Какие свойства излучения относится к лазерному излучению
Естествознание, 11 класс
Урок 19. Свойства лазерного излучения. Использование лазеров
Перечень вопросов, рассматриваемых в теме:
- Какие свойства у лазерного излучения?
- Какие типы лазеров существуют?
- Где применяются лазеры?
Глоссарий по теме:
Лазер – оптический квантовый генератор
Спонтанное излучение – самопроизвольное излучение кванта света атомом или молекулой при переходе электрона на более низкий энергетический уровень
Вынужденное излучение – явление испускания фотонов определённой частоты возбужденными атомами, молекулами и другими квантовыми системами под действием фотонов (внешнего излучения) такой же частоты
Метастабильное состояние атома – возбужденное энергетические состояние, которое может существовать достаточно долго ≈ 10-3с
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
- Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017 – §28, С. 100-103.
- Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- М.: Вентана-Граф, 2018. – 464 с.
- https://fb.ru/article/251655/printsip-deystviya-lazera-osobennosti-lazernogo-izlucheniya
Теоретический материал для самостоятельного изучения
Изучая корпускулярные свойства света, мы уже познакомились с лазером. Процесс излучения обусловлен переходом электрона с более высокого энергетического уровня на более низкий. Излучение кванта света в таком процессе происходит самопроизвольно и называется спонтанным излучением. Лазер усиливает свет за счёт вынужденного излучения.
Рассмотрим устройство лазера на примере рубинового.
В центре находится кристалл рубина, состоящий из атомов алюминия и кислорода с небольшой примесью атомов хрома. Этот кристалл имеет строго параллельные торцы и на него навита спиральная газоразрядная лампа, называемая – лампа накачки. Под действием света лампы атомы хрома переходят на метастабильный уровень. Параллельные торцы кристалла покрывают тонким слоем серебра, делая их зеркальными, при этом один из зеркальных торцов делают частично прозрачным. Выходящее из этого торца излучение и представляет собой луч лазера. Устройство, обеспечивающее многократное отражение фотонов только одного направления, называется резонатором. Резонатор состоит из рабочей зоны с зеркалами с двух сторон. Причём одно из них частично прозрачное.
Рассмотрим свойства лазерного излучения.
Высокая монохроматичность: при разложении лазерного излучения в спектр получается очень узкая линия, намного уже, чем для естественного света. Это свойство оказалось важным для научных исследований в области спектроскопии, молекулярной физики и химии.
Лазерное излучение кроме высокой монохроматичности обладает также очень малым угловым расхождением пучка (в 104 раз меньше, чем у традиционных оптических осветительных систем, например, у прожектора). Малая угловая расходимость позволяет фокусировать излучение линзами и вогнутыми зеркалами вплоть до 1 мкм и создавать значительные плотности мощности на облучённых участках. По этому показателю лазерное излучение превосходит излучение всех других источников света.
Ещё одно свойство – высокая интенсивность и короткая длительность. Она позволяет сконцентрировать в малом объеме значительную энергию. Лазер не требует времени для нагрева, поэтому возможно получать импульсы длительностью 10-15с. Это позволяет рассмотреть даже процесс протекания быстрых химических реакций.
Помимо всех вышеперечисленных свойств также можно выделить когерентность и поляризованность. Эти характеристики важны в диагностических исследованиях. Лазерное излучение обладает высокой когерентностью за счет явления вынужденного излучения. Излучение, создаваемое отдельными точками активной среды, имеет сдвиги фазы, соответствующие распространению одной плоской электромагнитной волны, так что из лазера выходит электромагнитная волна с постоянной фазой и амплитудой.
Конструкции лазеров очень разнообразны. Лазеры различаются: способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т. п.); рабочей активной средой (газы, жидкости, стекла, кристаллы, полупроводники и т.д.); конструкцией резонатора; режимом работы (импульсный, непрерывный). Эти различия определяются многообразием требований к характеристикам лазера в связи с его практическими применениями.
Благодаря своим особым свойствам по сравнению с другими источниками света лазеры широко применяются во многих областях деятельности человека.
