Какие свойства характерны щелочами
Запрос «Каустик» перенаправляется сюда; о других значениях см. Каустик (значения).
Щёлочи (в русском языке происходит от слова «щёлок», возможно, производное от того же корня, что и др.-исл. «skola» — «стирать»[1]) — гидроксиды щелочных, щёлочноземельных металлов и некоторых других элементов, например, таллия. К щелочам относятся хорошо растворимые в воде основания. При диссоциации щёлочи образуют анионы OH− и катион металла.
К щелочам относятся гидроксиды металлов подгрупп Iа и IIа (начиная с кальция) периодической системы, например NaOH (едкий натр), KOH (едкое кали), Ba(OH)2 (едкий барий). В качестве исключения можно отнести к щелочам гидроксид одновалентного таллия TlOH, который хорошо растворим в воде и является сильным основанием. Едкие щёлочи — тривиальное название гидроксидов лития LiOH, натрия NaOH, калия КОН, рубидия RbOH и цезия CsOH. Название «едкая щёлочь» обусловлено свойством разъедать кожу и слизистые оболочки, (вызывая сильные ожоги), бумагу и другие органические вещества.
Из-за очень большой химической активности щелочных металлов едкие щёлочи долгое время не удавалось разложить и они потому считались простыми веществами. Одним из первых предположение о сложном составе едких щелочей высказал Лавуазье. Основываясь на своей теории о том, что все простые вещества могут окисляться, Лавуазье решил, что едкие щёлочи — это уже окисленные сложные вещества. Однако подтвердить это удалось лишь Дэви в начале XIX века после применения им электрохимии[2].
Физические свойства[править | править код]
Гидроксиды щелочных металлов (едкие щёлочи) представляют собой твёрдые, белые, очень гигроскопичные вещества. Щёлочи — сильные основания, очень хорошо растворимые в воде, причём реакция сопровождается значительным тепловыделением. Сила основания и растворимость в воде возрастает с увеличением радиуса катиона в каждой группе периодической системы. Самые сильные щёлочи — гидроксид цезия (поскольку из-за очень малого периода полураспада гидроксид франция не получен в макроскопических количествах) в группе Ia и гидроксид радия в группе IIa.
Кроме того, едкие щёлочи растворимы в этаноле и метаноле.
Химические свойства[править | править код]
Щёлочи проявляют основные свойства. В твёрдом состоянии все щёлочи поглощают H2O из воздуха, а также CO2 (также и в состоянии раствора) из воздуха, постепенно превращаясь в карбонаты. Щёлочи широко применяются в промышленности.
Качественные реакции на щёлочи[править | править код]
Водные растворы щелочей изменяют окраску индикаторов.
Индикатор и номер перехода | х[3] | Интервал pH и номер перехода | Цвет щёлочной формы | |
---|---|---|---|---|
Метиловый фиолетовый | 0,13-0,5 [I] | зелёный | ||
Крезоловый красный [I] | 0,2-1,8 [I] | жёлтый | ||
Метиловый фиолетовый [II] | 1,0-1,5 [II] | синий | ||
Тимоловый синий [I] | к | 1,2-2,8 [I] | жёлтый | |
Тропеолин 00 | o | 1,3-3,2 | жёлтый | |
Метиловый фиолетовый [III] | 2,0-3,0 [III] | фиолетовый | ||
(Ди)метиловый жёлтый | o | 3,0-4,0 | жёлтый | |
Бромфеноловый синий | к | 3,0-4,6 | сине-фиолетовый | |
Конго красный | 3,0-5,2 | синий | ||
Метиловый оранжевый | o | 3,1-(4,0)4,4 | (оранжево-)жёлтый | |
Бромкрезоловый зелёный | к | 3,8-5,4 | синий | |
Бромкрезоловый синий | 3,8-5,4 | синий | ||
Лакмоид | к | 4,0-6,4 | синий | |
Метиловый красный | o | 4,2(4,4)-6,2(6,3) | жёлтый | |
Хлорфеноловый красный | к | 5,0-6,6 | красный | |
Лакмус (азолитмин) | 5,0-8,0 (4,5-8,3) | синий | ||
Бромкрезоловый пурпурный | к | 5,2-6,8(6,7) | ярко-красный | |
Бромтимоловый синий | к | 6,0-7,6 | синий | |
Нейтральный красный | o | 6,8-8,0 | янтарно-жёлтый | |
Феноловый красный | о | 6,8-(8,0)8,4 | ярко-красный | |
Крезоловый красный [II] | к | 7,0(7,2)-8,8 [II] | тёмно-красный | |
α-Нафтолфталеин | к | 7,3-8,7 | синий | |
Тимоловый синий [II] | к | 8,0-9,6 [II] | синий | |
Фенолфталеин[4] [I] | к | 8,2-10,0 [I] | малиново-красный | |
Тимолфталеин | к | 9,3(9,4)-10,5(10,6) | синий | |
Ализариновый жёлтый ЖЖ | к | 10,1-12,0 | коричнево-жёлтый | |
Нильский голубой | 10,1-11,1 | красный | ||
Диазофиолетовый | 10,1-12,0 | фиолетовый | ||
Индигокармин | 11,6-14,0 | жёлтый | ||
Epsilon Blue | 11,6-13,0 | тёмно-фиолетовый |
Взаимодействие с кислотами[править | править код]
Щёлочи, как основания, взаимодействуют с кислотами с образованием соли и воды (реакция нейтрализации). Это одно из самых важных химических свойств щелочей.
