Какие свойства имеет металл магний
Сегодня даже не каждый взрослый вспомнит почему мы можем однозначно ответить на вопрос: магний металл или неметалл? Магний – относят к щелочноземельным металлам! Вспомнить это поможет беглый взгляд на электронную конфигурацию 1s22s22p63s2 нейтрального атома этого вещества. Учитывая специфику металлов иметь от 1 до 3 свободных электронов на внешнем энергетическом уровне, смотрят на этот параметр и для Mg. Не трудно увидеть, что конфигурация содержит 2 свободных электрона.
Общие металлические свойства магния характерны тем же, что проявляют другие вещества, относящие к данному типу. Обычно они тверды, но пластичны (в отличие от хрупких неметаллов). Имеют специфический блеск. Mg имеет склонность тускнеть на воздухе из-за того, что покрывается защитной кислородной пленкой. Порошок магния легко воспламеняется, достаточно поднести зажженную спичку. Цвет магния, горящего – ярко-белый. Одна из причин, почему этот металл первоначально использовался при фотографировании. Mg наносили на специальную ленту и поджигали ее. При горении образуется MgO, также при протекании процесса на воздухе выделяется нитрид магния с выделением большого количества теплоты.
Особенности Mg, как элемента периодической системы
Химические свойства магния во многом лежат где-то между бериллием и кальцием. Прежде всего, это проявляется во взаимодействии с водой. Первый не реагирует с ней вообще, второй же в ней растворяется. Mg слабо взаимодействует с нагретой водой. Но при взаимодействии с водяным паром (от 400 градусов по Цельсию) происходит реакция Mg+ H2O = MgO + H2, в которой металл растворяется при активном выделении водорода.
Видео – химические свойства магния:
Несколько иная реакция происходит с водяным паром: Mg+ 2H2O = Mg(OH)2 +H2. Причем свободный водород в итоге поглощается магнием MgH3. В результате, если плавление металла происходило во влажной среде, по мере его застывания водород практически полностью исчезает.
Свойства магния: взаимодействовать с водой при высоких температурах становится и гореть при присутствии в атмосфере углекислого газа, – затрудняют тушение пожаров с участием Mg. Их нельзя тушить водой. По инструкции используют порошковые огнетушители и песок. Также можно применять оксиды Si, с которыми магний вступает в реакцию, но количество выделяемой теплоты значительно ниже.
Также необходимо отметить, что несмотря на фактическую нерастворимость Mg(OH)2 в воде, раствор фенолфталеина в его присутствии окрашивается в розовый цвет.
Магний металл устойчив к едким щелочам, соде, керосину, бензину, минеральным маслам. Способность этого элемента отнимать кислород и хлор, используют для восстановления чистых веществ. Например, брома или титана.
Для синтезов разных классов органических соединений используется свойство магния взаимодействовать с галогенами. Обычно это Cl, Br, I, с фтором Mg образует защитную пленку, из-за чего их соединение редко используется для синтеза реактивов Гриньяра. Последние наиболее часто формируются на основе формулы RMgHal, где R – это органический радикал, а Hal – один из перечисленных галогенов.
к содержанию ↑
Видео: Магний – металл, который горит
Легкость элемента отображает плотность, которая составляет 1,74 г/см3. Меньшую имеют только кальций и щелочные металлы. Физические свойства магния можно коротко описать стандартными энциклопедическими параметрами:
- Т плавления – 651°С;
- Т кипения – 1107°С;
- Теплопроводность – 0,376 кал/(см·с·град) достаточно высока, сравнима с тем, что демонстрируют бериллий и вольфрам;
- Теплоемкость при Т плавления – 0,3 кал/град;
- Удельная теплоемкость увеличивается до Т плавления и уменьшается по ее достижении;
- Усадка при смене состояний (жидкость – твердое тело) – 3,97-4,2%;
- Удельное электросопротивление при комнатной температуре – 0,047 ом·мм2/м.