Узкий нерасходящийся луч применяется при строительстве туннелей, метрополитенов, когда необходимо провести прямую линию на большое расстояние. При помощи специальной установки создается лазерный луч, определяющий трассу. Ориентируясь на него, управляющий экскаватором человек может стабильно трудиться. Также это свойство лазеров применимо для создания оружия с оптическим прицелом. Используя хорошо отлаженное оружие, пуля попадает точно в пятно, образованное лазером на мишени
Точная фокусировка лазерного луча позволяет использовать его для записи информации на оптические диски.
Высокая интенсивность излучения используется в медицине, в частности в микрохирургии. Лазер представляет собой тончайший скальпель, с помощью которого можно вырезать мельчайшие участки ткани.
Это же свойство применяется и других устройствах для разрезания различных материалов, проделывания отверстий. При воздействии лазерного излучения на материалы облучаемый участок сначала нагревается, затем плавится и испаряется. Дозируя тепловые нагрузки, можно обеспечить практически любой тепловой режим нагреваемого участка, который в результате и определяет вид технологической обработки.
Использование лазеров привело к открытию совершенно новых областей исследования. Особенно ярким примером новой области исследования является нелинейная оптика. Высокая интенсивность лазерного излучения позволяет наблюдать явления, обусловленные нелинейным откликом среды: генерация гармоник, вынужденное рассеяние и др.
С появлением лазеров спектроскопия не только расширила свои прежние возможности, но и получила совершенно новые идеи. Использование одночастотных лазеров позволило проводить спектроскопические измерения с разрешающей способностью, которая на много порядков превышает разрешение, достигаемое с помощью обычных спектроскопических методов. Это открыло путь к новому и более детальному изучению структуры вещества.
Осуществление термоядерного синтеза и использование его в мирных целях позволит человечеству получить неограниченный источник энергии. Предполагают, что лазеры позволят создать высокую температуру для дейтериево-тритиевой плазмы и удержания этой плазмы.
Лазеры, обладая высокой монохроматичностью, применяются в голографии.
Полупроводниковые лазеры применяются для передачи информации в быту и системе космической связи
Всё большее применение лазеры находят в искусстве. С их помощью создаются феерические быстроизменяющиеся живописные картины на сцене.
Таким образом благодаря уникальным свойствам лазеры находят применение в различных областях промышленности, в медицине, искусстве, военном деле.
Примеры и разбор решения заданий тренировочного модуля:
Текст задания 1.:
Попарно соединяя овалы, решите ребус-соответствие:
Фразы:
- Прибор, в котором используют лазерный луч
- Оптический квантовый генератор
- Оптический прибор для просмотра стерео-слайдов
- Стереоскоп
- Дисковод
- Лазер
Правильный вариант: надписи в соединённых фигурах должны составить следующие фразы:
- Прибор, в котором используют лазерный луч – дисковод
- Оптический квантовый генератор – лазер.
- Оптический прибор для просмотра стереослайдов – стереоскоп.
Текст задания 2.:
Разместите предложенные варианты ответов в две колонки по указанному критерию
Типы лазеров по способу накачки | Типы лазеров по виду активной среды | Свойства лазерного излучения |
Монохроматичность, твёрдотельные, интенсивность, полупроводниковые, жидкостные, когерентность, химические, газовые, оптические, электрические, направленность
Правильные варианты
Типы лазеров по способу накачки | Типы лазеров по виду активной среды | Свойства лазерного излучения |
Оптические, электрические, полупроводниковые, химические | Твердотельные, жидкостные, газовые | Монохроматичность, интенсивность, когерентность, направленность |
Лазерное излучение является видом физической энергии, не встречающимся в природных источниках света. Оно вырабатывается специальными приборами — оптическими квантовыми генераторами (ОКГ) различной конструкции, получившими название – лазеры (от английского словосочетания Light amplification by stimulated emission of radiation — LASER). Принципы его выработки ОКГ были одновременно и независимо открыты в начале 60-х годов российскими и американскими физиками, а уже в конце того же десятилетия были предприняты первые попытки лечебного применения низкоинтенсивных (терапевтических) лазеров, в том числе и для косметологии.
Полупроводниковые и газо-жидкостные лазеры
Лазерное излучение испускается атомами рабочего вещества ОКГ, которое может быть представлено газом, жидкостью, кристаллом, полупроводником.
