Какие свойства используются при решении уравнений

Какие свойства используются при решении уравнений thumbnail

Муниципальное бюджетное общеобразовательное учреждение «Школа № 12 г.Феодосии Республики Крым»

Урок математики в 6 классе

Тема урока:

Учитель математики Дубинина Татьяна Яковлевна

2016г.

Цель урока: раскрыть понятие уравнения, решения уравнения; рассмотреть основные свойства уравнений; разобрать понятие линейного уравнения с одной переменной; закрепить на простейших примерах. Продолжать формировать умения и навыки выполнения действий над рациональными числами.

Ход урока

  1. Организационный момент (слайд 2): на тему выделено 12 часов, планируются 1 самостоятельная работа, 1 математический диктант и 1 контрольная работа.

  2. Оглашение цели урока: сегодня наша с вами задача понять, что же такое уравнение, его корни, что значит решить уравнение, разобрать свойства уравнений и к концу урока на начальном уровне уже уметь ими пользоваться.

  3. Восприятие новой темы

1.Давайте подумаем и попробуем сами определить: что же такое уравнение. Приведите пример уравнения и попробуйте дать определение уравнению. Подумайте, что должно быть в записи, чтобы это было уравнение.

(Дети пытаются приводить примеры, учитель записывает их на доске)

Слайд 3

1)2х +6;

2)4+9=13;

3)х+5=8.

Обсудить каждую запись:

1)буквенное выражение

Вопрос классу: чего не хватает в этой записи? Ответ: знака «равно» и ответа;

2)числовое равенство

Вопрос классу: почему это не уравнение? Ответ: нет буквы (переменной)

3)уравнение

Итак, давайте попробуем дать определение уравнения с одной переменной: (под запись в конспекты) Уравнением с одной переменной называется равенство, содержащее одну переменную.

Предложить нескольким учащимся повторить определение уравнения и ответить на вопрос, какие из записей на слайде являются уравнением:

Слайд 4

х+5;

х2+х=3;

х-у=1;

2х+1=х-5;

8+3=2+9.

2.Теперь разберём, что же называется корнем уравнения с одной переменной.

Слайд 5

х+2=5

Из чисел -1; 4; 3; 0 выберите корень данного уравнения.

1)х=-1

-1+2=1, 15, значит, х=-1 не является корнем уравнения

2)х=4

4+2=6, 65, значит, х=4 не является корнем уравнения

3)х=3

3+2=5, 5=5, значит, х=3 является корнем уравнения

4)х=0

0+2=2, 25, значит, х=0 не является корнем уравнения

Делаем вывод: (под запись в тетрадь)

Корнем уравнения с одной переменной называется числовое значение переменной, обращающее уравнение в верное числовое равенство.

4. Давайте решим следующие уравнения:

Слайд 6

х2=4; 0х=6; 0х=0; х+2=-9

Записывают уравнения в тетрадь и решают их, обсуждая:

1)х2=4;

х=2 или х=-2;

2)0х=6;

нет корней;

3)0х=0;

х-любое число.

Делаем вывод (с записью в тетради):

Решить уравнение – это значит найти все его корни или показать, что таковых нет.

5.Разберём теперь свойства уравнений (слайд 6). Все видели чашечные весы на рынке, представим себе, что на одну чашу положили 5 кг сахара, а на вторую – 5-ти килограммовую гирю. Что при этом происходит с весами?

Ответ: весы находятся в равновесии.

Вопрос: если теперь на обе чаши добавить по 1 кг, что при этом изменится, а что – нет?

Ответ: изменится вес на каждой чаше, но не изменится равновесие.

Вот так и в уравнении: важно равновесие, мы сейчас выясним, что можно делать с уравнением, чтобы корни его не изменились.

Вывод:

свойство 1

Корень уравнения не изменится, если к обеим частям прибавить одно и то же выражение.

Пример

2х+3=-х+6; /-3

2х+3-3=-х+6-3;

2х=-х+6-3; /+х

2х+х=-х+6-3+х;

2х+х=6-3;

3х=3;

х=1.

Из этого примера сделать вывод:

Свойство 2

Корень уравнения не изменится, если перенести слагаемое из одной его части в другую, поменяв при этом знак слагаемого на противоположный.