Этот элемент периодической таблицы Менделеева относят к щелочноземельным металлам. Однако это утверждение не всегда верно, поскольку химические свойства приближают этот элемент к алюминий подобным веществам.
Оксиды MgO относят к белым тугоплавким веществам, их называют жженой магнезией и применяют при изготовлении строительных материалов. Соли магния металла образуются при взаимодействии вещества с кислотами. Наиболее известная из них MgCO3. Используется металлургам для освобождения сплавов от шлаков, называют карбонат магния. Еще одна соль MgSO4 – известна как горькая или английская. Химики ее именуют сульфат магния. Mg и Ca влияют на жесткость воды. Высокая концентрация этих веществ в Н2О не позволяет моющим средствам пениться.
Чтобы более детально ответить на то, какие физические свойства имеет магний, необходимо рассматривать изменения его состояний и качеств по мере применения к нему различных тепловых эффектов: нагревание и охлаждение. Так, например, плотность снижается на 6% при Т – 6000С, расплавившись и вовсе падает до значения 1.58 г/см3.
Характеристики металла магния сильно отличаются при низких и высоких температурах. Некоторые результаты экспериментов требуют объяснения, часть из них дают вполне предвиденные реакции.
Гексагональная решетка элемента имеет следующие параметры:
- с = 5,199 ангстрем;
- а = 3,202 ангстрем.
При нагревании до 6270С эти расстояния увеличиваются, дойдя до температуры плавления связи решетки разрушаются вовсе.
Если говорить о том, какого цвета магний придется отметить, что в целом серебристо-белый металл, может выглядеть как черный обуглившийся с присущим блеском. В последнем случае речь идет о стружке магния. Поэтому определяя «на глаз» тип материала, все-таки лучше обратиться к химическим экспериментам, если под рукой не имеется спектрального анализатора.
Классическая задача для школьников рассматривает ряд натрий – магний –алюминий, металлические свойства которого ослабевает от первого к последнему элементу.
к содержанию ↑
Взаимодействие с различными кислотами
Для краткости, проще рассмотреть несколько экспериментов. Для них берутся такие виды кислот:
- Соляная.
- Азотная.
- Серная (разбавленная и нет).
В первом случае наблюдается практически мгновенное растворение, сопровождающееся пузырьками белых газов и резким запахом хлора. Емкость, в которой происходила реакция нагревается.
В азотной кислоте кусочек магния не тонет. Бурый газ скапливается над поверхностью жидкости, выделяется тепло. Иногда говорят, что кислота «кипела», окружая кусочки магния.
Третий случай необходимо рассматривать, как два частных. В неразбавленной серной кислоте реакция идет медленно. Если же использовать раствор с небольшим количеством воды, магний также, как с азотной кислотой плавает на поверхности. При этом происходит едва заметная реакция с выделением белых пузырьков газа.
к содержанию ↑
Получение магния и история открытия
Высокая химическая активность препятствует тому, чтобы магний металлический встречался в чистом виде. Источниками материалов для его добычи становятся магниевые руды или соединения солей, содержащихся в водах морей, океанов, а также подземных. Именно асбест, оливин, серпентин, магнезит, доломит, другие минералы известны миру с давних пор. Название вещества имеет те же корни, что и название города в Малой Азии – Магнезия. Только в 1808 году английский химик Г. Дэви методом электролиза получил металлический осадок, который назвал магнием.
Однако это не был чистый металл. Еще 20 лет понадобилось миру ученых, чтобы получить именно Mg в том виде, который представил его в таблице Менделеева. Сделал открытие чистого металла магния французский химик А. Бюсси в 1828 году.
Сам же метод электролиза лег в основу классических способов получения этого элемента в чистом виде. Для производства в основном используют месторождения магний содержащих руд. Наиболее известное гражданам России находится на Урале – Саткинское. Но в Сибири имеется еще ряд месторождений, как и в Индии, Китае, Корее, некоторых странах Европы и Южной Америке.
