциклопедия, 1998. — Т. 5: Триптофан—Ятрохимия. — 783 с. — 10 000 экз. — ISBN 5-85270-310-9.

Примечания[править | править код]

  1. ↑ Репетитор по химии. Под редакцией Егорова. 2006 г.
  2. ↑ А. В. Финкельштейн, О. Б. Птицын, «Физика белка» , Москва, 2002.

Ссылки[править | править код]

  • https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/FENOLI.html

Источник

Фенол (C5H6OH), это искусственно выведенное соединение, которое служит основой для получения многих соединений, применяемых в промышленности. Фенол обладает антисептическими свойствами, поэтому карболка (5%), которая является разбавленным водным раствором фенола, используется для дезинфекции белья и помещений, а в европейской и американской медицине этот препарат применялся довольно широко во вторую мировую войну, но впоследствии его использование пришлось заметно ограничить вследствие высокой токсичности.

Фенол представляет собой вещество с кристаллической структурой с безобидным запахом гуаши, однако, это довольно токсичное вещество.

Применение

Фенол изменяет свой цвет под воздействием воздуха, что дает возможность применять это вещество в производстве красителей.

Фенола обладает низкой температурой плавления, растворяется как в как органических, так и в неорганических растворителях.

В молекулярной биологии и генной инженерии фенол нашел широкое применение в очистке ДНК, а ранее, в смеси с хлороформом вещество применялось для выделения ДНК из клетки. Но и здесь актуальность использования фенола была утрачена вследствие достаточного количества специализированных китов для выделения.

Одним из основных направлений использования фенола до сих пор является производство лекарственных препаратов, причем большинство этих средств представляют собой производные салициловой кислотыo-HOC6H4COOH, которую получают из фенола. В частности, всем известный аспирин, используемый, как жаропонижающее средство, этот и есть ацетилсалициловая кислота, а такой широко распространенный препарат, как  салол представляет собой эфир фенола и салициловой кислоты.

Парааминосалициловую кислоту (ПАСК) используют при лечении туберкулеза, а пурген (фенолфталеин) получают конденсацией фенола и фталевого ангидрида.

В химической промышленности фенола используется для производства таких синтетических волокон, как капрон и нейлон.

Весьма важной областью его применения является производство феноло-формальдегидных смол.

Кроме того, фенол используется для селективной очистки масел, ортокрезола, в изготовлении присадок к маслам, он является компонентом ряда красителей, пластификаторов для полимеров, парфюмерных препаратов, используется и как средство защиты растений.

Ранее фенол применяли в производстве строительных материалов, однако оказалось, что токсичные свойства этого вещества со временем не уменьшаются и он продолжает оставаться опасным для человека, оказывая отрицательное воздействие на нервную и сердечно-сосудистую системы, на почки, печень  другие внутренние органы. Во многих странах применение фенола в производстве бытовых товаров запрещено вследствие токсичных свойств.

В легкой промышленности фенол применяется для дезинфекции кожи животных.

Однако, недобросовестные производители до сих пор применяют пластмассы на основе фенола даже для производства детских игрушек.

Чем опасен фенол?

При попадании фенола в организм через дыхательные пути, происходит их раздражение вплоть до ожога, то же может произойти при попадании вещества на кожу, причем ожоги могут перерасти в язвы. А если площадь подобного химического ожога превысит 25%, велика опасность летального исхода.

Читайте также:  Какими основными свойствами и признаками характеризуют горные породы

Проникновение этого вещества внутрь чревато атрофией мышц, внутренними кровотечениями, язвой желудка и двенадцатиперстной кишки.

Следует поэтому вдумчиво обследовать свою квартиру и определить, не применялись ли при ее строительстве и устройстве интерьера стройматериалы с применением фенола, не применялся ли фенол при производстве полов, обоев, мебели, игрушек.

Ощутив какое либо беспричинное недомогание, при малейших подозрениях на наличие этого токсина, необходимо осуществить экологическую экспертизу на наличие испарений фенола.

Навигация по записям

Источник

Ôåíîëû – ïðîèçâîäíûå àðîìàòè÷åñêèõ óãëåâîäîðîäîâ, â ñîñòàâ êîòîðûõ ìîãóò âõîäèòü îäíà èëè íåñêîëüêî ãèäðîêñèëüíûõ ãðóïï, ñîåäèíåííûõ ñ áåíçîëüíûì êîëüöîì.

Êàê íàçûâàòü ôåíîëû?

