Какие свойства характерны для всех щелочных металлов

Какие свойства характерны для всех щелочных металлов thumbnail
Группа →1
↓ Период
2
3

Литий

Li

6,941

[Не]2s1
3
11

Натрий

Na

22,9898

[Nе]3s1
4
19

Калий

K

39,0983

[Ar]4s1
5
37

Рубидий

Rb

85,4678

[Kr]5s1
6
55

Цезий

Cs

132,9055

[Xe]6s1
7
87

Франций

Fr

(223)

[Rn]7s1

Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы)[1]: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.

Общая характеристика щелочных металлов[править | править код]

В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО). Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов. Однако существуют и соединения, где щелочные металлы представлены анионами (см. Алкалиды).

Некоторые атомные и физические свойства щелочных металлов

Атомный
номер
Название,
символ
Число природных изотоповАтомная массаЭнергия ионизации, кДж·моль−1Сродство к электрону, кДж·моль−1ЭОΔHдисс, кДж·моль−1Металл. радиус, нмИонный радиус (КЧ 6), нм tпл,
°C
tкип,
°C
Плотность,
г/см³
ΔHпл, кДж·моль−1ΔHкип, кДж·моль−1ΔHобр, кДж·моль−1
3Литий Li26,941(2)520,259,80,98106,50,1520,076180,613420,5342,93148162
11Натрий Na122,989768(6)495,852,90,9973,60,1860,10297,88830,9682,6499108
19Калий К2+1а39,0983(1)418,846,360,8257,30,2270,13863,077590,8562,397989,6
37Рубидий Rb1+1а85,4687(3)403,046,880,8245,60,2480,15239,56881,5322,207682
55Цезий Cs1132,90543(5)375,745,50,7944,770,2650,16728,46711,902,096778,2
87Франций Fr(223)380(44,0)0,70,180206901,87265
119Унуненний Uue

а Радиоактивные изотопы:
40K, T1/2 = 1,277·109 лет; 87Rb, T1/2 = 4,75·1010 лет; 223Fr, T1/2 = 21,8 мин; 224Fr, T1/2 = 3,33 мин.

Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней.

  • Литий

  • Натрий

  • Калий

  • Рубидий

  • Цезий

Многие минералы содержат в своём составе щелочные металлы. Например, ортоклаз, или полевой шпат, состоит из алюмосиликата калия K2[Al2Si6O16], аналогичный минерал, содержащий натрий — альбит — имеет состав Na2[Al2Si6O16]. В морской воде содержится хлорид натрия NaCl, а в почве — соли калия — сильвин KCl, сильвинит NaCl·KCl, карналлит KCl·MgCl2·6H2O, полигалит K2SO4·MgSO4·CaSO4·2H2O.

Химические свойства щелочных металлов[править | править код]

Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.

Взаимодействие с водой[править | править код]

Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:

При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.

Взаимодействие с кислородом[править | править код]

Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.

  • Только литий сгорает на воздухе с образованием оксида стехиометрического состава:
  • При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2:
  • В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:

Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:

Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О2−
2 и надпероксид-ион O−
2.

Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различную окраску, интенсивность которой увеличивается в ряду от Li до Cs:

Формула
кислородного соединения
Цвет
Li2OБелый
Na2OБелый
K2OЖелтоватый
Rb2OЖёлтый
Cs2OОранжевый
Na2O2Светло-
жёлтый
KO2Оранжевый
RbO2Тёмно-
коричневый
CsO2Жёлтый

Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:

Пероксиды и надпероксиды проявляют свойства сильных окислителей:

Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:

Взаимодействие с другими веществами[править | править код]

Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов:

При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) щелочные металлы реагируют с кислотами.

Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:

При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:

Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):

Читайте также:  Какие свойства обладает капустный сок

Качественное определение щелочных металлов[править | править код]

Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:

Окраска пламени щелочными металлами
и их соединениями

Щелочной металлЦвет пламени
LiКарминно-красный
NaЖёлтый
KФиолетовый
RbБуро-красный
CsФиолетово-красный

Получение щелочных металлов[править | править код]

Электролиз расплавов галогенидов[править | править код]

Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:

катод: анод:

Электролиз расплавов гидроксидов[править | править код]

Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:

катод: анод:

Восстановление из галогенидов[править | править код]

Щелочной металл может быть восстановлен из соответствующего хлорида или бромида кальцием, магнием, кремнием и др. восстановителями при нагревании под вакуумом до 600—900 °C:

Чтобы реакция пошла в нужную сторону, образующийся свободный щелочной металл (M) должен удаляться путём отгонки. Аналогично возможно восстановление цирконием из хромата. Известен способ получения натрия восстановлением из карбоната углём при 1000 °C в присутствии известняка.[источник не указан 3306 дней]

Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из водных растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.

Соединения щелочных металлов[править | править код]

Гидроксиды[править | править код]

Для получения гидроксидов щелочных металлов в основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрия электролизом концентрированного водного раствора поваренной соли:

катод: анод:

Прежде щёлочь получали реакцией обмена:

Получаемая таким способом щёлочь была сильно загрязнена содой Na2CO3.

Гидроксиды щелочных металлов — белые гигроскопичные вещества, водные растворы которых являются сильными основаниями. Они участвуют во всех реакциях, характерных для оснований — реагируют с кислотами, кислотными и амфотерными оксидами, амфотерными гидроксидами:

Гидроксиды щелочных металлов при нагревании возгоняются без разложения, за исключением гидроксида лития, который так же, как гидроксиды металлов главной подгруппы II группы, при прокаливании разлагается на оксид и воду:

Гидроксид натрия используется для изготовления мыла, синтетических моющих средств, искусственного волокна, органических соединений, например фенола.

Соли[править | править код]

Важным продуктом, содержащим щелочной металл, является сода Na2CO3. Основное количество соды во всём мире производят по методу Сольве, предложенному ещё в начале XX века. Суть метода состоит в следующем: водный раствор NaCl, к которому добавлен аммиак, насыщают углекислым газом при температуре 26—30 °C. При этом образуется малорастворимый гидрокарбонат натрия, называемый питьевой содой:

Аммиак добавляют для нейтрализации кислотной среды, возникающей при пропускании углекислого газа в раствор, и получения гидрокарбонат-иона HCO3−, необходимого для осаждения гидрокарбоната натрия. После отделения питьевой соды раствор, содержащий хлорид аммония, нагревают с известью и выделяют аммиак, который возвращают в реакционную зону:

Таким образом, при аммиачном способе получения соды единственным отходом является хлорид кальция, остающийся в растворе и имеющий ограниченное применение.

При прокаливании гидрокарбоната натрия получается кальцинированная, или стиральная, сода Na2CO3 и диоксид углерода, используемый в процессе получения гидрокарбоната натрия:

Основной потребитель соды — стекольная промышленность.

В отличие от малорастворимой кислой соли NaHCO3, гидрокарбонат калия KHCO3 хорошо растворим в воде, поэтому карбонат калия, или поташ, K2CO3 получают действием углекислого газа на раствор гидроксида калия:

Поташ используют в производстве стекла и жидкого мыла.

Литий — единственный щелочной металл, для которого не получен гидрокарбонат. Причина этого явления в очень маленьком радиусе иона лития, который не позволяет ему удерживать довольно крупный ион HCO−
3.

Безопасность[править | править код]

Все щелочные металлы проявляют высокую активность при взаимодействии с водой, кислородом, галогенами и другими соединениями. Особенно опасны взаимодействия с водой, так как продуктами реакций являются едкие щёлочи, а также происходит огромное выделение энергии, сопровождаемое огненной вспышкой (в случае с калием) или взрывом (в случае с рубидием или цезием). Поэтому необходимо соблюдать правила безопасности при работе с ними. Работа должна проводиться исключительно в перчатках из латекса, также необходимо надевать защитные очки. В экспериментах используют только небольшие количества, манипуляции с которыми производят при помощи щипцов; в случае непрореагировавших остатков щелочных металлов (например, натрия или калия), применяют утилизацию в обезвоженном спирте. Рубидий и цезий ввиду чрезвычайно высокой химической активности (взрывоопасные) практически не применяют в опытах.