Пример:

3х-8=2х+6;

3х-2х=6+8;

х=14.

Свойство 3

Корень уравнения не изменится, если обе его части умножить или разделить на одно и то же число, отличное от нуля.

Пример:

4-8х=х-5;

-8х-х=-5-4; /*(-1)

8х+х=5+4;

9х=9;

х=1.

Свойство 4

Корень уравнения не изменится, если раскрыть скобки, привести подобные слагаемые, упростить обе части уравнения.

Пример:

5х-8(2-х)=11+6(х-1);

5х-16+8х=11+6х-6;

13х-16=5+6х;

13х-6х=5+16;

7х=21;

х=3.

4.Осмысление

Решают сначала самостоятельно, чтобы понять — насколько хорошо усвоили тему, а затем у доски проверяем.

618(а, б) Является ли число 2 корнем уравнения:

а) х-2=0; б)х+4=0.

626(а) Решить уравнение 3х+2х=10

627(а) Решить уравнение х+3=3х-7

628(а) Решить уравнение 2(х-5)=9

  1. Задать домашнее задание: п.3.9 – учить определение уравнения, знать понятие корня уравнения и знать, что значит решить уравнение, решать №№618(в, д), 626(г, ж), 627(г). Подумайте дома и попробуйте ответить на вопрос: зачем нужны уравнения?

  2. Рефлексия:

1)что же мы сегодня изучали на уроке?

2)достигли ли мы поставленной цели?

3)всё ли было понятно или на что-то необходимо обратить внимание на следующем уроке?

Источник

Слайд 1

Применение свойств функции при решении уравнений и неравенств Выполнила работу: Галаева Екатерина МБОУ СОШ №149 Московского района Ученицы 11 «А» класса Научный руководитель: Фадеева И. А. Учитель математики

Читайте также:  Какими свойствами обладает длина отрезок

Слайд 2

Основные направления: Изучение свойств функции: монотонность, ограниченность, область определения и инвариантность Узнать основные утверждения, которые наиболее часто используются при решении уравнений, неравенств и систем Решение задач из материалов КИМ для подготовке к ЕГЭ

Слайд 3

Монотонность Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции. f(x 1 ) f(x 2 ) x 1 x 2 f(x 1 ) f(x 2 ) x 1 x 2

Слайд 4

Утверждение 1. Если функция у = f ( x ) монотонна, то уравнение f ( x ) = с имеет не более одного корня. x =2 f(x) = — монотонно убывающая, значит, других решений нет. Ответ: x =2

Слайд 5

Утверждение 2. Если функция у = f ( x ) монотонно возрастает, а функция у = g ( x ) монотонно убывает, то уравнение f ( x ) = g ( x ) имеет не более одного корня. 2 — x = lg ( x +11) + 1 g ( x ) = 2 — x является монотонно убывающей, а функция f ( x ) = lg ( x + 11) + 1 монотонно возрастающей на области опреде­ления значит, уравнение f (х) = g ( x ) имеет не более одного корня. Подбором определяем, что х =-1 . Выше изложенное утверждение обосновывает единственность решения.

Слайд 6

а ) f (х) ≤ g ( x ) в том и только в том случае, когда х ϵ (- ∞ ; x 0 ]; б) f (х) ≥ g ( x ) в том и только в том случае, когда х ϵ [х 0 ; +∞). Наглядный смысл этого утверждения очевиден Утверждение 3. Если функция у = f (х) монотонно возрастает на всей числовой прямой, функция у = g ( x ) монотонно убывает на всей числовой прямой и f (х 0 ) = g ( x 0 ), то справедливы следующие утвер­ждения:

Слайд 7

Решить неравенство Решение . Функция f (х) = монотонно возрастает на всей числовой прямой, а функция g ( x ) = монотонно убывает на всей области определения. Поэтому неравен­ство f (х) > g ( x ) выполняется, если х > 2. Добавим область определения неравенства. Таким образом , получим систему Ответ : (2; 5).