На производстве для получения металлического магния используют расплав обезвоженных хлоридов: магния, натрия и калия. При применении непрерывного электролиза происходит восстановление по следующей формуле:
MgCl2 (электролиз) = Mg + Cl2.
Возможность реализации процессов, описанных далее, магний металл с ценой за кг остается востребованным. Очищенный металл выбирают из электролизной ванны, вливая на замещение сырье с содержанием магния. Таким способом получают металл практически свободный от примесей. Доля последних составляет не более 0,1%. Если есть необходимость уменьшить этот показатель, еще не застывший металл рафинируют, получая чистоту 99,999% и больше.
Существует еще один способ получения магния – это восстановление оксида MgO с добавлением кокса при высокой температуре. Альтернативно используют доломит, этот метод не требует предварительного отделения кальция. Получаемые в результате реакции оксиды CaO и MgO смешивают с кремнием. На выходе имеют чистейший магний и Ca2SiO4. Для этого метода допустимо использования минералов или морской воды.
к содержанию ↑
Применение магния
Имеет широкий спектр от медицины до самолетостроения. Физические свойства металла магния, а именно его легкость (плотность) делает незаменим этот элемент в сплавах. Чаще это соединения с цинком, цирконием или алюминием. При очевидной легкости таких сплавов наблюдается их прочность.
Еще раз стоит отметить, что активные химические свойства металла магния позволяют использовать в процессах восстановления Ti, U, V, Zr, прочих. Обычно используется способность отбирать кислород или реагирование с фтором. На выходе получают чистые металлы плюс оксиды или фториды Mg.
У магния металлические свойства выражены по-особенному: он хорошо режется, благодаря чему легко получают стружку этого элемента. Но в чистом виде элемент практически не используют, как конструкционный металл, однако его сплавы – да.
О свойствах последних уже немного сказано. Но надо отметить, что соединения магния с незначительным количеством Al, Zn, Mn, Be, Ti и редкоземельными элементами имеют лучшие механические качества, чем чистый металл Mg. Они более устойчивы к коррозии, прочнее, устойчивее.
Основные области применения магния в сплавах: это конструкционные материалы в строении самолетов, машин, ЖД транспорта. Еще одно направление – синтез органических веществ, рассмотрен ранее.
Магний неметалл больше известен, как фторид Mg и активно применяется в оптике для производства линз. Последние обладают прозрачностью, пластичностью, прочностью. Материалы более известны, как синтетические монокристаллы. В промышленности иногда используют кремний, а также золотое, серебряное напыление.
В сталелитейном производстве лом магния используют за его свойство притягивать кислород. Он выполняет роль раскислителя. Благодаря чему сплавы легированной стали обладают большей коррозийной устойчивостью. Поэтому магний часто участвует и в цветном литье. Из него изготавливают аноды.
Особым спросом пользуются и другие «неметаллические» соединения магния, например, его сульфат. Известны растворы для инъекций или суспензий, последние пациент может готовить дома самостоятельно. Прием магния снижает риск заболевания гипертонией у курильщиков.
Используют магний и в земледелии, практически все виды почвы, где имеется растительность содержат этот элемент. Также следует отметить участие Mg в фотосинтезе растений.
к содержанию ↑
Не все пункты приема принимают магний. У тех, кто принимает существует лишь одна категория этого металла – кусковой лом магния (точнее это даже не магний в чистом виде, а сплавы, в которых он содержится, но в пунктах обозначается, как лом магния), его стоимость (средняя) составляет:
Лом магния кусковой – 38 рублей за килограмм.
В домашнем обиходе лом магния – это различные вешалки, дверные ручки. Лом магния можно встретить в виде старых блоков цилиндров от двигателей, карсасов авто сидений, панелей приборов, картеров сцепления и коробки передач, педалей, а также поддона картера двигателя, крышки головки блока цилиндров, впускного коллектора.