Литература[править | править код]

  • Ахметов Н. С. Общая и неорганическая химия. — М.: Высшая школа, 2001.
  • Ерёмина Е. А., Рыжова О. Н. Глава 14. Щелочные металлы // Справочник школьника по химии. — М.: Экзамен, 2009. — С. 224—231. — 512 с. — 5000 экз. — ISBN 978-5-377-01472-0.
  • Кузьменко Н. Е. , Ерёмин В. В., Попков В. А. Начала химии. Современный курс для поступающих в вузы. — М.: Экзамен, 1997—2001.
  • Лидин Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии. — М.: Химия, 1987.
  • Некрасов Б. В. Основы общей химии. — М.: Химия, 1974.
  • Спицын В. И., Мартыненко Л. И. Неорганическая химия. — М.: МГУ, 1991, 1994.
  • Турова Н. Я. Неорганическая химия в таблицах. Учебное пособие. — М.: Высший химический колледж РАН, 1997.

Примечания[править | править код]

См. также[править | править код]

  • Щелочноземельные металлы

Ссылки[править | править код]

  • Взаимодействие щелочных металлов с водой
  • Щелочные металлы, видео
Щелочные металлы
   

Литий
Li
Атомный номер: 3
Атомная масса: 6,941
Темп. плавления: 453,85 К
Темп. кипения: 1615 К
Плотность: 0,534 г/см³
Электроотрицательность: 0,98

Натрий
Na
Атомный номер: 11
Атомная масса: 22,98976928
Темп. плавления: 371,15 К
Темп. кипения: 1156 К
Плотность: 0,97 г/см³
Электроотрицательность: 0,96

Калий
K
Атомный номер: 19
Атомная масса: 39,0983
Темп. плавления: 336,58 К
Темп. кипения: 1032 К
Плотность: 0,86 г/см³
Электроотрицательность: 0,82

Рубидий
Rb
Атомный номер: 37
Атомная масса: 85,4678
Темп. плавления: 312,79 К
Темп. кипения: 961 К
Плотность: 1,53 г/см³
Электроотрицательность: 0,82

Цезий
Cs
Атомный номер: 55
Атомная масса: 132,9054519
Темп. плавления: 301,59 К
Темп. кипения: 944 К
Плотность: 1,93 г/см³
Электроотрицательность: 0,79

Франций
Fr
Атомный номер: 87
Атомная масса: (223)
Темп. плавления: ~300 К
Темп. кипения: ~950 К
Плотность: 1,87 г/см³
Электроотрицательность: 0,7

Источник

Читайте также:  Какие лечебные свойства календулы

Щелочными металлами называются химические элементы-металлы (IA) группы Периодической системы Д. И. Менделеева: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr).

Электронное строение атомов. На внешнем энергетическом уровне атомы щелочных металлов имеют один электрон ns1. Поэтому для всех металлов группы (IA) характерна степень окисления (+1).

Этим объясняется сходство свойств всех щелочных металлов.

Для них (сверху вниз по группе) характерно:

  • увеличение радиуса атомов;
  • уменьшение электроотрицательности;
  • усиление восстановительных, металлических свойств.

Нахождение в природе. Из щелочных металлов наиболее широко распространены в природе натрий и калий. Но из-за высокой химической активности они встречаются только в виде соединений.

Основными источниками натрия и калия являются:

  • каменная соль (хлорид натрия (NaCl)),
  • глауберова соль, или мирабилит — декагидрат сульфата натрия Na2SO4 (·) 10H2O,
  • сильвин — хлорид калия (KCl),
  • сильвинит — двойной хлорид калия-натрия (KCL) (·)(NaCl) и др.