Слайд 8

Утверждение 4. Если функция у = f (х) монотонно возрастает, то уравнения f (х)=х и f ( f (х))=х имеют одно и то же множество кор­ней, независимо от количество вложений. Следствие. Если n — натуральное число, а функция у = f (х) моно­тонно возрастает, то уравнения f (х)=х и n раз имеют одно и то же множество корней.

Слайд 9

Решить уравнение . Ответ: Решение. П ри x ≥1 правая часть уравнения не меньше 1, а левая часть меньше 1. Следовательно, если уравнение имеет корни, то любой из них меньше 1. При x ≤0 правая часть уравнения неположительная, а левая часть положитель­на, в силу того что . Таким образом, любой корень данного уравнения принадлежит интервалу (0; 1) Умножив обе части данного уравнения на х, и разделив на x числитель и знаменатель левой части, получим

Слайд 10

Откуда = . Обозначив через t , где t 0, получим уравнение = t . Рассмотрим возрастающую на своей области определения функцию f ( t )= 1+ . Полученное уравнение можно записать в виде f ( f ( f ( f ( t ))))= t , и по следствию утверждения 4 оно имеет то же множество решений, что и уравнение f ( t )= t , т.е. уравнение 1 + = t , откуда . Единственным положительным корнем этого квадратного относительно уравнение является . Значит, , откуда , т.е. , или . Ответ:

Слайд 11

Утверждение 1. Если max f ( x ) = с и min g ( x ) = с , то уравнение f ( x )= g ( x ) имеет то же множество решений, что и система Ограниченность Максимальное значение левой части равно 1 и минимальное значение правой части 1 , значит, решение уравнения сводиться к системе уравнений: , из второго уравнения находим возможный претендент x=0 , и убеждаемся, что он является решением и первого уравнения. Ответ: x=1 .

Слайд 12

Решить уравнение Решение. Так как sin3x≤1 и cos4x≤1, левая часть данного уравнения не превосходит 7. Равной 7 она может быть в том и только том случае, если откуда где k , n ϵ Z . Остается установить, существуют ли такие целые k и n , при которых последняя система имеет решения. Ответ: Z

Слайд 13

В задачах с неизвестными x и параметром a под областью определения понимают множество всех упорядоченных пар чисел ( x ; a ) , каждая из которых такова, что после подстановки соответствующих значений x и a во все входящие в задачу соотношения они будут определены. Пример 1. При каждом значение параметра a решите неравенство Решение. Найдем область определения этого неравенства. Из которых видно, что система Не имеет решений. Значит, область определения неравенства не содержит никаких пар чисел x и a , а поэтому неравенство не имеет решений. Область определения Ответ:

Слайд 14

Инвариантность, т.е. неизменность уравнения или неравенства относительно замены переменной каким-либо алгебраическим выражением от этой переменной. Простейшим примером инвариантности является четность: если – четная функция, то уравнение инвариантно относительно замены x и – x , поскольку = 0. Инвариантность

Слайд 15

Найти корни уравнения . Решение. Заметим, что пара инварианта относительно замене . Заменив в равенстве , получим . Умножив обе части данного равенства на 2 и вычтя из полученного равенства почленно равенство , находим 3 , откуда . Теперь осталось решить уравнение , откуда Корнями уравнения являются числа . Ответ: .

Читайте также:  Какие свойства книги информатика 3 класс

Слайд 16

Найти все значения a , для каждого из которых уравнение имеет более трех различных решений. Решение задач с параметром Свойство монотонности

Слайд 17

|x|= положительно X= |x|= Для существования двух корней числитель должен быть положителен. Поэтому При корни первого и второго уравнения совпадают, что не отвечает требованию условия: наличие более трех корней. Ответ : .