Не стоит путать лом магния с ломом ЦАМа.
Широкий спектр применения этого элемента в металлургии, медицине, агропромышленном комплексе делает его интересным, в качестве вторичного сырья.
Однако увидеть объявления с желанием купить магний с ценой за кг лома, приходится довольно редко. Чаще востребованы сплавы и сернокислый порошок Mg. Но это не мешает бирже оценивать магний металл, цена которого зависит от выпуска чистого продукта. Периодически выпуск снижается, тогда таблоиды показывают возрастание стоимости продукта.
В пунктах приема лом магния и цена на него может зависеть от условий, на которых происходит факт купли/продажи – цена может варьироваться незначительно и от его объема.
Интерес к материалу подогревается его высокой огнеупорностью. Благодаря этому свойству Mg участвует в производстве футеровок и тиглей для металлургических печей. Видимо поэтому, объявления: куплю лом магния, не теряют актуальности – см. также лом огнеупоров.
Магний | ||||
---|---|---|---|---|
← Натрий | Алюминий → | ||||
| ||||
лёгкий, ковкий, серебристо-белый металл | ||||
Название, символ, номер | Магний / Magnesium (Mg), 12 | |||
Атомная масса (молярная масса) | [24,304; 24,307][комм 1][1] а. е. м. (г/моль) | |||
Электронная конфигурация | [Ne] 3s2 | |||
Радиус атома | 160 пм | |||
Ковалентный радиус | 136 пм | |||
Радиус иона | 66 (+2e) пм | |||
Электроотрицательность | 1,31 (шкала Полинга) | |||
Электродный потенциал | −2,37 В | |||
Степени окисления | 0; +2 | |||
Энергия ионизации (первый электрон) | 737,3 (7,64) кДж/моль (эВ) | |||
Плотность (при н. у.) | 1,738[2] г/см³ | |||
Температура плавления | 650 °C (923 K)[2] | |||
Температура кипения | 1090 °C (1363 K)[2] | |||
Уд. теплота плавления | 9,20 кДж/моль | |||
Уд. теплота испарения | 131,8 кДж/моль | |||
Молярная теплоёмкость | 24,90[3] Дж/(K·моль) | |||
Молярный объём | 14,0 см³/моль | |||
Структура решётки | гексагональная | |||
Параметры решётки | a=0,32029 нм, c=0,52000 нм | |||
Отношение c/a | 1,624 | |||
Температура Дебая | 318 K | |||
Теплопроводность | (300 K) 156 Вт/(м·К) | |||
Номер CAS | 7439-95-4 | |||
Ма́гний — элемент второй группы (по старой классификации — главной подгруппы второй группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний — лёгкий, ковкий металл серебристо-белого цвета.
История открытия[править | править код]
В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари назвали её «горькой солью», а также «английской» или «эпсомской солью». Минерал эпсомит представляет собой кристаллогидрат сульфата магния и имеет химическую формулу MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.
В 1792 году Антон фон Рупрехт выделил из белой магнезии восстановлением углём неизвестный металл, названный им австрием. Позже было установлено, что «австрий» представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнено железом[4].
В 1808 г. английский химик Гемфри Дэви с помощью электролиза увлажнённой смеси магнезии и оксида ртути получил амальгаму неизвестного металла, которому дал название «магнезиум», сохранившееся до сих пор во многих странах. В России с 1831 года принято название «магний». В 1829 г. французский химик А. Бюсси получил магний, восстанавливая его расплавленный хлорид металлическим калием. В 1830 г. М. Фарадей получил магний электролизом расплавленного хлорида магния.
Изотопы[править | править код]
Природный магний состоит из смеси 3 стабильных изотопов 24Mg, 25Mg и 26Mg с молярной концентрацией в смеси 78,6 %, 10,1 % и 11,3 % соответственно.