Лазерное излучение – это электромагнитное излучение оптического диапазона (светового), обладающее такими свойствами как когерентность, монохроматичность, поляризованность и направленность потока излучения, что позволяет создать строго определённую мощность воздействия на поверхности облучаемого объекта.
Лазер – это прибор, который испускает направленный пучок когерентного, поляризованного, монохроматичного электромагнитного излучения, т.е. света в очень узком спектральном диапазоне.
Физические свойства излучения
- Монохроматичность (одноцветность) – все электромагнитные колебания потока имеют одинаковую частоту и длину волны.
- Когерентность (синфазность) — совпадение фаз электромагнитных колебаний.
- Поляризация — фиксированная ориентация векторов электромагнитного излучения в пространстве относительно направления его распространения.
- Направленность — малая расходимость потока излучения.
Особые свойства позволяют концентрировать энергию со строго определенными физическими параметрами и высоким потенциалом биологического и лечебного действия на поверхности объекта. Именно в этом заключается принципиальное отличие от других форм лучистой энергии.
Длина волны лазера
Волна – возмущение (изменение состояния среды или поля), распространяющееся в пространстве с конечной скоростью.
Длина волны — расстояние, на которое распространяется волна за период, равный расстоянию между двумя ближайшими точками среды, колеблющимися в одной фазе. Длина волны электромагнитного излучения оптического диапазона измеряется в нанометрах (нм) или микрометрах (мкм) (1 мкм = 1 000 нм).
Частота импульсов лазера
Частота колебаний (импульсов) – физическая величина, равная числу колебаний (импульсов), совершаемых за единицу времени. Единица измерения в СИ – герц (Гц). 1 Гц – эта частота, при которой 1 колебание совершается за одну секунду.
Мощность лазера
Мощность излучения — средняя мощность, переносимая через какую-либо поверхность. Единица измерения в СИ — Ватт (Вт). Плотность мощности — отношение потока излучения к площади поверхности, перпендикулярной к направлению распространения. Единица измерения в СИ — Вт/см2.
Доза облучения — энергетическая облученность за определенный промежуток времени. Единица измерения в СИ — Дж/м2. 1Д – энергия, полученная при воздействии излучением мощностью в 1 Вт за 1 с. 1 Дж = 1 Вт/1с.
Длина волны лазерного излучения
Одной из важнейших характеристик является длина волны (измеряется в нанометрах или микрометрах). В зависимости от длины волны может принадлежать к различным участкам спектра: ультрафиолетовому, видимому (чаще красному) и инфракрасному.
Спектр лазерного излучения (цвет лазера)
Ультрафиолетовый диапазон
- От 180 до 400 нм.
Видимый спектр
- Фиолетовый 400-450 нм.
- Синий 450-480 нм.
- Голубой 480-510 нм.
- Зелёный 510-575 нм.
- Жёлтый 575-585 нм.
- Оранжевый 585-620 нм.
- Красный 620-760 нм.
Инфракрасный диапазон
- Ближняя область 760 нм -15 мкм.
- Дальняя область 15-30 мкм.
В физиотерапии наиболее часто применяют ближний инфракрасный диапазон, который обладает наибольшим проникающим действием и мягкими биологическими и лечебными эффектами.
Интенсивность лазерного излучения
В зависимости от выходной мощности лазеры подразделяются на:
- Низкоэнергетические (плотность мощности излучения менее 0.4 Вт/см2).
- Среднеэнергетические (плотность мощности излучения 0.4-10 Вт/см2).
- Высокоэнергетические (плотность мощности излучения более 10 Вт/см2).
Лазер
— квантовый усилитель или генератор когерентного электромагнитного излучения оптического диапазона (света).
Лазерное излучение — электромагнитное излучение оптического диапазона, обладающее такими свойствами, как когерентность, монохроматичность, поляризованность, направленность, что позволяет создать большую локальную концентрацию энергии.
Когерентность (от латинского cohaerens — находящийся в связи, связанный) — согласованное протекание во времени нескольких колебательных волновых процессов одной частоты и поляризации, свойство двух или более колебательных волновых процессов, определяющее их способность при сложении взаимно усиливать или ослаблять друг друга. Тогда при их сложении в пространстве возникает интерференционная картина. Различают пространственную и временную когерентности.
