Какие свойства имеют основания

Какие свойства имеют основания thumbnail

Химические свойства гидроксида металла во многом зависят от того, к какой группе он принадлежит — к щелочам или к нерастворимым основаниям.

Общие химические свойства щелочей

1. Кристаллы щелочей при растворении в воде полностью диссоциируют, то есть распадаются на положительно заряженные ионы металла и отрицательно заряженные гидроксид-ионы.

A) Например, при диссоциации гидроксида натрия образуются положительно заряженные ионы натрия и отрицательно заряженные гидроксид-ионы:

NaOH→Na++OH−.

Б) Процесс диссоциации гидроксида кальция отображается следующим уравнением:

Ca(OH)2→Ca2++2OH−.

2. Растворы щелочей изменяют окраску индикаторов.

Фактически с индикатором взаимодействуют гидроксид-ионы, содержащиеся в растворе любой щёлочи. При этом протекает химическая реакция с образованием нового продукта, признаком протекания которой является изменение окраски вещества.

Изменение окраски индикаторов в растворах щелочей

Индикатор

Изменение окраски индикатора

Лакмус

Фиолетовый лакмус становится синим

Фенолфталеин

Беcцветный фенолфталеин становится

малиновым

Универсальный

индикатор

Универсальный индикатор становится

синим

Видеофрагмент:

Действие щелочей на индикаторы

3. Щёлочи взаимодействуют с кислотами, образуя соль и воду.

Реакции обмена между щелочами и кислотами называют реакциями нейтрализации.

А) Например, при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода: NaOH+HCl→NaCl+H2O.

Видеофрагмент:

Взаимодействие гидроксида натрия с соляной кислотой

Б) Если нейтрализовать гидроксид кальция азотной кислотой, образуются нитрат кальция и вода:

Ca(OH)2+2HNO3→Ca(NO3)2+2H2O.

4. Щёлочи взаимодействуют с кислотными оксидами, образуя соль и воду.

А) Например, при взаимодействии гидроксида кальция с оксидом углерода((IV)) т. е. углекислым газом, образуются карбонат кальция и вода:

Ca(OH)2+CO2→CaCO3↓+H2O.

Обрати внимание!

При помощи этой химической реакции можно доказать присутствие оксида углерода((IV)): при пропускании углекислого газа через известковую воду (насыщенный раствор гидроксида кальция) раствор мутнеет, поскольку выпадает осадок белого цвета — образуется нерастворимый карбонат кальция.

Б) При взаимодействии гидроксида натрия с оксидом фосфора((V)) образуются фосфат натрия и вода:

6NaOH+P2O5→2Na3PO4+3H2O.

5. Щёлочи могут взаимодействовать с растворимыми в воде солями.

Обрати внимание!

Реакция обмена между основанием и солью возможна в том случае, если оба исходных вещества растворимы, а в результате образуется хотя бы одно нерастворимое вещество (выпадает осадок).

А) Например, при взаимодействии гидроксида натрия с сульфатом меди((II)) образуются сульфат натрия и гидроксид меди((II)):

2NaOH+CuSO4→Na2SO4+Cu(OH)2↓.

Б) При взаимодействии гидроксида кальция с карбонатом натрия образуются карбонат кальция и гидроксид натрия:

Ca(OH)2+Na2CO3→CaCO3↓+2NaOH.

6. Малорастворимые щёлочи при нагревании разлагаются на оксид металла и воду.

Например, если нагреть гидроксид кальция, образуются оксид кальция и водяной пар:

Ca(OH)2⟶t°CaO+H2O↑.

Общие химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с кислотами, образуя соль и воду.

А) Например, при взаимодействии гидроксида меди((II)) с серной кислотой образуются сульфат меди((II)) и вода:

Cu(OH)2+H2SO4→CuSO4+2H2O.

Б) При взаимодействии гидроксида железа((III)) с соляной (хлороводородной) кислотой образуются хлорид железа((III)) и вода:

Fe(OH)3+3HCl→FeCl3+3H2O.

Видеофрагмент:

Взаимодействие гидроксида железа((III)) с соляной кислотой

2. Некоторые нерастворимые основания могут взаимодействовать с некоторыми кислотными оксидами, образуя соль и воду.

Например, при взаимодействии гидроксида меди((II)) с оксидом серы((VI)) образуются сульфат меди((II)) и вода:

Cu(OH)2+SO3⟶t°CuSO4+H2O.

3. Нерастворимые основания при нагревании разлагаются на оксид металла и воду.

А) Например, при нагревании гидроксида меди((II)) образуются оксид меди((II)) и вода:

 Cu(OH)2⟶t°CuO+H2O.

Видеофрагмент:

Разложение гидроксида меди((II))

Б) Гидроксид железа((III)) при нагревании разлагается на оксид железа((III)) и воду:

2Fe(OH)3⟶t°Fe2O3+3H2O.

Источник

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Основания – сложные вещества, которые состоят из катиона металла Ме+ (или металлоподобного катиона, например, иона аммония NH4+) и гидроксид-аниона ОН—.