Ïî ïðàâèëàì ÈÞÏÀÊ ñîõðàíÿåòñÿ íàçâàíèå «ôåíîë». Íóìåðàöèÿ àòîìîâ èäåò îò àòîìà, êîòîðûé íåïîñðåäñòâåííî ñâÿçàí ñ ãèäðîêñè-ãðóïïîé (åñëè îíà – ñòàðøàÿ) è íóìåðóþò òàê, ÷òîáû çàìåñòèòåëè ïîëó÷èëè íàèìåíüøèé íîìåð.

Ïðåäñòàâèòåëü – ôåíîë – Ñ6Í5ÎÍ:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

Ñòðîåíèå ôåíîëà.

Ó àòîìà êèñëîðîäà íà âíåøíåì óðîâíå íàõîäèòñÿ íåïîäåëåííàÿ ýëåêòðîííàÿ ïàðà, êîòîðàÿ «âòÿãèâàåòñÿ» â ñèñòåìó êîëüöà (+Ì-ýôôåêò ÎÍ-ãðóïïû). Â ðåçóëüòàòå ìîãóò âîçíèêíóòü 2 ýôôåêòà:

1) ïîâûøåíèå ýëåêòðîííîé ïëîòíîñòè áåíçîëüíîãî êîëüöà â ïîëîæåíèÿ îðòî- è ïàðà-. Â îñíîâíîì, òàêîé ýôôåêò ïðîÿâëÿåòñÿ â ðåàêöèÿõ ýëåêòðîôèëüíîãî çàìåùåíèÿ.

2) óìåíüøàåòñÿ ïëîòíîñòü íà àòîìå êèñëîðîäà, âñëåäñòâèå ÷åãî ñâÿçü Î-Í îñëàáëÿåòñÿ è ìîæåò ðâàòüñÿ. Ýôôåêò ñâÿçàí ñ ïîâûøåííîé êèñëîòíîñòè ôåíîëà ïî ñðàâíåíèþ ñ ïðåäåëüíûìè ñïèðòàìè.

Ìîíîçàìåùåííûå ïðîèçâîäíûå ôåíîëà (êðåçîë) ìîãóò áûòü â 3õ ñòðóêòóðíûõ èçîìåðàõ:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

Ôèçè÷åñêèå ñâîéñòâà ôåíîëîâ.

Ôåíîëû – êðèñòàëëè÷åñêèå âåùåñòâà ïðè êîìíàòîé òåìïåðàòóðå. Ïëîõî ðàñòâîðèìû â õîëîäíîé âîäå, íî õîðîøî – â ãîðÿ÷åé è â âîäíûõ ðàñòâîðàõ ùåëî÷åé. Îáëàäàþò õàðàêòåðíûì çàïàõîì. Âñëåäñòâèå îáðàçîâàíèÿ âîäîðîäíûõ ñâÿçåé, îáëàäàþò âûñîêîé òåìïåðàòóðîé êèïåíèÿ è ïëàâëåíèÿ.

Ïîëó÷åíèå ôåíîëîâ.

1. Èç ãàëîãåíáåíçîëîâ. Ïðè íàãðåâàíèè õëîðáåíçîëà è ãèäðîêñèäà íàòðèÿ ïîä äàâëåíèåì ïîëó÷àþò ôåíîëÿò íàòðèÿ, êîòîðûé ïîñëå âçàèìîäåéñòâèÿ ñ êèñëîòîé, ïðåâðàùàåòñÿ â ôåíîë:
 

Ôåíîëû Ñâîéñòâà ôåíîëîâ

2. Ïðîìûøëåííûé ñïîñîá: ïðè êàòàëèòè÷åñêîì îêèñëåíèè êóìîëà íà âîçäóõå ïîëó÷àåòñÿ ôåíîë è àöåòîí:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

3. Èç àðîìàòè÷åñêèõ ñóëüôîêèñëîò ñ ïîìîùüþ ñïëàâëåíèÿ ñ ùåëî÷àìè. ×àùå ïðîâîäÿò ðåàêöèþ äëÿ ïîëó÷åíèÿ ìíîãîàòîìíûõ ôåíîëîâ:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

Õèìè÷åñêèå ñâîéñòâà ôåíîëîâ.

