Какие свойства кислот характерны для всех карбоновых кислот

Какие свойства кислот характерны для всех карбоновых кислот thumbnail

Карбоновые кислоты – это вещества, в молекулах которых содержится одна или несколько карбоксильных групп СООН.

Общая формула предельных одноосновных карбоновых кислот: СnH2nO2

Строение, изомерия и гомологический ряд карбоновых кислот

Химические свойства карбоновых кислот

Способы получения карбоновых кислот

.

Для карбоновых кислот характерны следующие свойства:

  • кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • замещение атома водорода в алкильном радикале
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Кислотные свойства карбоновых кислот возникают из-за смещения электронной плотности к карбонильному атому кислорода и вызванной этим дополнительной (по сравнению со спиртами и фенолами) поляризацией связи О–Н.

Какие свойства кислот характерны для всех карбоновых кислот

Карбоновые кислоты – кислоты средней силы.

В водном растворе карбоновые кислоты частично диссоциируют на ионы:  

R–COOH R-COO– + H+

1.1. Взаимодействие с основаниями 

Карбоновые кислоты реагируют с большинством оснований. При взаимодействии карбоновых кислот с основаниями образуются соли карбоновых кислот и вода.

CH3COOH + NaOH = CH3COONa + H2O

Карбоновые кислоты реагируют с щелочами, амфотерными гидроксидами, водным раствором аммиака и нерастворимыми основаниями. 

Например, уксусная кислота растворяет осадок гидроксида меди (II)

Какие свойства кислот характерны для всех карбоновых кислот

Видеоопыт взаимодействия уксусной кислоты с гидроксидом натрия можно посмотреть здесь.

Например, уксусная кислота реагирует с водным раствором аммиака с образованием ацетата аммония

CH3COOH + NH3 = CH3COONH4

1.2. Взаимодействие с металлами

Карбоновые кислоты реагируют с активными металлами. При взаимодействии карбоновых кислот с металлами образуются соли карбоновых кислот и водород.

Например, уксусная кислота взаимодействует с кальцием с образованием ацетата кальция и водорода.

Какие свойства кислот характерны для всех карбоновых кислот

Видеоопыт взаимодействия уксусной кислоты с магнием и цинком можно посмотреть здесь.

1.3. Взаимодействие с основными оксидами

Карбоновые кислоты реагируют с основными оксидами с образованием солей карбоновых кислот и воды.

Например, уксусная кислота взаимодействует с оксидом бария с образованием ацетата бария и воды.

Какие свойства кислот характерны для всех карбоновых кислот

Например, уксусная кислота реагирует с оксидом меди (II)

2СН3СООН  + CuO  = H2О  +  ( CH3COO)2 Cu

Видеоопыт взаимодействия уксусной кислоты с оксидом меди (II) можно посмотреть здесь.

1.4. Взаимодействие с с солями более слабых и летучих (или нерастворимых) кислот

Карбоновые кислоты реагируют с солями более слабых, нерастворимых и летучих кислот. 

Например, уксусная кислота растворяет карбонат кальция

Какие свойства кислот характерны для всех карбоновых кислот

Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими гидрокарбонатами. В результате наблюдается выделение углекислого газа

Какие свойства кислот характерны для всех карбоновых кислот

2. Реакции замещения группы ОН

Для карбоновых кислот характерны реакции нуклеофильного замещения группы ОН с образованием функциональных производных карбоновых кислот: сложных эфиров, амидов, ангидридов и галогенангидридов.

2.1. Образование галогенангидридов

Под действием галогенагидридов минеральных кислот-гидроксидов (пента- или трихлорид фосфора) происходит замещение группы ОН на галоген.

Например, уксусная кислота реагирует с пентахлоридом фосфора с образованием хлорангидрида уксусной кислоты

Какие свойства кислот характерны для всех карбоновых кислот

2.2. Взаимодействие с аммиаком

При взаимодействии аммиака с карбоновыми кислотами образуются соли аммония:

Какие свойства кислот характерны для всех карбоновых кислот

При нагревании карбоновые соли аммония разлагаются на амид и воду:

Какие свойства кислот характерны для всех карбоновых кислот

2.3. Этерификация (образование сложных эфиров)

Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием сложных эфиров.