Все остальные 19 изотопов нестабильны, самый долгоживущий из них 28Mg с периодом полураспада 20,915 часов.
Нахождение в природе[править | править код]
Кларк магния — 1,95 % (19,5 кг/т). Это один из самых распространённых элементов земной коры. Большие количества магния находятся в морской воде в виде раствора солей. Основные минералы с высоким массовым содержанием магния:
- морская вода — (0,12—0,13 %),
- карналлит — MgCl2 • KCl • 6H2O (8,7 %),
- бишофит — MgCl2 • 6H2O (11,9 %),
- кизерит — MgSO4 • H2O (17,6 %),
- эпсомит — MgSO4 • 7H2O (9,9 %),
- каинит — KCl • MgSO4 • 3H2O (9,8 %),
- магнезит — MgCO3 (28,7 %),
- доломит — CaCO3·MgCO3 (13,1 %),
- брусит — Mg(OH)2 (41,6 %).
Магнезиальные соли встречаются в больших количествах в солевых отложениях самосадочных озёр. Месторождения карналлита осадочного происхождения имеются во многих странах.
Магнезит образуется преимущественно в гидротермальных условиях и относящихся к среднетемпературным гидротермальным месторождениям. Доломит также является важным магниевым сырьём. Месторождения доломита широко распространены, запасы их огромны. Они генетически связаны с карбонатными осадочными слоями и большинство из них имеет докембрийский или пермский геологический возраст. Доломитовые залежи образуются осадочным путём, но могут возникать также при воздействии на известняки гидротермальных растворов, подземных или поверхностных вод.
Чрезвычайно редким минералом является самородный магний, образующийся в потоках восстановительных газов и впервые обнаруженный в 1991 году в береговых отложениях Чоны (Восточная Сибирь)[5][6], а затем в лавах в Южном Гиссаре (Таджикистан)[7].
Природные источники магния[править | править код]
- Ископаемые минеральные отложения (магнезиальные и калийно-магнезиальные карбонаты: доломит, магнезит).
- Морская вода.
- Рассолы (рапа соляных озёр).
В 1995 г. бо́льшая часть мирового производства магния была сосредоточена в США (43 %), странах СНГ (26 %) и Норвегии (17 %), на рынке возрастает доля Китая[8][9].
Получение[править | править код]
Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2 (бишофит), натрия NaCl и калия KCl. В расплаве электрохимическому восстановлению подвергается хлорид магния:
Расплавленный металл периодически отбирают из электролизной ванны, а в неё добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много (около 0,1 %) примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые удаляют примеси из магния или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999 % и выше.
Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кремний или кокс:
Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции, вначале производят обжиг доломита:
Затем сильный нагрев с кремнием:
Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырьё, но и морскую воду.
Физические свойства[править | править код]
Магний — металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском; пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта довольно прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Скорость воспламенения магния намного выше скорости одёргивания руки, поэтому при поджоге магния человек не успевает одёрнуть руку и получает ожог. На горящий магний желательно смотреть только через темные очки или стекло, так как в противном случае есть риск получить световой ожог сетчатки и на время ослепнуть.
Плотность магния при 20 °C — 1,738 г/см³, температура плавления 650 °C, температура кипения 1090 °C[2], теплопроводность при 20 °C — 156 Вт/(м·К).
Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.
Фазовый переход в сверхпроводящее состояние[править | править код]
При температуре Тс= 0,0005 К магний (Mg) переходит в сверхпроводящее состояние.
Химические свойства[править | править код]
При нагревании на воздухе магний сгорает с образованием оксида и небольшого количества нитрида. При этом выделяется большое количество теплоты и света:
кДж
Магний хорошо горит даже в углекислом газе:
Раскаленный магний энергично реагирует с водой, вследствие чего горящий магний нельзя тушить водой:
Возможна также реакция:
Щелочи на магний не действуют, в кислотах он растворяется с бурным выделением водорода:
Смесь порошка магния со взрывом реагирует с сильными окислителями, например с сухим перманганатом калия.