Слайд 18

Найти все значения a , при каждом из которых уравнение имеет два корня. Преобразуем уравнение к виду И рассмотрим функцию f(x)= определенную и непрерывную на всей числовой прямой . График этой функции представляет собой ломаную, состоящую из отрезков прямых и лучей, каждое звено которой является частью прямой вида y= kt+l . f(x)= При любом раскрытие модуля первого выражения k не превосходит 8, поэтому возрастание и убывание функции f(x) будет зависеть от раскрытия второго модуля. При x f(x) будет убывать, а при x возрастать. То есть, при x=3 функция будет принимать наибольшее значение. Для того чтобы уравнение имело два корня, необходимо, чтобы f(3) Свойство монотонности

Слайд 19

f(3)=12- |9-| 3+a || | 9-| 3+a || 9- | 3+a | — | 3+a | | 3+a | | 3+a | 3+a a Ответ: a

Слайд 20

Найти все значения параметра а , при каждом из кото­рых для любого действительного значения х выполнено неравенство Перепишем неравенство в виде , введем новую переменную t = и рассмотрим функцию f ( t ) = , опреде­ленную и непрерывную на всей числовой прямой. График этой функ­ции представляет собой ломаную, состоящую из отрезков прямых и лучей, каждое звено которой является частью прямой вида , где к

Слайд 21

Так как , то t ϵ [—1; 1]. В силу монотонного убывания функции у = f ( t ) достаточно проверить левый край данного отрезка. З . А истинным является Значит , , что возможно, только если числа и и v одного знака либо какое-нибудь из них равно нулю. , = ( ) ( ) 0. Разложив квадрат­ные трехчлены на множители, получим неравенство ( , из которого находим, что а ϵ (—∞; —1] U {2} U [ 4; +∞ ). Ответ: (—∞; — 1] U {2} U [4; +∞).

Слайд 22

Пример 2. Найти все значения параметра , при каждом из которых система уравнений Решение. Поскольку и sin x 1, из первого уравнения следует, что a 6. Поскольку из второго уравнения системы следует, что a 0. Таким образом, 0 .Третье уравнение системы, раскрывая скобки в левой его части и приводя подобные слагаемые, можно переписать так: . Поскольку , из последнего уравнения следует, что , откуда a . Учитывая все 3 неравенства 0 , получаем, что допустимыми значениями параметра a являются только 0 и 6 . Пусть a 0 . Тогда из второго уравнения данной системы получим y .Поэтому первое уравнение системы примет вид sin x , откуда x , n Z .При a , x , n Z , y третье уравнение системы, очевидно, выполнено. Пусть a . Тогда левая часть первого уравнения данной системы не меньше 6, а правая не больше 6. Равенство возможно, если y Тогда второе уравнение данной системы принимает вид , и, значит, z При a x , последнее уравнение данной системы принимает вид . Из двух значений z только z принимает вид . Ответ: ( , k , при a=6 Свойство ограниченности

Слайд 23

Решение. Необходимо выполнение условия ,откуда . При x = уравнение примет вид . Получим уравнение откуда или . Корнями двух последних уравнений являются При этих значениях параметра число -7 является корнем уравнения. При уравнение примет вид . Корнями того уравнения являются числа Значит, при 5 уравнение имеет больше одного корня. При и уравнение принимает вид . Теперь раскрываем модуль При уравнение сводится к уравнению , откуда Последнее уравнение, квадратное относительно , не имеет корней в силу отрицательности дискриминанта. При уравнение принимает вид и имеет единственный корень При получаем уравнение , откуда . И оно тоже не имеет корней как и при . Следовательно, при данное уравнение имеет единственный корень. Ответ: {3;7 }. Пример 3 . Найти все значения параметра a ,при каждом из которых уравнение имеет единственный корень. Свойство инвариантности

Слайд 24

Свойство инвариантности Пример 4. Найти все значения параметра a , при каждом из которых система уравнений имеет единственное решение. Решение. Заметим, что если ( ) решение системы, то и ( ) Решение системы. Следовательно , для единственности решения необходимо, чтобы выполнялось условие . При y система имеет вид Если x Пусть a Тогда данная система имеет вид Поскольку Тогда Таким образом , 3 Следовательно, 3 , причём знак равенства возможен только в случае, когда 3 Получаем систему откуда Значит, при a данная система имеет единственное решение (-1;0). При a система имеет более одного корня. Ответ: a

Слайд 25

Итоги моей работы В своей работе я изучила свойства функций: монотонность, ограниченность, область определения и инвариантность. Узнала очень много основных утверждений. Данные знания значительно упрощают задания с параметрами, которые имеют ужасающий вид. Систематизация задач по внешнему виду. Р ешение заданий типа 20. Цели , которые я поставила перед собой были достигнуты .