Щёлочь + Кислота → Соль + Вода
;.
Взаимодействие с кислотными оксидами[править | править код]
Щёлочи взаимодействуют с кислотными оксидами с образованием соли и воды:
Щёлочь + Кислотный оксид → Соль + Вода
;
Взаимодействие с амфотерными оксидами[править | править код]
.
Взаимодействие с переходными (амфотерными) металлами[править | править код]
Растворы щелочей взаимодействуют с металлами, которые образуют амфотерные оксиды и гидроксиды ( и др). Уравнения этих реакций в упрощённом виде могут быть записаны следующим образом:
;.
Реально в ходе этих реакций в растворах образуются гидроксокомплексы (продукты гидратации указанных выше солей):
;;
Взаимодействие с растворами солей[править | править код]
Растворы щелочей взаимодействуют с растворами солей, если образуется нерастворимое основание или нерастворимая соль:
Раствор щёлочи + Раствор соли → Новое основание + Новая соль
;
;
Получение[править | править код]
Растворимые основания получают различными способами.
Гидролиз щелочных/щёлочноземельных металлов[править | править код]
Получают путём электролиза хлоридов щелочных металлов или действием воды на оксиды щелочных металлов.
Применение[править | править код]
Щёлочи широко применяются в различных производствах и медицине; также для дезинфекции прудов в рыбоводстве и как удобрение, в качестве электролита для щелочных аккумуляторов.
В почвоведении[править | править код]
Слабощелочная почва в почвоведении — это почва, водородный показатель которой выше 7,3. Хотя кочанная капуста предпочитает именно щелочные почвы, они могут помешать другим растениям. Большинство растений предпочитает слабокислые почвы (с pH от 6,0 до 6,8)[5].
Примечания[править | править код]
- ↑ эх щелок // Словарь Фасмера
- ↑ А. С. Арсеньев. Анализ развивающегося понятия. М., «Наука», 1067. С. 332.
- ↑ *Столбец «х» — характер индикатора: к—кислота, о—основание.
- ↑ Фенолфталеин в сильно щелочной среде обесцвечивается. В среде концентрированной серной кислоты также он даёт красную окраску, обусловленную строением катиона фенолфталеина, хотя и не такую интенсивную. Эти малоизвестные факты могут привести к ошибкам при определении реакции среды.
- ↑ Chambers’s Encyclopaedia[en]. — 1888.
Литература[править | править код]
- Колотов С. С. Щелочи // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Едкие щёлочи // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
При написании этой статьи использовался материал из издания «Казахстан. Национальная энциклопедия» (1998—2007), предоставленного редакцией «Қазақ энциклопедиясы» по лицензии Creative Commons BY-SA 3.0 Unported.
Химические свойства гидроксида металла во многом зависят от того, к какой группе он принадлежит — к щелочам или к нерастворимым основаниям.
Общие химические свойства щелочей
1. Кристаллы щелочей при растворении в воде полностью диссоциируют, то есть распадаются на положительно заряженные ионы металла и отрицательно заряженные гидроксид-ионы.
A) Например, при диссоциации гидроксида натрия образуются положительно заряженные ионы натрия и отрицательно заряженные гидроксид-ионы:
NaOH→Na++OH−.
Б) Процесс диссоциации гидроксида кальция отображается следующим уравнением:
Ca(OH)2→Ca2++2OH−.
2. Растворы щелочей изменяют окраску индикаторов.
Фактически с индикатором взаимодействуют гидроксид-ионы, содержащиеся в растворе любой щёлочи. При этом протекает химическая реакция с образованием нового продукта, признаком протекания которой является изменение окраски вещества.