Также следует упомянуть реактивы Гриньяра, то есть алкил- или арилмагнийгалогениды:
Где Hal = I, Br, реже Cl.
Металлический магний — сильный восстановитель, применяется в промышленности для восстановления титана до металла из тетрахлорида титана и металлического урана из его тетрафторида
Применение[править | править код]
Используется для получения лёгких и сверхлёгких литейных сплавов (самолётостроение, производство автомобилей), а также в пиротехнике и военном деле для изготовления осветительных и зажигательных ракет. Со второй половины XX века магний в чистом виде и в составе сплава кремния с железом — ферросиликомагния, стал широко применяться в чугунолитейном производстве благодаря открытию его свойства влиять на форму графита в чугуне, что позволило создать новые уникальные конструкционные материалы для машиностроения — высокопрочный чугун (чугун с шаровидным графитом — ЧШГ и чугун с вермикулярной формой графита — ЧВГ), сочетающие в себе свойства чугуна и стали.
Сплавы[править | править код]
Сплавы на основе магния являются важным конструкционным материалом в космической, авиационной и автомобильной промышленности благодаря их лёгкости и прочности. Из магниевого сплава изготавливались картеры двигателей бензопилы «Дружба» и автомобиля «Запорожец», ряда других машин. Сейчас из этого сплава производятся легкосплавные колёсные диски.
Химические источники тока[править | править код]
Магний в виде чистого металла, а также его химические соединения (бромид, перхлорат) применяются для производства энергоёмких резервных электрических батарей (например, магний-перхлоратный элемент, серно-магниевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент, хлористомедно-магниевый элемент, магний-ванадиевый элемент и др.) и сухих элементов (марганцево-магниевый элемент, висмутисто-магниевый элемент, магний-м-ДНБ элемент и др.). Химические источники тока на основе магния отличаются очень высокими значениями удельных энергетических характеристик и высокой ЭДС.
Соединения[править | править код]
Гидрид магния — один из наиболее ёмких аккумуляторов водорода, применяемых для его компактного хранения и получения.
Огнеупорные материалы[править | править код]
Оксид магния MgO применяется в качестве огнеупорного материала для производства тиглей и специальной футеровки металлургических печей.
Перхлорат магния,
Mg(ClO4)2 — (ангидрон) применяется для глубокой осушки газов в лабораториях, и в качестве электролита для химических источников тока с применением магния.
Фторид магния MgF2 — в виде синтетических монокристаллов применяется в оптике (линзы, призмы).
Бромид магния MgBr2 — в качестве электролита для химических резервных источников тока.
Военное дело[править | править код]
Свойство магния гореть белым ослепительным пламенем широко используется в военной технике для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. В смеси с соответствующими окислителями он также является основным компонентом заряда светошумовых боеприпасов.
Медицина[править | править код]
Магний является жизненно-важным элементом, который находится во всех тканях организма и необходим для нормального функционирования клеток. Участвует в большинстве реакций обмена веществ, в регуляции передачи нервных импульсов и в сокращении мышц, оказывает спазмолитическое и антиагрегантное действие. Оксид и соли магния традиционно применяются в медицине в кардиологии, неврологии и гастроэнтерологии (аспаркам, сульфат магния, цитрат магния). В то же время, использование солей магния в кардиологии при нормальном уровне ионов магния в крови является недостаточно обоснованным[10].
Фотография[править | править код]
Магниевый порошок с окисляющими добавками (нитрат бария, перманганат калия, гипохлорит натрия, хлорат калия и т. д.) применялся (и применяется сейчас в редких случаях) в фотоделе в химических фотовспышках (магниевая фотовспышка).