Какие свойства кислот характерны для всех карбоновых кислот

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Какие свойства кислот характерны для всех карбоновых кислот

2.4. Получение ангидридов

С помощью оксида фосфора (V) можно дегидратировать (то есть отщепить воду) карбоновую кислоту – в результате образуется ангидрид карбоновой кислоты.

Например, при дегидратации уксусной кислоты под действием оксида фосфора образуется ангидрид уксусной кислоты

Какие свойства кислот характерны для всех карбоновых кислот

3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе 

Карбоксильная группа вызывает дополнительную поляризацию связи С–Н у соседнего с карбоксильной группой атома углерода (α-положение). Поэтому атом водорода в α-положении легче вступает в реакции замещения по углеводородному радикалу.

В присутствии красного фосфора карбоновые кислоты реагируют с галогенами.

Например, уксусная кислота реагирует с бромом в присутствии красного фосфора

Какие свойства кислот характерны для всех карбоновых кислот

4. Свойства муравьиной кислоты

Особенности свойств муравьиной кислоты обусловлены ее строением, она содержит не только карбоксильную, но и альдегидную группу и проявляет все свойства альдегидов.

Читайте также:  Какими свойствами обладает драцена

Какие свойства кислот характерны для всех карбоновых кислот

4.1. Окисление аммиачным раствором оксида серебра (I) и гидроксидом меди (II)

Как и альдегиды, муравьиная кислота окисляется аммиачным раствором оксида серебра. При этом образуется осадок из металлического серебра.

Какие свойства кислот характерны для всех карбоновых кислот

При окислении муравьиной кислоты гидроксидом меди (II) образуется осадок оксида меди (I):

Какие свойства кислот характерны для всех карбоновых кислот

4.2. Окисление хлором, бромом и азотной кислотой

Муравьиная кислота окисляется хлором до углекислого газа.

Какие свойства кислот характерны для всех карбоновых кислот

4.3. Окисление перманганатом калия

Муравьиная кислота окисляется перманганатом калия до углекислого газа:

5HCOOH + 2KMnO4 + 3H2SO4 → 5CO2 + 2MnSO4 + K2SO4 + 8H2O

Видеоопыт взаимодействия муравьиной кислоты с перманганатом калия можно посмотреть здесь.

4.4. Разложение при нагревании

При нагревании под действием серной кислоты муравьиная кислота разлагается с образованием угарного газа:

Какие свойства кислот характерны для всех карбоновых кислот

Видеоопыт разложения муравьиной кислоты можно посмотреть здесь

5. Особенности бензойной кислоты 

5.1. Разложение при нагревании

При нагревании бензойная кислота разлагается на бензол и углекислый газ:

Какие свойства кислот характерны для всех карбоновых кислот

4.2. Реакции замещения в бензольном кольце

Карбоксильная группа является электроноакцепторной группой, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.

Какие свойства кислот характерны для всех карбоновых кислот

6. Особенности щавелевой кислоты 

6.1. Разложение при нагревании

При нагревании щавелевая кислота разлагается на угарный газ и углекислый газ:

Какие свойства кислот характерны для всех карбоновых кислот

6.2. Окисление перманганатом калия

Щавелевая кислота окисляется перманганатом калия до углекислого газа:

Какие свойства кислот характерны для всех карбоновых кислот

7. Особенности непредельных кислот (акриловой и олеиновой)

7.1. Реакции присоединения

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:

Какие свойства кислот характерны для всех карбоновых кислот

К непредельным кислотам можно присоединять галогены и водород. Например, олеиновая кислота присоединяет водород:

Какие свойства кислот характерны для всех карбоновых кислот

6.2. Окисление непредельных карбоновых кислот

Непредельные кислоты обесцвечивают водный раствор перманганатов. При этом окисляется π-связь и у атомов углерода при двойной связи образуются две гидроксогруппы:

Какие свойства кислот характерны для всех карбоновых кислот

Источник

ФИЗИЧЕСКИЕ СВОЙСТВА карбоновых кислот      

Карбоновые кислоты, благодаря карбоксильной группе, полярны и могут участвовать в образовании межмолекулярных водородных связей. Такими связями с молекулами воды объясняется неограниченная растворимость низших кислот (C1-C4) в воде и спирте. Высшие кислоты в воде растворяются плохо. Хорошо растворяются в этиловом спирте и диэтиловом эфире. Это связано с гидрофобными свойствами УВ-радикала в кислоте: чем больше масса радикала, тем меньше кислота растворима в воде.