Изменение окраски индикаторов в растворах щелочей
Индикатор | Изменение окраски индикатора |
Лакмус | Фиолетовый лакмус становится синим |
Фенолфталеин | Беcцветный фенолфталеин становится малиновым |
Универсальный индикатор | Универсальный индикатор становится синим |
Видеофрагмент:
Действие щелочей на индикаторы
3. Щёлочи взаимодействуют с кислотами, образуя соль и воду.
Реакции обмена между щелочами и кислотами называют реакциями нейтрализации.
А) Например, при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода: NaOH+HCl→NaCl+H2O.
Видеофрагмент:
Взаимодействие гидроксида натрия с соляной кислотой
Б) Если нейтрализовать гидроксид кальция азотной кислотой, образуются нитрат кальция и вода:
Ca(OH)2+2HNO3→Ca(NO3)2+2H2O.
4. Щёлочи взаимодействуют с кислотными оксидами, образуя соль и воду.
А) Например, при взаимодействии гидроксида кальция с оксидом углерода((IV)) т. е. углекислым газом, образуются карбонат кальция и вода:
Ca(OH)2+CO2→CaCO3↓+H2O.
Обрати внимание!
При помощи этой химической реакции можно доказать присутствие оксида углерода((IV)): при пропускании углекислого газа через известковую воду (насыщенный раствор гидроксида кальция) раствор мутнеет, поскольку выпадает осадок белого цвета — образуется нерастворимый карбонат кальция.
Б) При взаимодействии гидроксида натрия с оксидом фосфора((V)) образуются фосфат натрия и вода:
6NaOH+P2O5→2Na3PO4+3H2O.
5. Щёлочи могут взаимодействовать с растворимыми в воде солями.
Обрати внимание!
Реакция обмена между основанием и солью возможна в том случае, если оба исходных вещества растворимы, а в результате образуется хотя бы одно нерастворимое вещество (выпадает осадок).
А) Например, при взаимодействии гидроксида натрия с сульфатом меди((II)) образуются сульфат натрия и гидроксид меди((II)):
2NaOH+CuSO4→Na2SO4+Cu(OH)2↓.
Б) При взаимодействии гидроксида кальция с карбонатом натрия образуются карбонат кальция и гидроксид натрия:
Ca(OH)2+Na2CO3→CaCO3↓+2NaOH.
6. Малорастворимые щёлочи при нагревании разлагаются на оксид металла и воду.
Например, если нагреть гидроксид кальция, образуются оксид кальция и водяной пар:
Ca(OH)2⟶t°CaO+H2O↑.
Общие химические свойства нерастворимых оснований
1. Нерастворимые основания взаимодействуют с кислотами, образуя соль и воду.
А) Например, при взаимодействии гидроксида меди((II)) с серной кислотой образуются сульфат меди((II)) и вода:
Cu(OH)2+H2SO4→CuSO4+2H2O.
Б) При взаимодействии гидроксида железа((III)) с соляной (хлороводородной) кислотой образуются хлорид железа((III)) и вода:
Fe(OH)3+3HCl→FeCl3+3H2O.
Видеофрагмент:
Взаимодействие гидроксида железа((III)) с соляной кислотой
2. Некоторые нерастворимые основания могут взаимодействовать с некоторыми кислотными оксидами, образуя соль и воду.
Например, при взаимодействии гидроксида меди((II)) с оксидом серы((VI)) образуются сульфат меди((II)) и вода:
Cu(OH)2+SO3⟶t°CuSO4+H2O.
3. Нерастворимые основания при нагревании разлагаются на оксид металла и воду.
А) Например, при нагревании гидроксида меди((II)) образуются оксид меди((II)) и вода:
Cu(OH)2⟶t°CuO+H2O.
Видеофрагмент:
Разложение гидроксида меди((II))
Б) Гидроксид железа((III)) при нагревании разлагается на оксид железа((III)) и воду:
2Fe(OH)3⟶t°Fe2O3+3H2O.
Группа → | 1 | ||||||
---|---|---|---|---|---|---|---|
↓ Период | |||||||
2 |
| ||||||
3 |
| ||||||
4 |
| ||||||
5 |
| ||||||
6 |
| ||||||
7 |
|
Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы)[1]: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.
Общая характеристика щелочных металлов[править | править код]
В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО). Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов. Однако существуют и соединения, где щелочные металлы представлены анионами (см. Алкалиды).