ð-îðáèòàëü àòîìà êèñëîðîäà îáðàçóåò ñ àðîìàòè÷åñêèì êîëüöîì åäèíóþ ñèñòåìó. Ïîýòîìó ýëåêòðîííàÿ ïëîòíîñòü íà àòîìå êèñëîðîäå óìåíüøàåòñÿ, â áåíçîëüíîì êîëüöå – óâåëè÷èâàåòñÿ. Ïîëÿðíîñòü ñâÿçè Î-Í ïîâûøàåòñÿ, è âîäîðîä ãèäðîêñèëüíîé ãðóïïû ñòàíîâèòñÿ áîëåå ðåàêöèîíîñïîñîáíûì è ëåãêî ìîæåò áûòü çàìåùåí àòîìîì ìåòàëëà äàæå ïðè äåéñòâèè ùåëî÷åé.

Êèñëîòíîñòü ôåíîëîâ âûøå, ÷åì ó ñïèðòîâ, ïîýòîìó ìîæíî ïðîâîäèòü ðåàêöèè:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

Ôåíîëû Ñâîéñòâà ôåíîëîâ

Íî ôåíîë – ñëàáàÿ êèñëîòà. Åñëè ÷åðåç åãî ñîëè ïðîïóñêàòü óãëåêèñëûé èëè ñåðíèñòûé ãàç, òî âûäåëÿåòñÿ ôåíîë, ÷òî äîêàçûâàåò, ÷òî óãîëüíàÿ è ñåðíèñòàÿ êèñëîòà ÿâëÿþòñÿ áîëåå ñèëüíûìè êèñëîòàìè:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

Êèñëîòíûå ñâîéñòâà ôåíîëîâ îñëàáëÿþòñÿ ïðè ââåäåíèè â êîëüöî çàìåñòèòåëåé I ðîäà è óñèëèâàþòñÿ – ïðè ââåäåíèè II.

2) Îáðàçîâàíèå ñëîæíûõ ýôèðîâ. Ïðîöåññ ïðîòåêàåò ïðè âîçäåéñòâèå õëîðàíãèäðèäîâ:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

3) Ðåàêöèÿ ýëåêòðîôèëüíîãî çàìåùåíèÿ. Ò.ê. ÎÍ-ãðóïïà ÿâëÿåòñÿ çàìåñòèòåëåì ïåðâîãî ðîäà, òî ðåàêöèîííàÿ ñïîñîáíîñòü áåíçîëüíîãî êîëüöà â îðòî- è ïàðà-  ïîëîæåíèÿõ ïîâûøàåòñÿ. Ïðè äåéñòâèè íà ôåíîë áðîìíîé âîäû íàáëþäàåòñÿ âûäåëåíèå îñàäêà – ýòî êà÷åñòâåííàÿ ðåàêöèÿ íà ôåíîë:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

4) Íèòðîâàíèå ôåíîëîâ. Ðåàêöèþ ïðîâîäÿò íèòðèðóþùåé ñìåñüþ, â ðåçóëüòàòå ÷åãî îáðàçóåòñÿ ïèêðèíîâàÿ êèñëîòà:
 

Ôåíîëû Ñâîéñòâà ôåíîëîâ

5) Ïîëèêîíäåíñàöèÿ ôåíîëîâ. Ðåàêöèÿ ïðîòåêàåò ïîä âîçäåéñòâèè êàòàëèçàòîðîâ:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

6) Îêèñëåíèå ôåíîëîâ. Ôåíîëû ëåãêî îêèñëÿþòñÿ êèñëîðîäîì âîçäóõà:

Ôåíîëû Ñâîéñòâà ôåíîëîâ

7) Êà÷åñòâåííîé ðåàêöèåé íà ôåíîë ÿâëÿåòñÿ âîçäåéñòâèå ðàñòâîðà õëîðèäà æåëåçà è îáðàçîâàíèå êîìïëåêñà ôèîëåòîâîãî öâåòà.

Ïðèìåíåíèå ôåíîëîâ.

Ôåíîëû èñïîëüçóþò ïðè ïîëó÷åíèè ôåíîëôîðìàëüäåãèäíûõ ñìîë, ñèíòåòè÷åñêèõ âîëîêîí, êðàñèòåëåé è ëåêàðñòâåííûõ ñðåäñòâ, äåçèíôèöèðóþùèõ âåùåñòâ. Ïèêðèíîâàÿ êèñëîòà èñïîëüçóåòñÿ â êà÷åñòâå âçðûâ÷àòûõ âåùåñòâ.
 

Источник

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Какие свойства лежат в основе применения фенола

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Читайте также:  Какие свойства проявляет алюминий и почему

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

По числу гидроксильных групп:

  • фенолы с одной группой ОН — содержат одну группу -ОН. Общая формула CnH2n-7OH или CnH2n-6O
  • фенолы с двумя группами ОН — содержат две группы ОН. Общая формула CnH2n-8(OH)2 или CnH2n-6O2.