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания. Также есть неустойчивые основания, которые самопроизвольно разлагаются.

Какие свойства имеют основания

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например, оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II)  с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий), кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

Читайте также:  Девясил какие свойства лечебные

металл + вода = щёлочь + водород

Например, калий реагирует с водой очень бурно:

2K0 + 2H2+O →  2K+OH + H20

Какие свойства имеют основания

Какие свойства имеют основания

3. Электролиз растворов некоторых солей щелочных металлов. Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2↑

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

либо

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

Какие свойства имеют основания

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами  (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например, гидроксид меди (II) взаимодействует с сильной соляной кислотой:

 Cu(OH)2 + 2HCl = CuCl2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH)2 + CO2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например, гидроксид железа (III) разлагается на оксид железа (III)  и воду при прокаливании:

2Fe(OH)3 = Fe2O3 + 3H2O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид  ≠

нерастворимое основание + амфотерный гидроксид  ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например, гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe+2(OH)2 + O20 + 2H2O → 4Fe+3(O-2H)3

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H3PO4  → NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H3PO4 → Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H3PO4 → Na3PO4 + 3H2O

Какие свойства имеют основания

Какие свойства имеют основания

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли, а в растворе – комплексные соли.

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например, при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH)3 = NaAlO2 + 2H2O

А в растворе образуется комплексная соль:

NaOH + Al(OH)3 = Na[Al(OH)4]

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

Какие свойства имеют основания

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

Читайте также:  Какие полезные свойства дегтярного мыла

щёлочь(избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид(избыток) = кислая соль

Например, при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO2 = Na2CO3 + H2O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3 

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе, при условии, что в продуктах образуется газ или  осадок. Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например, гидроксид натрия взаимодействует с сульфатом меди в растворе:

Cu2+SO42- + 2Na+OH— = Cu2+(OH)2—↓ + Na2+SO42-

Также щёлочи взаимодействуют с растворами солей аммония.

Например, гидроксид калия взаимодействует с раствором нитрата аммония:

NH4+NO3— + K+OH— = K+NO3— + NH3↑ + H2O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид, взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла.

Например, избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO4 + 2KOH = Zn(OH)2↓ + K2SO4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей. Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO4 + 4KOH = K2[Zn(OH)4] + K2SO4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

Какие свойства имеют основания

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например, гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO3 + KOH = K2SO3 + H2O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

Какие свойства имеют основания

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl20 = NaCl— + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl20 = 5NaCl— + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH + Si0 + H2+O=  Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF— + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

Какие свойства имеют основания

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li2O + H2O

Источник

Основания – сложные вещества,
состоящие из атома металла и одной или нескольких гидроксильных
групп. Общая формула оснований Ме(ОН)n.
Основания (с точки зрения теории
электролитической диссоциации) – это электролиты, диссоциирующие при
растворении в воде с образованием катионов металла и гидроксид-ионов
ОН–.

Читайте также:  Как узнать каким свойством обладает вещество

Классификация. По растворимости
в воде основания делят на щелочи
(растворимые в воде основания) и нерастворимые в воде основания.
Щелочи образуют щелочные и щелочно-земельные металлы, а также
некоторые другие элементы-металлы. По кислотности (числу ионов
ОН–,
образующихся при полной диссоциации, или количеству ступеней
диссоциации) основания подразделяют на
однокислотные
(при полной диссоциации получается один ион
ОН–;
одна ступень диссоциации) и многокислотные
(при полной диссоциации получается больше одного иона
ОН–; более одной ступени
диссоциации). Среди многокислотных оснований различают 
двухкислотные
(например,
Sn(OH)2),
трехкислотные
(Fe(OH)3)
и четырехкислотные (Th(OH)4).
Однокислотным является, например, основание КОН.

Выделяют группу гидроксидов, которые проявляют химическую
двойственность. Они взаимодействую как с основаниями, так и с
кислотами. Это амфотерные гидроксиды
(
см. таблицу 1).

Таблица 1 — Амфотерные гидроксиды

Амфотерный гидроксид (основная и кислотная форма)

Комплексный ион

Zn(OH)2
/ H2ZnO2

ZnO2 (II)

[Zn(OH)4]2–

Al(OH)3
/ HAlO2

AlO2 (I)

[Al(OH)4]–,
[Al(OH)6]3–

Be(OH)2
/ H2BeO2

BeO2 (II)

[Be(OH)4]2–

Sn(OH)2
/ H2SnO2

SnO2 (II)

[Sn(OH)4]2–

Pb(OH)2
/ H2PbO2

PbO2 (II)

[Pb(OH)4]2–

Fe(OH)3
/ HFeO2

FeO2 (I)

[Fe(OH)4]–,
[Fe(OH)6]3–

Cr(OH)3
/ HCrO2

CrO2 (I)

[Cr(OH)4]–,
[Cr(OH)6]3–

Физические свойства. Основания —
твердые вещества различных цветов и различной растворимости в воде.