Некоторые атомные и физические свойства щелочных металлов
Атомный номер | Название, символ | Число природных изотопов | Атомная масса | Энергия ионизации, кДж·моль−1 | Сродство к электрону, кДж·моль−1 | ЭО | ΔHдисс, кДж·моль−1 | Металл. радиус, нм | Ионный радиус (КЧ 6), нм | tпл, °C | tкип, °C | Плотность, г/см³ | ΔHпл, кДж·моль−1 | ΔHкип, кДж·моль−1 | ΔHобр, кДж·моль−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Литий Li | 2 | 6,941(2) | 520,2 | 59,8 | 0,98 | 106,5 | 0,152 | 0,076 | 180,6 | 1342 | 0,534 | 2,93 | 148 | 162 |
11 | Натрий Na | 1 | 22,989768(6) | 495,8 | 52,9 | 0,99 | 73,6 | 0,186 | 0,102 | 97,8 | 883 | 0,968 | 2,64 | 99 | 108 |
19 | Калий К | 2+1а | 39,0983(1) | 418,8 | 46,36 | 0,82 | 57,3 | 0,227 | 0,138 | 63,07 | 759 | 0,856 | 2,39 | 79 | 89,6 |
37 | Рубидий Rb | 1+1а | 85,4687(3) | 403,0 | 46,88 | 0,82 | 45,6 | 0,248 | 0,152 | 39,5 | 688 | 1,532 | 2,20 | 76 | 82 |
55 | Цезий Cs | 1 | 132,90543(5) | 375,7 | 45,5 | 0,79 | 44,77 | 0,265 | 0,167 | 28,4 | 671 | 1,90 | 2,09 | 67 | 78,2 |
87 | Франций Fr | 2а | (223) | 380 | (44,0) | 0,7 | — | — | 0,180 | 20 | 690 | 1,87 | 2 | 65 | — |
119 | Унуненний Uue |
а Радиоактивные изотопы:
40K, T1/2 = 1,277·109 лет; 87Rb, T1/2 = 4,75·1010 лет; 223Fr, T1/2 = 21,8 мин; 224Fr, T1/2 = 3,33 мин.
Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней.
Литий
Натрий
Калий
Рубидий
Цезий
Многие минералы содержат в своём составе щелочные металлы. Например, ортоклаз, или полевой шпат, состоит из алюмосиликата калия K2[Al2Si6O16], аналогичный минерал, содержащий натрий — альбит — имеет состав Na2[Al2Si6O16]. В морской воде содержится хлорид натрия NaCl, а в почве — соли калия — сильвин KCl, сильвинит NaCl·KCl, карналлит KCl·MgCl2·6H2O, полигалит K2SO4·MgSO4·CaSO4·2H2O.
Химические свойства щелочных металлов[править | править код]
Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.
Взаимодействие с водой[править | править код]
Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:
При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.
Взаимодействие с кислородом[править | править код]
Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.
- Только литий сгорает на воздухе с образованием оксида стехиометрического состава:
- При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2:
- В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:
Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:
Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О2−
2 и надпероксид-ион O−
2.
Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различную окраску, интенсивность которой увеличивается в ряду от Li до Cs:
Формула кислородного соединения | Цвет |
---|---|
Li2O | Белый |
Na2O | Белый |
K2O | Желтоватый |
Rb2O | Жёлтый |
Cs2O | Оранжевый |
Na2O2 | Светло- жёлтый |
KO2 | Оранжевый |
RbO2 | Тёмно- коричневый |
CsO2 | Жёлтый |
Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:
Пероксиды и надпероксиды проявляют свойства сильных окислителей:
Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:
Взаимодействие с другими веществами[править | править код]
Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов:
При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) щелочные металлы реагируют с кислотами.
Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:
При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:
Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):
Качественное определение щелочных металлов[править | править код]
Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:
Окраска пламени щелочными металлами
и их соединениями
Щелочной металл | Цвет пламени |
---|---|
Li | Карминно-красный |
Na | Жёлтый |
K | Фиолетовый |
Rb | Буро-красный |
Cs | Фиолетово-красный |
Получение щелочных металлов[править | править код]
Электролиз расплавов галогенидов[править | править код]
Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:
катод: анод:
Электролиз расплавов гидроксидов[править | править код]
Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:
катод: анод:
Восстановление из галогенидов[править | править код]
Щелочной металл может быть восстановлен из соответствующего хлорида или бромида кальцием, магнием, кремнием и др. восстановителями при нагревании под вакуумом до 600—900 °C:
Чтобы реакция пошла в нужную сторону, образующийся свободный щелочной металл (M) должен удаляться путём отгонки. Аналогично возможно восстановление цирконием из хромата. Известен способ получения натрия восстановлением из карбоната углём при 1000 °C в присутствии известняка.[источник не указан 3328 дней]
Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из водных растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.