Какие свойства лежат в основе применения фенола

Соединения, в которых группа ОН отделена от бензольного кольца углеродными атомами – это не фенолы, а ароматические спирты:

Какие свойства лежат в основе применения фенола

В фенолах одна из неподеленных электронных пар кислорода участвует в сопряжении с π–системой бензольного кольца, это является главной причиной отличия свойств фенола от спиртов.

Какие свойства лежат в основе применения фенола

Сходство и отличие фенола и спиртов.

Сходство: как фенол, так и спирты реагируют с щелочными металлами с выделением водорода.

Отличия:

  • фенол не реагирует с галогеноводородами: ОН- группа очень прочно связана с бензольным кольцом, её нельзя заместить;
  • фенол не вступает в реакцию этерификации, эфиры фенола получают косвенным путем;
  • фенол не вступает в реакции дегидратации.
  • фенол обладает более сильными кислотными свойствами и вступает в реакцию со щелочами.

1. Кислотные свойства фенолов

Фенолы являются более сильными кислотами, чем спирты и вода, т. к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается. 

Раствор фенола в воде называют «карболовой кислотой», он является слабым электролитом.

1.1. Взаимодействие с раствором щелочей

В отличие от спиртов, фенолы реагируют с гидроксидами щелочных и щелочноземельных металлов, образуя соли – феноляты.

Например, фенол реагирует с гидроксидом натрия с образованием фенолята натрия

Какие свойства лежат в основе применения фенола

Видеоопыт взаимодействия фенола с гидроксидом натрия можно посмотреть здесь.

Так как фенол – более слабая кислота, чем соляная и даже угольная, его можно получить из фенолята, вытесняя соляной или угольной кислотой:

Какие свойства лежат в основе применения фенола

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Фенолы взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются феноляты. При взаимодействии с металлами фенолы ведут себя, как кислоты.

Например, фенол взаимодействует с натрием с образованием фенолята натрия и водорода.

Какие свойства лежат в основе применения фенола

Видеоопыт взаимодействия фенола с натрием можно посмотреть здесь.

2. Реакции фенола по бензольному кольцу

Наличие ОН-группы в бензольном кольце (ориентант первого рода) приводит к тому, что фенол гораздо легче бензола вступает в реакции замещения в ароматическом кольце.

2.1. Галогенирование

Фенол легко при комнатной температуре (без всякого катализатора) взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол).

Видеоопыт взаимодействия фенола с бромом можно посмотреть здесь.

2.2. Нитрование

Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара-нитрофенолов.

Например, при нитровании фенола избытком концентрированной HNO3 образуется 2,4,6-тринитрофенол  (пикриновая кислота):

Какие свойства лежат в основе применения фенола

3. Поликонденсация фенола с формальдегидом

С формальдегидом фенол образует фенолоформальдегидные смолы.

Какие свойства лежат в основе применения фенола

4. Взаимодействие с хлоридом железа (III)

При взаимодействии фенола с хлоридом железа (III) образуются комплексные соединения железа, которые окрашивают раствор в сине-фиолетовый цвет. Это качественная реакция на фенол.

Видеоопыт взаимодействия фенола с хлоридом железа (III) можно посмотреть здесь.

5. Гидрирование (восстановление) фенола

Присоединение водорода к ароматическому кольцу.

Продукт реакции – циклогексанол, вторичный циклический спирт.

Какие свойства лежат в основе применения фенола

1. Взаимодействие хлорбензола с щелочами

При взаимодействии обработке хлорбензола избытком щелочи при высокой температуре и давлении образуется водный раствор фенолята натрия.

Какие свойства лежат в основе применения фенола

При пропускании углекислого газа (или другой более сильной кислоты) через раствор фенолята образуется фенол.

Какие свойства лежат в основе применения фенола

2. Кумольный способ

Фенол в промышленности получают из каталитическим окислением кумола.

Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:

Какие свойства лежат в основе применения фенола

Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:

Какие свойства лежат в основе применения фенола

Суммарное уравнение реакции:

Какие свойства лежат в основе применения фенола

3. Замещение сульфогруппы в бензол-сульфокислоте

Бензол-сульфокислота реагирует с гидроксидом натрия с образованием фенолята натрия:

Какие свойства лежат в основе применения фенола

 Получается фенолят натрия, из которого затем выделяют фенол:

Какие свойства лежат в основе применения фенола

Источник