Другими словами, когерентность — это распространение фотонов в одном направлении, имеющих одну частоту колебаний, т. е. энергию. Излучение, состоящее из таких фотонов, называют когерентным.
Пространственная когерентность относится к волновым полям, измеряемым в один и тот же момент времени в двух разных точках пространства. Если за время наблюдения, равное двум периодам колебаний, фаза изменится не более чем на п, то поля называют когерентными. Расстояние, на котором сохраняется когерентность, называют длиной когерентности, т. е. на этом расстоянии наблюдаются интерференционные эффекты.
Временная когерентность описывает поведение волн в течение времени, относится к одной точке поля, но в различные моменты времени и тесно связана с понятием монохроматичности. Характеризуется таким параметром, как время когерентности.
Пространственная когерентность определяется геометрическими размерами источника излучения, временная — спектральным составом излучения, т. е. зависимостью энергии излучения от длины волны (спектра).
Большинство лазеров, применяемых в современной лазерной терапии — диодные и имеют чрезвычайно малую длину когерентности. Для импульсных полупроводниковых лазеров /. составляет доли миллиметра. Другими словами, на небольшом расстоянии от биологического объекта излучаемое поле ведет себя как некогерентный источник (подразумевается пространственная когерентность).
Интерференция света — явление, возникающее при наложении двух или нескольких когерентных световых волн, линейно поляризованных в одной плоскости, состоящее в устойчивом во времени усилении или ослаблении интенсивности результирующей световой волны в зависимости от соотношения между фазами этих волн.
Монохроматичность (дословно — одноцветность) — излучение одной определенной частоты или длины волны. Более корректно — излучение с достаточно малой шириной спектра. Условно за монохроматичное можно принимать излучение с шириной спектра менее 5 нм. Именно такую ширину спектральной линии имеют импульсные полупроводниковые лазеры. У одномодовых непрерывных лазеров ширина спектра излучения не более 0,3 нм.
Поляризация — симметрия (или нарушение симметрии) в распределении ориентации вектора напряженности электрического и магнитного полей в электромагнитной волне относительно направления ее распространения. Если две взаимно перпендикулярные составляющие вектора напряженности электрического поля (Е) совершают колебания с постоянной во времени разностью фаз, то волна называется поляризованной. Если изменения происходят хаотично (при распространении электромагнитных волн в анизотропных средах, отражении, преломлении, рассеянии и др.), то волна является неполяризованной.
Постараемся проще сформулировать понятие поляризации. Если мы посмотрим вдоль оси распространения на убегающую от нас волну (рис. 25), то тогда увидим несколько вариантов ее движения или колебаний (волна все- таки). В первом случае (рис. 26, а) волна будет совершать колебания строго вдоль плоскости распространения, и мы ее просто не увидим, как лист бумаги, который повернули к нам параллельно поверхности. Такую волну называют линейно поляризованной. Во втором случае волне задан начальный импульс, отклоняющий ее колебания от заданного направления, и мы видим, что она как бы вращается вдоль оси распространения, «ввинчивается» в пространство. Тогда говорят о круговой поляризации. В общем случае в излучении (волновом поле) можно найти все типы волн, и такой, самый распространенный вариант называют эллиптической (частичной) поляризацией(рис. 26, в).
Состояние поляризации описывают параметром, называемым степенью поляризации (Сп), равным отношению разности интенсивности двух выделенных ортогональных составляющих к сумме их интенсивностей:
ТЕ-ТМ ~ ТЕ + ТМ‘
где ТЕ — интенсивность в плоскости распространения электрической составляющей электромагнитной волны; ТМ-интенсивность в плоскости распространения магнитной составляющей электромагнитной волны.
На практике чаще используют коэффициент поляризации Кп- Сп- 100%.
Направленность — следствие когерентности лазерного излучения, когда фотоны обладают одним направлением распространения. У полупроводниковых инжекционных лазеров излучение расходящееся (и достаточно сильно!), что, однако, не мешает называть их лазерами. Параллельный световой луч называют коллимированным.
Мощность излучения — энергетическая характеристика электромагнитного излучения. Единица измерения в СИ — ватт [Вт].