Низшие кислоты – бесцветные, резко пахнущие жидкости, начиная с пентановой (валериановой) кислоты – маслянистые жидкости, высшие кислоты —  твердые вещества без вкуса и запаха. 

Для карбоновых кислот характерна межмолекулярная ассоциация. Так, жидкие карбоновые кислоты, например уксусная кислота, существуют в виде димеров. В водных растворах димеры распадаются на мономеры.

Какие свойства кислот характерны для всех карбоновых кислот

ХИМИЧЕСКИЕ СВОЙСТВА  одноосновных предельных карбоновых кислот

Карбоксильная группа полярная (см. подробно тему «Гомологические ряды карбоновых кислот»), вследствие этого карбоновые кислоты проявляют общие свойства, характерные для всех слабых неорганических кислот. Реакции протекают по так называемому кислотному центру

Реакции по кислотному центру

1. Карбоновые кислоты являются слабыми электролитами, константа диссоциации предельных монокарбоновых кислот уменьшается с увеличением числа атомов углерода в радикале:

$mathrm{RCOOH leftrightarrow RCOO^– + H^+}$

Поэтому растворимые карбоновые кислоты изменяют окраску индикаторов (метилоранжа и лакмуса).
2. Кислоты реагируют с активными металлами:

$mathrm{2CH_3COOH + Zn = (CH_3COO)_2Zn + H_2}$

 и с оксидами металлов:

$mathrm{MgO + CH_3COOH = (CH_3COO)_2Mg + H_2O}$

3. Реагируют с сильными основаниями (щелочами), с образованием соответствующих солей:

$CH_3COOH +NaOH longrightarrow CH_3COONa + H_2O$

4. Реагируют с солями слабых кислот, например, карбонатами (только те кислоты, которые сильнее угольной):

$mathrm{Na_2CO_3 + 2HCOOH = 2HCOONa + CO_2 + H2O}$

Реакции по электрофильному центру

По карбоксильной группе, а именно по электрофильному центру, могут также протекать реакции нуклеофильного замещения. Нуклеофильное замещение у $sp^2$-гибридизованного атома углерода карбоксильной группы представляет наиболее важную группу реакций карбоновых кислот, по этому механизму карбоновые кислоты могут вступать в реакции с другими органическими веществами, например спиртами, аминами, с другими карбоновыми кислотами и галогенирующими агентами (соединениями фосфора и серы)

Читайте также:  Какое сочетание химических элементов определяет основные свойство стали

Определение

1. Реакция этерификации — это взаимодействие карбоновых кислот со спиртами в присутствии катализаторов — водоотнимающих средств (например, $H_2SO_4$ конц.), приводящее к образованию сложных эфиров:

$mathrm{RCOOH + R’OH = RCOOR’ + H_2O}$

Механизм реакции этерификации, как нуклеофильного замещения, представлен на схеме:

Какие свойства кислот характерны для всех карбоновых кислот

Этерификация — обратимая реакция. Смещение равновесия вправо возможно отгонкой из реакционной смеси образующегося эфира, отгонкой или связыванием воды, либо использованием избытка одного из реагентов. Реакция, обратная этерификации, приводит к гидролизу сложного эфира с образованием карбоновой кислоты и спирта.

2. С другими карбоновыми кислотами реакция также протекает в присутствии водоотнимающих средств и приводит к образованию ангидридов:

$mathrm{RCOOH + R’COOH xrightarrow[]{P_2O_5, t ^circ C} RCOOOCR’ + H_2O}$

3. С аммиаком или аминами карбоновые кислоты реагируют с образованием амидов кислот:

$CH_3COOH +NH_3 xrightarrow[]{t ^circ C} CH_3CONH_2 + H_2O$

При действии на карбоновые кислоты аммиака (газообразного или в растворе) сначала образуется аммониевая соль, а при значительном нагревании сухие аммониевые соли теряют воду и превращаются в амиды.