Читайте также:  Свойства воды какая она

Слайд 26

Спасибо за внимание!

Источник

На этом уроке вы узнаете, какие свойства уравнений можно применять при их решении. Вы познакомитесь с определением линейного уравнения и уравнения, сводящегося к линейному. Разобранные примеры и упражнения проиллюстрируют применение рассмотренных правил и позволят связать новый и ранее изученный материал в единое целое.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Уравнения и неравенства»

Первое свойство уравнений. Иллюстрирующий пример. Формулировка

Рассмотрим решение уравнения:

Уравнение (2) можно получить из уравнения (1), разделив обе части уравнения на 5.

Число 8 – это корень уравнения (1) и корень уравнения (2).

Сформулируем первое свойство уравнения.

Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю, и корни уравнения не изменятся.

Применение первого свойства уравнений. Упражнения

Пример 1.

Умножим обе части уравнения на 9. Тогда коэффициент перед  станет целым.

Ответ:

Пример 2.

Умножим обе части уравнения на 10. Тогда коэффициенты перед  станут целыми.

Ответ:

Пример 3.

Разделим обе части уравнения на 20.

Ответ:

Пример 4.

Разделим обе части уравнения на 2,1.

Ответ:

Второе свойство уравнений. Иллюстрирующие примеры. Формулировки

Рассмотрим решение уравнения:

Число 4 – это корень уравнения (1) и корень уравнения (2).

Заметим, что уравнение (2) можно было получить, перенеся число +5 из левой части в правую с противоположным знаком:

Сформулируем второе свойство уравнения:

Любое слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак на противоположный.

Рассмотрим решение еще одного уравнения: .

Вычтем из левой и правой части уравнения . Тогда  останется только в левой части.

Число 4 – это корень уравнения (3) и корень уравнения (4).

Второе свойство уравнений можно сформулировать иначе.

Если к обеим частям уравнения прибавить одно и то же число, то корни уравнения не изменятся. Если из левой и правой части уравнения вычесть одно и то же число, то корни уравнения не изменятся.

Применение второго свойства уравнений. Упражнения

Пример 1.  

Воспользуемся вторым свойством уравнений. Принято слагаемые, которые содержат неизвестное, собирать в левой части уравнения, а остальные в правой.

Пример 2.  

Перенесем слагаемые, которые содержат неизвестное, в левую часть, а известные слагаемые в правую часть.

Примеры решения более сложных уравнений

Пример 1.  

Сначала раскроем скобки.

Перенесем слагаемые, которые содержат неизвестное, в левую часть, а известные слагаемые в правую часть.

Пример 2.

Воспользуемся основным свойством пропорции. Произведение средних равно произведению крайних.

Раскроем скобки в левой и в правой части уравнения.

Перенесем неизвестное влево, а известное вправо.

Линейные уравнения. Определение

Во всех рассмотренных примерах мы приводили уравнение к виду

Уравнения такого вида называют линейными уравнениями с одним неизвестным. Уравнения, которые можно с помощью преобразований привести к такому виду, называют сводящимися к линейным.

Упражнение

При каких значениях переменной  значение выражения  равно значению выражения ?

Составим уравнение и решим уравнение.

Перенесем неизвестное влево, а известное вправо.

Ответ: при

Текстовая задача

Условие. Рост мальчика – 75 см и еще половина его роста. Найдите рост мальчика.

Решение.

1. Пусть  (см) – половина роста.

Тогда весь рост равен  (см),

с другой стороны, весь рост –  (см).

Составим уравнение:

75 см – половина роста

2.  – весь рост мальчика

Ответ: 150 см.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. – М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. – Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5–6 класс. – М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5–6. Пособие для учащихся 6-х классов заочной школы МИФИ. – М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5–6 классов средней школы. – М.: Просвещение, Библиотека учителя математики, 1989.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Математика (Источник).
  2. Интернет-портал Math-portal.ru (Источник).

Домашнее задание

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. – М.: Мнемозина, 2012: № 1333, № 1342 (а, г, ж, л), № 1343.
  2. Другие задания: № 1345, № 1347.

Источник