Энергия (доза) — мощность электромагнитной волны, излучаемая в единицу времени. Единица измерения в СИ — джоуль [Дж], или [Вт • с]. Используемый на практике термин «доза» — мера действующей на организм энергии. Физический смысл и размерность совпадают.
Плотность мощности — отношение мощности излучения к площади поверхности, перпендикулярной к направлению распространения излучения. Единица измерения в СИ — ватт/м2 [Вт/м2].
Плотность дозы — энергия излучения, распределенная по площади поверхности воздействия (когда слово «плотность» исчезает и остается только «доза», это не совсем корректно). Единица измерения в СИ — джоуль/м2 [Дж/м2]. На практике более удобным представляется использование единицы Дж/см2, так как площади, на которые реально происходит воздействие лазерным излучением, исчисляются несколькими квадратными сантиметрами. Этот параметр определяющий, можно даже сказать основной, в биологических эффектах низкоинтенсивного лазерного излучения.
Плотность дозы вычисляется по формуле:
D = (Рср.х T)/S,
где D — доза лазерного воздействия; РСр — средняя мощность излучения; Т — время воздействия; S- площадь воздействия
Очень важно понимать, что для достижения наилучшего результата (или эффекта вообще) необходимо задать оптимальную плотность дозы.
Другими словами, нельзя меньше или больше — нужно обеспечить именно и только оптимальное значение. Все три параметра — средняя мощность излучения, время воздействия и площадь воздействия — взаимозависимы, т. е. подбор оптимальной дозы может быть изменен вариацией одного из параметров. Мы можем увеличить мощность или время для увеличения плотности дозы, а также уменьшить площадь воздействия.
В литературе практически всегда упоминается не «плотность дозы», а только термин «доза». Это связано с тем, что площадь чаще всего автоматически задается методикой воздействия. Например, при использовании зеркальной насадки площадь принимается равной 1 см2 и не меняется в процессе проведения процедуры. То есть происходит нормирование параметров воздействия для облегчения работы. К сожалению, не всегда удается применять контактно-зеркальный метод, когда табличное значение нормированной дозы используется без всяких корректировок. В реальной жизни необходимо учитывать и площадь воздействия. В табл. 3-5 представлены приблизительные значения площадей облучения в наиболее распространенных случаях при дистантной методике воздействия в зависимости от диаметра светового пятна или расстояния до объекта.
В табл. 7 представлены относительные (нормированные на площадь, равную 1 см2) значения доз излучения для наиболее распространенных значений мощности и времени воздействия непрерывного лазерного излучения. Мощность дана в мВт (1 (Р Вт), что более удобно. Необходимо внимательно следить за размерностью всех величин, используемых в расчетах.
Модуляция излучения — процесс изменения во времени мощности излучения (амплитудная), частоты (частотная), фазы {фазовая). На практике в лазерной терапии используется только амплитудная модуляция, которая описывается следующими параметрами (рис. 28): длительность импульса (гм) — время, когда происходит излучение (определяют на уровне половины максимальной амплитуды); темновой период (Ттемн) — время отсутствия излучения; период и частота (см. выше); а также скважность (Q) — отношение периода к длительности импульса излучения.
Различают три основных режима излучения:
— непрерывный (немодулиро- ванный) — когда мощность не меняется во все время воздействия и средняя мощность равна максимальной;
— модулированный — когда меняется амплитуда излучения (мощность) по некоторому закону, при этом средняя мощность (РСр) в Q раз меньше максимальной (Рмакс.) или Рср. = Рмакс J Q
— импульсный — когда излучение происходит за очень короткий промежуток времени в виде редко повторяющихся импульсов.
Мощность излучения
В отношении режимов излучения необходимо сделать несколько замечаний:
1. Излучение непрерывных лазеров можно модулировать в пределах мощности, которую они обеспечивают в непрерывном режиме (или с незначительным превышением).
2. Модуляция может иметь различную форму (прямоугольник, треугольник и др.) и быть многочастотной — как это делается при помощи блока «Матрикс-БИО».
3. Непрерывные лазеры могут иметь среднюю мощность в десятки ватт и при соответствующей модуляции обеспечивать импульсный режим, но импульсные лазеры не могут работать в непрерывном режиме Сам механизм работы импульсных лазеров предполагает накопление энергии в течение относительно длительного промежутка времени, чтобы «выплеснуть» ее в одно мгновенье.