4. Взаимодействие с хлорирующими агентами  — хлоридами или бромидами фосфора (V),  приводит к замещению гидроксильной группы на галоген и образованию хлорангидридов:

$mathrm{RCOOH + PCl_5 = RCOCl + POCl_3 + HCl}$

Окислительно-восстановительные реакции

Углерод в карбоксильной группе находится в степени окисления +2 и поэтому дальше не окисляется. Восстановление карбоксильной группы может происходить последовательно: сначала с образованием альдегидов и кетонов в присутствии восстановителей ($mathrm{LiAlH_4}$, а затем до спиртов (см. подробно тему «Химические свойства альдегидов»)  

Реакции по углеводородному радикалу

Ряд свойств карбоновых кислот обусловлен наличием угле­водородного радикала, для них возможны реакции замещения. Атомы водорода у второго ($alpha$) углеродного атома весьма подвижны. Поэтому при галогенировании в присутствии каталитических количеств красного фосфора  происходит в первую очередь образование 2-галогенкарбоновой кислоты. 

$CH_3-CH_2-COOH + Br_2 xrightarrow{P} CH_3-CHBr-COOH + HBr$

Источник

Карбоновые кислоты — класс органических соединений, молекулы которых содержат одну или несколько карбоксильных групп
COOH.

Имеют разнообразное промышленное применение и большое биологическое значение.
Общая формула одноосновных карбоновых кислот CnH2nO2 .

Карбоксильная группа

Классификация карбоновых кислот

По количеству карбоксильных групп в молекуле карбоновые кислоты подразделяются на:

  • Одноосновные — 1 карбоксильная группа
  • Двухосновные — 2 карбоксильных группы
  • Трехосновные — 3 карбоксильных группы

Классификация карбоновых кислот

Высшие карбоновые кислоты называют жирными кислотами. Более подробно мы изучим их теме, посвященной жирам, в состав
которых они входят.

Номенклатура и изомерия карбоновых кислот

Названия карбоновых кислот формируются путем добавления суффикса «овая» к названию алкана с соответствующим числом атомов углерода
и слова кислота: метановая кислота, этановая кислота, пропановая кислота, и т.д.

Многие карбоновые кислоты имеют тривиальные названия. Наиболее известные:

  • Метановая — HCOOH — муравьиная кислота
  • Этановая — CH3-COOH — уксусная кислота
  • Пропановая — C2H5-COOH — пропионовая кислота
  • Бутановая — C3H7-COOH — масляная кислота
  • Пентановая — C4H9-COOH — валериановая кислота

Номенклатура карбоновых кислот

Для предельных карбоновых кислот характерна структурная изомерия: углеродного скелета, межклассовая изомерия со сложными
эфирами.

Изомерия карбоновых кислот

Получение карбоновых кислот
  • Окисление алканов
  • При повышенной температуре и в присутствии катализатора становится возможным неполное окисление алканов, в результате которого
    образуются кислоты.

    Окисление алканов

  • Окисление спиртов
  • При реакции спиртов с сильными окислителями, такими как подкисленный раствор перманганата калия, спирты окисляются
    до соответствующих кислот.

    Окисление спиртов

  • Окисление альдегидов
  • При окислении альдегиды образуют соответствующие карбоновые кислоты. Окисление можно проводить качественной реакцией
    на альдегиды — реакцией серебряного зеркала.

    Окисление альдегидов, реакция серебряного зеркала

    Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли.

    Реакция серебряного зеркала

    Окисление альдегидов также может быть успешно осуществлено другим реагентом — свежеосажденным гидроксидом меди II.
    В результате такой реакции образуется осадок кирпично-красного цвета оксида меди I.

    Окисление альдегидов, реакция с гидроксидом меди II

  • Синтез муравьиной кислоты
  • Существует специфический способ получения муравьиной кислоты, который заключается в реакции щелочи с угарным газом — образуется формиат (соль муравьиной кислоты). В результате добавления раствора серной кислоты к формиату получается
    муравьиная кислота.

    Синтез муравьиной кислоты

  • Синтез уксусной кислоты
  • Специфичность синтеза уксусной кислоты заключается в реакции угарного газа с метанолом, в результате которой она образуется.