Соединения лития, рубидия и цезия в природе встречаются значительно реже, поэтому их относят к числу редких и рассеянных.

Физические свойства простых веществ. В твёрдом агрегатном состоянии атомы связаны металлической связью. Наличие металлической связи обусловливает общие физические свойства простых веществ-металлов: металлический блеск, ковкость, пластичность, высокую тепло- и электропроводность.

В свободном виде простые вещества, образованные элементами (IA) группы — это легкоплавкие металлы серебристо-белого (литий, натрий, калий, рубидий) или золотисто-жёлтого (цезий) цвета, обладающие высокой мягкостью и пластичностью.

Наиболее твёрдым является литий, остальные щелочные металлы легко режутся ножом и могут быть раскатаны в фольгу.

Только у натрия плотность немного больше единицы ρ=1,01 г/см3, у всех остальных металлов плотность меньше единицы.

Химические свойства. Щелочные металлы обладают высокой химической активностью, реагируя с кислородом и другими неметаллами. 

Поэтому хранят щелочные металлы под слоем керосина или в запаянных ампулах. Они являются сильными восстановителями.

Все щелочные металлы активно реагируют с водой, выделяя из неё водород.

Пример:

2Na+2H2O=2NaOH+H2↑.

Взаимодействие натрия с водой протекает с выделением большого количества теплоты (т. е. реакция является экзотермической). Кусочек натрия, попав в воду, начинает быстро двигаться по её поверхности. Под действием выделяющейся теплоты он расплавляется, превращаясь в каплю, которая, взаимодействуя с водой, быстро уменьшается в размерах. Если задержать её, прижав стеклянной палочкой к стенке сосуда, капля воспламенится и сгорит ярко-жёлтым пламенем.

Получение. Металлический натрий в промышленности получают главным образом электролизом расплава хлорида натрия с инертными (графитовыми) электродами.

В расплаве хлорида натрия присутствуют ионы:

 NaCl⇄Na++Cl−.

При электролизе

на катоде восстанавливаются катионы Na+, а на аноде окисляются анионы Cl−:

катод ((–)):  2Na++2e=2Na,

анод ((+)): 2Cl−−2e=Cl2↑.

Суммарное уравнение реакции при электролизе расплава хлорида натрия:

2NaCl→2Na+Cl2↑.

Источники:

Иллюстрация: https://arhivurokov.ru/multiurok/html/2017/02/26/s_58b332582fb94/img1.jpg

Источник

Щелочные металлы

1. Положение в периодической системе химических элементов
2. Электронное строение и закономерности изменения свойств
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие со слабыми кислотами
7.2.6. Взаимодействие с солями

Оксиды щелочных металлов
 1. Способы получения
 2. Химические свойства
2.1. Взаимодействие с кислотными и амфотерными оксидами
2.2. Взаимодействие с кислотами
2.3. Взаимодействие с водой
2.4. Взаимодействие с кислотами

Пероксиды щелочных металлов
 1. Химические свойства
1.1. Взаимодействие с водой
1.2. Взаимодействие с кислотными и амфотерными оксидами
1.3. Взаимодействие с кислотами
1.4. Разложение
1.5. Взаимодействие с восстановителями
1.6. Взаимодействие с окислителями

Гидроксиды щелочных металлов (щелочи)
 1. Способы получения
 2. Химические свойства
2.1. Взаимодействие щелочей с кислотами
2.2. Взаимодействие щелочей с кислотными оксидами
2.3. Взаимодействие щелочей с амфотерными оксидами и гидроксидами
2.4. Взаимодействие щелочей с кислыми солями
2.5. Взаимодействие щелочей с неметаллами
2.6. Взаимодействие щелочей с металлами
2.7. Взаимодействие щелочей с солями
2.8. Разложение щелочей
2.9. Диссоциация щелочей
2.10. Электролиз щелочей

Соли щелочных металлов 

Щелочные металлы

Положение в периодической системе химических элементов

Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Щелочные металлы

Электронное строение щелочных металлов и основные свойства 

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns1, на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрица-тельность.