Аккумуляторы[править | править код]
Магниево-серные батареи являются одними из самых перспективных, теоретически превосходя ёмкость ионно-литиевых, однако пока эта технология находится на стадии лабораторных исследований в силу непреодолимости некоторых технических препятствий[11].
Производство[править | править код]
Производство в России сосредоточено на двух предприятиях: г. Соликамск (СМЗ) и г. Березники (АВИСМА). Общая производительность составляет, примерно, 35 тыс. тонн в год.[12]
Цены[править | править код]
Цены на магний в слитках в 2006 году составили в среднем 3 долл./кг. В 2012 году цены на магний составляли порядка 2,8—2,9 долл./кг.
Биологическая роль и токсикология[править | править код]
Токсикология[править | править код]
Соединения магния малотоксичны (за исключением солей таких ядовитых кислот, как синильная, азотистоводородная, плавиковая, хромовая).
Биологическая роль[править | править код]
Магний — один из важных биогенных элементов, в значительных количествах содержится в тканях животных и растений (хлорофиллы). Его биологическая роль сформировалась исторически в период зарождения и развития протожизни на нашей планете в связи с тем, что солевой состав морской воды древней Земли был преимущественно хлоридно-магниевый, в отличие от нынешнего — хлоридно-натриевого.
Магний является кофактором многих ферментативных реакций. Магний необходим для превращения креатинфосфата в АТФ — нуклеотид, являющийся универсальным поставщиком энергии в живых клетках организма. Магний необходим на всех этапах синтеза белка. Он участвует в поддержании нормальной функции нервной системы и мышцы сердца, оказывает сосудорасширяющее действие, стимулирует желчеотделение, повышает двигательную активность кишечника, что способствует выведению из организма холестерина[13].
Усвоению магния мешают наличие фитина и избыток жиров и кальция в пище[13]. Недостаток магния в организме может проявляться по-разному: бессонница, хроническая усталость, остеопороз, артрит, фибромиалгия, мигрень, мышечные судороги и спазмы, сердечная аритмия, запоры, предменструальный синдром (ПМС). При потливости, частом употреблении слабительных и мочегонных, алкоголя, больших психических и физических нагрузках (в первую очередь при стрессах и у спортсменов) потребность в магнии увеличивается.
Более всего магния содержится в пшеничных отрубях, тыквенных семечках, какао-порошке. К пище, богатой магнием относят также кунжут, отруби, орехи. Однако обилие фитина в этих продуктах делает его малодоступным для усвоения, поэтому только зелёные овощи могут служить надёжным источником магния. Магния совсем мало в хлебе, молочных, мясных и других повседневных продуктах питания современного человека. Суточная норма магния — порядка 300 мг для женщин и 400 мг для мужчин (предполагается, что всасывается около 30 % магния).
При употреблении витаминно-минеральных комплексов, содержащих магний, необходимо помнить, что при чрезмерном его потреблении возможна передозировка, сопровождающаяся снижением артериального давления, тошнотой, рвотой, угнетением центральной нервной системы, снижением рефлексов, изменениями на электрокардиограмме, угнетением дыхания, комой, остановкой сердца, параличом дыхания, анурическим синдромом[14].
Также следует соблюдать осторожность при приеме магния людям с почечной недостаточностью.