    Также уксусную кислоту можно получить другим путем: сначала провести реакцию Кучерова, в ходе которой образуется уксусный альдегид.
    Окислить его до уксусной кислоты можно аммиачным раствором оксида серебра или гидроксидом меди II.

    Синтез уксусной кислоты

Читайте также:  Какие свойствами обладают живые организмы
Химические свойства карбоновых кислот

Для карбоновых кислот не характерны реакции присоединения. Карбоновые кислоты обладают более выраженными кислотными свойствами, чем
спирты.

  • Кислотные свойства
  • Карбоновые кислоты вступают в реакции с металлами, которые способны вытеснить водород (стоят левее водорода в ряду напряжений
    металлов) из кислоты. Реагируют также с основаниями, с солями более слабых кислот, например, угольной кислоты.

    Кислотные свойства карбоновых кислот

  • Галогенирование
  • Галогенирование происходит по типу замещения в радикале, который соединен с карбоксильной группой. Напомню, что наиболее легко
    замещается водород у третичного, чуть сложнее — у вторичного, и значительно сложнее — у первичного атома углерода.

    Галогенирование карбоновых кислот

    Сила карбоновых кислот тем выше, чем меньше электронной плотности сосредоточено на атоме углерода в карбоксильной группе.
    Поэтому самая слабая из трех кислот — уксусная, чуть сильнее — хлоруксусная, за ней — дихлоруксусная и самая сильная —
    трихлоруксусная.

    Перераспределение электронной плотности в молекулах этих кислот для лучшего запоминания лучше увидеть наглядно. Это
    перераспределение обусловлено большей электроотрицательностью хлора, который притягивает электронную плотность.

    Сила карбоновых кислот

  • Особые свойства муравьиной кислоты
  • Муравьиная кислота отличается от своих гомологов. За счет наличия у нее альдегидной группы, она, единственная из карбоновых кислот,
    способна вступать в реакцию серебряного зеркала.

    В такой реакции идет ее окисление до нестойкой угольной кислоты, которая распадается на углекислый газ и воду.

    Реакция серебряного зеркала с муравьиной кислотой

  • Разложение муравьиной кислоты
  • При нагревании и в присутствии серной кислоты (водоотнимающего компонента) муравьиная кислота распадается на воду и угарный газ.

    HCOOH → (t, H2SO4) CO↑ + H2O

Сложные эфиры

Получение сложных эфиров происходит в реакции этерификации (лат. aether — эфир), заключающейся во взаимодействии карбоновой кислоты
и спирта.

Названия сложных эфиров формируются в зависимости от того, какой кислотой и каким спиртом эфир образован. Примеры:

  • Метановая кислота + метанол = метиловый эфир метановой кислоты (метилформиат)
  • Этановая кислота + этанол = этиловый эфир уксусной кислоты (этилацетат)
  • Метановая кислота + этанол = этиловый эфир метановой кислоты (этилформиат)
  • Пропановая кислот + бутанол = бутиловый эфир пропионовой кислоты (бутилпропионат)

Реакция этерификации

Для сложных эфиров характерной реакцией является гидролиз — их разложение. Возможен щелочной гидролиз, при котором образуется соль
кислоты и спирт, и кислотный гидролиз, при котором образуются исходные спирт и кислота.

Кислотный гидролиз протекает обратимо, щелочной — необратимо.
Реакция щелочного гидролиза по-другому называется реакция омыления, и напомнит о себе, когда мы дойдем до темы жиров.

Гидролиз сложных эфиров

Ангидриды

Ангидриды — химические соединения, производные неорганических и органических кислот, образующиеся при их дегидратации.

Образование ангидридов

Хлорангидриды карбоновых кислот образуются в реакции карбоновых кислот с хлоридом фосфора V.

Образование хлорангидридов

Следующая реакция не имеет отношения к ангидридам, однако (из-за их схожести) вы увидите ее здесь для наилучшего запоминания.
Это реакция галогенирования гидроксикислот, в результате которой гидроксогруппа в радикале меняется на атом галогена.

Галогенирование гидроксикислот

Непредельные карбоновые кислоты

Распределение электронной плотности в молекулах творит чудеса: иногда реакции идут против правила Марковникова. Так происходит
в непредельной акриловой кислоте.

Присоединение против правила Марковникова

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник