Какие свойства электромагнитных волн

Недостаточно обладать мудростью, нужно уметь пользоваться ею.

Информационный блок Электромагнитные волны и их свойства

Какие свойства электромагнитных волнОбщие свойства электромагнитных волн

-Поглощение диэлектрическими
телами

-Отражение (металлами)

-Преломление на границе
диэлектрика

-Поперечность

-Скорость в вакууме (воздухе)
300000 км/с

-Давление на
вещество

-Скорость в
среде убывает

-Интерференция,
дифракция, поляризация


Поглощение
электромагнитных волн.
Располагают рупоры друг против друга и, добившись хорошей слышимости звука
в громкоговорителе, помещают между рупорами различные диэлектрические тела. При
этом замечают уменьшение громкости.

Отражение
электромагнитных волн.
Если диэлектрик заменить металлической пластиной, то звук перестанет быть
слышимым. Волны не достигают приемника вследствие отражения. Отражение
происходит под углом, равным углу падения, как и в случае световых и
механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми
углами к большому металлическому листу. Звук исчезнет, если убрать
лист или повернуть его.

Преломление
электромагнитных волн.
Электромагнитные волны изменяют свое направление (преломляются) на границе
диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из
парафина. Рупоры располагают под углом друг к другу, как и при демонстрации
отражения. Металлический лист заменяют затем призмой. Убирая призму
или поворачивая ее, наблюдают исчезновение звука.

Поперечность
электромагнитных волн.
Электромагнитные волны являются поперечными. Это означает, что векторы Е и В электромагнитного поля волны
перпендикулярны направлению ее распространения. При этом векторы Е и В взаимно перпендикулярны. Волны с
определенным направлением колебаний этих векторов называются поляризованными.  изображена такая

Какие свойства электромагнитных волн

поляризованная волна.

Приемный рупор с детектором принимает только
поляризованную в определенном направлении волну. Это можно обнаружить, повернув
передающий или приемный рупор на 90°. Звук при этом исчезает.

Поляризацию наблюдают, помещая между генератором и
приемником решетку из параллельных металлических стержней. Решетку
располагают так, чтобы стержни были горизонтальными или вертикальными. При
одном из этих положений, когда электрический вектор параллелен стержням, в них
возбуждаются токи, в результате чего решетка отражает волны, подобно сплошной
металлической пластине. Когда же вектор перпендикулярен стержням, токи в
них не возбуждаются и электромагнитная волна проходит через решетку.

Какие свойства электромагнитных волн


Интерференция волн.
Направим излучающий рупор на два металлических листа, расположенные рядом друг с другом под углом, чуть меньшим 180°. Передвигая 

приемный рупор вокруг листов, мы обнаружим последовательное усиление и ослабление мощности 

принимаемой волны.

Дифракция волн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя, как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.


Электромагнитные волны обладают следующими свойствами. Они поглощаются, отражаются, испытывают преломление, поляризуются. Последнее свойство свидетельствует о поперечности этих волн.

Прочитать можно на сайте Физика.ru https://www.fizika.ru/kniga/index.php?mode=proverjalka&theme=11&id=11090 

Источник

Тестирование онлайн

Электромагнитное поле

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.

Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.

Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.

Читайте также:  Какие свойства присущи для технического учета

Какие свойства электромагнитных волн

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Какие свойства электромагнитных волн

Какие свойства электромагнитных волн

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Какие свойства электромагнитных волнКакие свойства электромагнитных волнКакие свойства электромагнитных волн

Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур «открывают», т.е. создают условия для того, чтобы поле «уходило» в пространство. Это устройство называется открытым колебательным контуром — антенной.

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.

Источник

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого элеетрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.

Какие свойства электромагнитных волн

Рисунок 2.6.1.

Закон электромагнитной индукции в трактовке Максвелла

Какие свойства электромагнитных волн

Рисунок 2.6.2.

Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы Какие свойства электромагнитных волн и Какие свойства электромагнитных волн перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3).

Какие свойства электромагнитных волн

Рисунок 2.6.3.

Синусоидальная (гармоническая) электромагнитная волна. Векторы Какие свойства электромагнитных волн , Какие свойства электромагнитных волн   и  Какие свойства электромагнитных волнвзаимно перпендикулярны

Читайте также:  Какие ягоды имеют целебные свойства

2. Электромагнитные волны распространяются в веществе с конечной скоростью

Какие свойства электромагнитных волн

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные:

ε0 = 8,85419·10–12 Ф/м,

μ0 = 1,25664·10–6 Гн/м.

Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Какие свойства электромагнитных волн

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Какие свойства электромагнитных волн

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля Какие свойства электромагнитных волн и напряженности электрического поля Какие свойства электромагнитных волн  в каждой точке пространства связаны соотношением

Какие свойства электромагнитных волн

4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Какие свойства электромагнитных волн

Подставляя сюда выражения для wэ, wм и υ, можно получить:

Какие свойства электромагнитных волн

Поток энергии в электромагнитной волне можно задавать с помощью вектораКакие свойства электромагнитных волн, направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ0. Этот вектор называют вектором Пойнтинга.

В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно

Какие свойства электромагнитных волн

где E0 – амплитуда колебаний напряженности электрического поля.

Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м2).

5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены Петром Николаевичем Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

Какие свойства электромагнитных волн

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.

Для поля в единичном объеме

Какие свойства электромагнитных волн

Отсюда следует:

Какие свойства электромагнитных волн

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности (СТО), оно справедливо для любых тел независимо от их природы и внутреннего строения.

Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Генриха Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.

Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А.С. Попов, 1895 г.).

Читайте также:  Какие из указанных ниже веществ могут проявлять только окислительные свойства

7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).

Какие свойства электромагнитных волн

Рисунок 2.6.4.

Элементарный диполь, совершающий гармонические колебания

Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.

Какие свойства электромагнитных волн

Рисунок 2.6.5.

Излучение элементарного диполя

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Источник

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения.Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика,
хотя свойствами излучения отдельных областей спектра занимаются
определенные более специализированные разделы физики (отчасти так
сложилось исторически, отчасти обусловлено существенной конкретной
спецификой, особенно в отношении взаимодействия излучения разных
диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий; в соответствии с современными представлениями (Стандартная модель)
при высоких энергиях электродинамика перестает быть самостоятельной,
объединяясь в одной теории со слабыми взаимодействиями, а затем — при
еще более высоких энергиях — как ожидается — со всеми остальными
калибровочными полями.

Существуют различающиеся в деталях и степени общности теории,
позволяющие смоделировать и исследовать свойства и проявления
электромагнитного излучения. Наиболее фундаментальной из завершенных и проверенных теорий такого рода является квантовая электродинамика,
из которой путём тех или иных упрощений можно в принципе получить все
перечисленные ниже теории, имеющие широкое применение в своих областях.
Для описания относительно низкочастотного электромагнитного излучения в
макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла,
причём существуют упрощения в прикладных применениях. Для оптического
излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа,
для которых электромагнитное излучение (чаще всего — определенного
диапазона) и его взаимодействие с веществом играют ключевую роль. Все
эти области граничат и даже пересекаются с описанными выше разделами
физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

  • наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.
  • электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно
    направлению распространения волны, но они существенно отличаются от
    волн на воде и от звука тем, что их можно передать от источника к
    приёмнику в том числе и через вакуум.

Источник