Какие свойства характерны для всех щелочных металлов

Физические свойства 

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.

Какие свойства характерны для всех щелочных металлов

Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.

Какие свойства характерны для всех щелочных металлов

Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галитNaCl — хлорид натрия

Какие свойства характерны для всех щелочных металлов

Сильвин KCl — хлорид калия

Какие свойства характерны для всех щелочных металлов

Сильвинит NaCl · KCl

Какие свойства характерны для всех щелочных металлов

Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия

Какие свойства характерны для всех щелочных металлов

Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:

Какие свойства характерны для всех щелочных металлов

Способы получения 

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

Читайте также:  Какие бывают свойства книги

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить  нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов.

Какие свойства характерны для всех щелочных металлов

Цвет пламени:
Liкарминно-красный
Na — жѐлтый
Kфиолетовый
Rbбуро-красный
Csфиолетово-красный

Химические свойства

1. Щелочные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K  +  I2  =  2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na  +  S  =  Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K    +    P    =   K3P

2Na  +  H2  =  2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

6Li   +  N2  =  2Li3N

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

2Na   +   2C    =    Na2C2

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

4Li   +   O2   =   2Li2O

2Na  +  O2  =  Na2O2

K   +   O2   =   KO2

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой. Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например, калий реагирует с водой очень бурно:

2K0 + H2+O = 2K+OH + H20

Какие свойства характерны для всех щелочных металлов

Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например, натрий бурно реагирует с соляной кислотой:

2Na  +  2HCl  =  2NaCl  +  H2↑

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например, при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

8Na  +  5H2SO4(конц.)  → 4Na2SO4  +  H2S  +  4H2O

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

8Na + 10HNO3 (конц) → N2O + 8NaNO3 + 5H2O

С разбавленной азотной кислотой образуется молекулярный азот:

10Na + 12HNO3 (разб)→ N2 +10NaNO3 + 6H2O

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

8Na  +  10HNO3  =  8NaNO3  +  NH4NO3  +  3H2O

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства. Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртамифенолом и органическими кислотами.

Например, при взаимодействии лития с аммиаком образуются амиды и водород:

2Li + 2NH3 = 2LiNH2 + H2 ↑

 Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na  →  Na ─ C≡C ─ Na + H2

 Фенол с натрием реагирет с образованием фенолята натрия и водорода:

2C6H5OH  +  2Na  →  2C6H5ONa   +  H2↑

Метанол с натрием образуют метилат натрия и водород:

2СН3ОН   +  2Na   →   2 CH3ONa   +  H2↑

 Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH    +   2Li     →  2CH3COOOLi    +   H2↑

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например, хлорметан с натрием образует этан и хлорид натрия:

2CH3Cl + 2Na   →  C2H6 + 2NaCl

2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями. Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например, натрий взаимодействует в расплаве с хлоридом алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Способы получения

Оксиды щелочных металлов (кроме лития) можно получить только косвенными методами: взаимодействием натрия с окислителями в расплаве:

1. Оксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

10Na  +  2NaNO3 →  6Na2O  +  N2 ↑

2. Взаимодействием натрия с пероксидом натрия:

2Na  +  Na2O2 →  2Na2O

 3. Взаимодействием натрия с расплавом щелочи:

2Na  +  2NaOН → 2Na2O  +  Н2↑

4. Оксид лития можно получить разложением гидроксида лития:

2LiOН → Li2O  +  Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды. Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами:

Например, оксид натрия взаимодействует с оксидом фосфора (V):

3Na2O  +  P2O5  → 2Na3PO4

Оксид лития взаимодейсвует с амфотерным оксидом алюминия:

Na2O  +  Al2O3  → 2NaAlO2

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например, оксид калия вз?