Соединения щелочных металлов[править | править код]
Гидроксиды[править | править код]
Для получения гидроксидов щелочных металлов в основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрия электролизом концентрированного водного раствора поваренной соли:
катод: анод:
Прежде щёлочь получали реакцией обмена:
Получаемая таким способом щёлочь была сильно загрязнена содой Na2CO3.
Гидроксиды щелочных металлов — белые гигроскопичные вещества, водные растворы которых являются сильными основаниями. Они участвуют во всех реакциях, характерных для оснований — реагируют с кислотами, кислотными и амфотерными оксидами, амфотерными гидроксидами:
Гидроксиды щелочных металлов при нагревании возгоняются без разложения, за исключением гидроксида лития, который так же, как гидроксиды металлов главной подгруппы II группы, при прокаливании разлагается на оксид и воду:
Гидроксид натрия используется для изготовления мыла, синтетических моющих средств, искусственного волокна, органических соединений, например фенола.
Соли[править | править код]
Важным продуктом, содержащим щелочной металл, является сода Na2CO3. Основное количество соды во всём мире производят по методу Сольве, предложенному ещё в начале XX века. Суть метода состоит в следующем: водный раствор NaCl, к которому добавлен аммиак, насыщают углекислым газом при температуре 26—30 °C. При этом образуется малорастворимый гидрокарбонат натрия, называемый питьевой содой:
Аммиак добавляют для нейтрализации кислотной среды, возникающей при пропускании углекислого газа в раствор, и получения гидрокарбонат-иона HCO3−, необходимого для осаждения гидрокарбоната натрия. После отделения питьевой соды раствор, содержащий хлорид аммония, нагревают с известью и выделяют аммиак, который возвращают в реакционную зону:
Таким образом, при аммиачном способе получения соды единственным отходом является хлорид кальция, остающийся в растворе и имеющий ограниченное применение.
При прокаливании гидрокарбоната натрия получается кальцинированная, или стиральная, сода Na2CO3 и диоксид углерода, используемый в процессе получения гидрокарбоната натрия:
Основной потребитель соды — стекольная промышленность.
В отличие от малорастворимой кислой соли NaHCO3, гидрокарбонат калия KHCO3 хорошо растворим в воде, поэтому карбонат калия, или поташ, K2CO3 получают действием углекислого газа на раствор гидроксида калия:
Поташ используют в производстве стекла и жидкого мыла.
Литий — единственный щелочной металл, для которого не получен гидрокарбонат. Причина этого явления в очень маленьком радиусе иона лития, который не позволяет ему удерживать довольно крупный ион HCO−
3.
Безопасность[править | править код]
Все щелочные металлы проявляют высокую активность при взаимодействии с водой, кислородом, галогенами и другими соединениями. Особенно опасны взаимодействия с водой, так как продуктами реакций являются едкие щёлочи, а также происходит огромное выделение энергии, сопровождаемое огненной вспышкой (в случае с калием) или взрывом (в случае с рубидием или цезием). Поэтому необходимо соблюдать правила безопасности при работе с ними. Работа должна проводиться исключительно в перчатках из латекса, также необходимо надевать защитные очки. В экспериментах используют только небольшие количества, манипуляции с которыми производят при помощи щипцов; в случае непрореагировавших остатков щелочных металлов (например, натрия или калия), применяют утилизацию в обезвоженном спирте. Рубидий и цезий ввиду чрезвычайно высокой химической активности (взрывоопасные) практически не применяют в опытах.
Литература[править | править код]
- Ахметов Н. С. Общая и неорганическая химия. — М.: Высшая школа, 2001.
- Ерёмина Е. А., Рыжова О. Н. Глава 14. Щелочные металлы // Справочник школьника по химии. — М.: Экзамен, 2009. — С. 224—231. — 512 с. — 5000 экз. — ISBN 978-5-377-01472-0.
- Кузьменко Н. Е. , Ерёмин В. В., Попков В. А. Начала химии. Современный курс для поступающих в вузы. — М.: Экзамен, 1997—2001.
- Лидин Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии. — М.: Химия, 1987.
- Некрасов Б. В. Основы общей химии. — М.: Химия, 1974.
- Спицын В. И., Мартыненко Л. И. Неорганическая химия. — М.: МГУ, 1991, 1994.
- Турова Н. Я. Неорганическая химия в таблицах. Учебное пособие. — М.: Высший химический колледж РАН, 1997.
Примечания[править | править код]
См. также[править | править код]
- Щелочноземельные металлы
Ссылки[править | править код]
- Взаимодействие щелочных металлов с водой
- Щелочные металлы, видео