Химические свойства оснований

1) Диссоциация: КОН +
n
Н2О  К+×mН2О
+ ОН–×dН2О
или сокращенно: КОН
К+ + ОН–.

Многокислотные основания диссоциируют по нескольким ступеням (в
основном диссоциация протекает по первой ступени). Например,
двухкислотное основание Fe(OH)2диссоциирует по двум ступеням:

Fe(OH)2FeOH+
+ OH– (1 ступень);

FeOH+Fe2+
+ OH– (2 ступень).

2) Взаимодействие с индикаторами (щелочи окрашивают
фиолетовый лакмус в синий цвет, метилоранж – в желтый, а
фенолфталеин – в малиновый):

индикатор + ОН– (щелочь) окрашенное
соединение.

3)
Разложение с образованием оксида и воды (см. таблицу 2).
Гидроксиды щелочных металлов устойчивы к нагреванию (плавятся
без разложения). Гидроксиды щелочно-земельных и тяжелых металлов
обычно легко разлагаются. Исключение составляет
Ba(OH)2, у которого tразл
 достаточно высока
(примерно 1000 °C).

Zn(OH)2
ZnO + H2O.

Таблица 2 — Температуры разложения некоторых гидроксидов металлов


Гидроксид

t
разл,
°C

Гидроксид

t
разл,
°C

Гидроксид

t
разл,
°C

LiOH
925
Cd(OH)2
130
Au(OH)3
150

Be(OH)2
130
Pb(OH)2
145
Al(OH)3
>300

Ca(OH)2
580
Fe(OH)2
150
Fe(OH)3
500

Sr(OH)2
535
Zn(OH)2
125
Bi(OH)3
100

Ba(OH)2
1000
Ni(OH)2
230
In(OH)3
150

4) Взаимодействие щелочей с некоторыми
металлами
(например, Al и
Zn):

В растворе: 2Al + 2NaOH +
6H2O  ®
2Na[Al(OH)4] + 3H2­

2Al + 2OH–+
6H2О
®
2[Al(OH)4]– + 3H2­.

При сплавлении: 2Al + 2NaOH + 2H2O
  2NaAlО2
+ 3H2­.

5) Взаимодействие щелочей с неметаллами:

6NaOH +
3Cl2 5NaCl
+ NaClO3 + 3H2O.

6) Взаимодействие щелочей с кислотными и амфотерными оксидами:

2NaOH + СО2®
Na2CO3 + H2O        
       2OH–+
CO2
®
CO32– + H2O.

В растворе: 2NaOH + ZnO
+ H2O
®
Na2[Zn(OH)4]           
  2OH–+ ZnO
+ H2О
®
[Zn(OH)4]2–.

При сплавлении с амфотерным оксидом: 2NaOH
+ ZnO
Na2ZnO2 +
H2O.

7) Взаимодействие оснований с кислотами:

H2SO4+
Ca(OH)2
®
CaSO4¯
+ 2H2O           
2H+ + SO42–+ Ca2+ +2OH–
®
CaSO4¯
+ 2H2O

H2SO4+
Zn(OH)2
®
ZnSO4 + 2H2O   
       
2H+ + Zn(OH)2
®
Zn2+ + 2H2O.

8) Взаимодействие щелочей с амфотерными гидроксидами (см.
таблицу 1
):

В растворе: 2NaOH +
Zn(OH)2
®
Na2[Zn(OH)4]            
    2OH–  +
 Zn(OH)2
®
[Zn(OH)4]2–

При сплавлении: 2NaOH +
Zn(OH)2
Na2ZnO2 +
2H2O.

9) Взаимодействие щелочей с солями.
В реакцию вступают соли, которым соответствует
нерастворимое в воде основание
:

CuSО4
+ 2NaOH
®
Na2SO4 + Cu(OH)2¯           
   Cu2++
2OH– 
®
Cu(OH)2¯.

Получение.
Нерастворимые в воде основания получают
путем взаимодействия соответствующей соли со щелочью:

2NaOH + ZnSО4
®
Na2SO4 + Zn(OH)2¯            
 Zn2++ 2OH–
®
Zn(OH)2¯.

Щелочи получают:

1) Взаимодействием оксида металла с водой:

Na2O + H2O
®
2NaOH                    
CaO + H2O
®
Ca(OH)2.

2) Взаимодействием щелочных и щелочно-земельных металлов с водой:

2Na + H2O
®
2NaOH + H2­                   
Ca + 2H2O
®
Ca(OH)2 + H2­.

3) Электролизом растворов солей:

2NaCl + 2H2O
H2­
+ 2NaOH + Cl2­.

4)
Обменным взаимодействием гидроксидов щелочно-земельных металлов с
некоторыми солями
. В ходе реакции
должна обязательно получаться нерастворимая соль
.

Ba(OH)2+ Na2CO3®
2NaOH + BaCO3¯                  
 Ba2+
+ CO32–
®
BaCO3¯.

Л.А. Яковишин

Источник