Таблица нормы потребления магния[править | править код]
Пол | Возраст | Суточная норма потребления магния, мг/день | Верхний допустимый предел, мг/день |
---|---|---|---|
Младенцы | от 0 до 6 месяцев | 30 | Не определён |
Младенцы | от 7 до 12 месяцев | 75 | Не определён |
Дети | от 1 до 3 лет | 80 | 145 |
Дети | от 4 до 8 лет | 130 | 240 |
Дети | от 9 до 13 лет | 240 | 590 |
Девушки | от 14 до 18 лет | 360 | 710 |
Юноши | от 14 до 18 лет | 410 | 760 |
Мужчины | от 19 до 30 лет | 400 | 750 |
Мужчины | 31 год и старше | 420 | 770 |
Женщины | от 19 до 30 лет | 310 | 660 |
Женщины | 31 год и старше | 320 | 670 |
Беременные женщины | от 14 до 18 лет | 400 | 750 |
Беременные женщины | от 19 до 30 лет | 350 | 700 |
Беременные женщины | 31 год и старше | 360 | 710 |
Кормящие грудью женщины | от 14 до 18 лет | 360 | 710 |
Кормящие грудью женщины | от 19 до 30 лет | 310 | 660 |
Кормящие грудью женщины | 31 год и старше | 320 | 670 |
Комментарии[править | править код]
- ↑ Указан диапазон значений атомной массы в связи с неоднородностью распространения изотопов в природе.
Источники[править | править код]
- ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — doi:10.1351/PAC-REP-13-03-02.
- ↑ 1 2 3 4 Magnesium: physical properties (англ.). WebElements. Дата обращения 15 августа 2013.
- ↑ Химическая энциклопедия : в 5 т / редкол.: Кнунянц И. Л. (гл. ред.). — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 621. — 671 с. — 100 000 экз.
- ↑ Three alkali metals for Discovery of the Elements (недоступная ссылка)
- ↑ Новгородова М. И. Обнаружен самородный магний? // Природа. — 1991. — № 1. — С. 32—33.
- ↑ Новгородова М. И. Самородный магний и проблема его генезиса // Геохимия. — 1996. — № 1. — С. 41—50.
- ↑ Новгородова М. И. Магний — самородный, как золото… // Химия и жизнь — XXI век. — 2000. — № 7. — С. 18—19.
- ↑ Елена Савинкина. Магний. Энциклопедия Кругосвет. Дата обращения 8 сентября 2012. Архивировано 14 октября 2012 года.
- ↑ Журнал «Муниципальная экономика и управление» — Версия для печати. vestnik.uapa.ru. Дата обращения 24 июля 2019.
- ↑ Старостин И.В. Место солей магния в терапии сердечно-сосудистых заболеваний. (рус.) // Кардиология. — 2012. — Т. 52, № 8. — С. 83—88.
- ↑ Химики нашли ключ к новому типу аккумуляторов https://www.membrana.ru/particle/16564
- ↑ Лысенко А. П. (недоступная ссылка). Дата обращения 12 сентября 2018. Архивировано 12 сентября 2018 года.
- ↑ 1 2 Пищевая химия : [учеб. для вузов / Нечаев А. П., Траубенберг С. Е., Кочеткова А. А. и др.]; под ред. А. П. Нечаева. — Изд. 4-е, испр. и доп. — СПб. : ГИОРД, 2007. — 635 с.— 1000 экз. — ISBN 5-98879-011-9.
- ↑ Магне B6. https://www.rlsnet.ru/ (02.09.2019). — информация о препарате «магне В6». Дата обращения 4 октября 2019.
Литература[править | править код]
- Эйдензон М. А. Магний / Тихонов В. Н. — М., 1969.
- Аналитическая химия магния / Иванов А. И., Ляндрес М. Б., Прокофьев О. В. — М., 1973.
- Производство магния / С. И. Дракин. П. М. Чукуров. — М., 1979.
- Дэвис А. Нутрицевтика. Питание для жизни, здоровья и долголетия. — М.: Саттва, Институт трансперсональной психологии, 2004. — С.180—188. — ISBN.5-93509-021-X.
- Минделл Э. Справочник по витаминам и минеральным веществам. — М.: Медицина и питание, 2000. — С. 83—85. — ISBN.5-900059-03-0.
Ссылки[править | править код]
- Latest Magnesium News (англ.) (недоступная ссылка). Magnesium .com. Дата обращения 30 октября 2013. Архивировано 1 ноября 2013 года.
- Магний. Популярная библиотека химических элементов. Дата обращения 30 октября 2013.
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных доменов |