4. Условно импульсным можно считать такое модулированное излучение, длительность импульса которого не превышает 1 мкс при скважности более 100. Именно эти граничные условия различают импульсные и непрерывные лазеры (как переходные — квазинепрерывные). У импульсных лазерных диодов превышение этих границ приводит к их резкой деградации за счет теплового разрушения.
При модулированном режиме работы непрерывных лазеров средняя мощность уменьшается в 2 раза, так как чаще всего излучение модулируется прямоугольными импульсами со скважностью Q, равной 2. Измерители мощности при этом автоматически показывают реальное значение средней мощности, которое и принимается в расчетах.
Для импульсных лазеров расчет дозы усложняется промежуточным определением средней мощности (РСр ), так как измерители в этих аппаратах показывают импульсную мощность:
Pep. = Ри х tи х Fu,
где Ри — импульсная мощность излучения по показанию измерителя, Вт; и — длительность импульса излучения, с; Fu — частота повторения импульсов, Гц.
Обратите внимание на то, что для импульсных лазеров дозу можно регулировать изменением частоты!
В табл. 8 даны расчетные величины средней мощности излучения для различных значений импульсной мощности и частоты повторения импульсов. С целью упрощения длительность импульсов принимали неизменной и равной 100 не (Ю-7 с) — типичное значение для наиболее распространенных лазеров. Длительность импульсов — величина постоянная, задается генератором накачки лазера.
Часто в методических рекомендациях и литературе приводится непосредственно доза воздействия без указания других характеристик (частота, время воздействия, мощность). Табл. 9 помогает решить для таких случаев как бы обратную задачу: для данной дозы (D) и времени (7) воздействия определить плотность мощности излучения (Е) по формуле: Pcp.=ExS и среднюю мощность для известной площади воздействия (S) по формуле:
Обращает на себя внимание широкая вариабельность исходных параметров при неизменной дозе: можно большой мощностью воздействовать на короткий промежуток времени и, наоборот, длительное время облучать малой мощностью. Выбор, как всегда, остается за специалистом. Исходя из возможностей аппаратуры, остроты заболевания, состояния пациента, данных литературы, собственного опыта и т. д. принимается решение в пользу конкретных характеристик пространственно-временных параметров воздействия.
При расчете дозы необходимо учитывать, что при дистантном методе воздействия приблизительно 50% энергии отразится от поверхности кожи. Коэффициент отражения кожей электромагнитных волн оптического диапазона достигает 43-55% и зависит от различных причин: охлаждение участка воздействия снижает значение коэффициента отражения на 10-15%; у женщин он на 5-7% выше, чем у мужчин; у лиц старше 60 лет ниже, чем у молодых; увеличение угла падения луча ведет к возрастанию коэффициента отражения во много раз. Существенное влияние на коэффициент отражения оказывает цвет кожных покровов: чем темнее кожа, тем этот параметр ниже. Так, для пигментированных участков он меньше на 6-8%. При внутриполостной и контактно-зеркальной методиках практически вся подводимая мощность поглощается в объеме ткани в зоне воздействия.
Различна и глубина поглощения (чаще говорят глубина проникновения) лазерного излучения, которая зависит как от длины волны падающего света, так и от состава ткани (рис. 30). Экспериментальными исследованиями установлено, что проникающая способность излучения от ультрафиолетового до оранжевого диапазона постепенно увеличивается от 20 мкм до 2,5 мм с резким увеличением глубины проникновения в красном диапазоне (до 20- 30 мм), с пиком проникающей способности в ближнем инфракрасном (при X = 0,95 мкм — до 50 мм) и резким снижением до долей миллиметра далее. Максимум пропускания кожей электромагнитного излучения находится в диапазоне длин волн от 0,8 до 1,2 мкм.
Строго говоря, термин «глубина проникновения» с позиций лазерной терапии не совсем корректен и не имеет количественной оценки, так как под этим понимают проникновение некоторого количества фотонов, достаточного для измерения, а не об энергии, необходимой для «включения» вызванных лазерным излучением процессов. Другими словами, мы не знаем, сколько фотонов «пошли на пользу», вызвав фотобиологический отклик, а какая их часть поглотилась без эффекта.