Какие свойства характерны для цитоплазмы

Какие свойства характерны для цитоплазмы thumbnail

Физико-химические свойства цитоплазмы. Цитоплазма, представляющая собой основную массу протопласта (за вычетом ядра, митохондрии и пластид), имеет сложное строение, детали которого до сих пор еще не выяснены. Она состоит из большого количества высокомолекулярных веществ — биополимеров. Часть последних формирует особые структурные образования — мембраны, придающие цитоплазме значительную структурность. Цитоплазма проявляет свойства сравнительно вязкой жидкости, но одновременно и некоторые свойства твердого тела (эластичность). Подобное сочетание свойств возможно благодаря тому, что молекулы биополимеров способны образовывать временные ассоциации различных размеров. Разрушение этих ассоциаций способствует проявлению жидкостных свойств, их восстановлению — проявлению свойств твердого тела.

Структурную основу всей цитоплазмы, так называемый цитоскелет, составляют особые белки, способные преобразовывать химическую энергию в механическую работу. Это — сократительные белки, подобные тем белкам, из которых построены мышцы животных. Благодаря пустой сети мембран внутри цитоплазмы образуется множество так называемых отделов. Тем самым создаются условия для пространственного разграничения различных биохимических процессов. Эти процессы могут протекать одновременно в разных частях цитоплазмы одной и той же клетки, не мешая друг другу.

Схема строения геля

Молекулы биополимеров — белков и липидов — в мембранах расположены в строго определенной последовательности.

Благодаря такому строению мембрана обладает способностью избирательно пропускать молекулы одних веществ и не пропускать молекулы других веществ, т. е. она обладает избирательной проницаемостью, и играет важную роль в жизнедеятельности.

Цитоплазма имеет две пограничные мембраны. Одна из этих мембран, называемая плазма леммой, отграничивает цитоплазму от вакуоли. Тонопласт — наиболее устойчивая часть цитоплазмы; при гибели содержимого клетки он отмирает последним.

Значительную роль в процессах структурообразования в цитоплазме играют ионы, а также молекулы низкомолекулярных соединений, обладающие полярными группами.

Схематическое изображение различных форм плазмолиза: 1 — выпуклая; 2 — вогнутая; 3, 4 — судорож

Поступление веществ в цитоплазму. Вещество, поступившее в цитоплазму, либо связывается самой цитоплазмой, либо поступает из нее в клеточный сок. Растворы солей или Сахаров высокой концентрации обычно не проникают в цитоплазму, а оттягивают из нее воду. При этом цитоплазма отходит от стенок клетки. Это явление получило название плазмолиза. При отхождении цитоплазмы от стенок клетки она образует вогнутую поверхность (вогнутый плазмолиз), которая затем через 15—30 мин переходит в выпуклую форму (выпуклый плазмолиз).

Своеобразную форму плазмолиза можно вызвать действием раствора роданистого калия (KCNS) на клетку чешуи лука. Анионы CNS проникают в клетку и вызывают набухание мезоплазмы, внутрь вакуоли они не проникают. Мезоплазма при этом становится хорошо заметной в виде колпачков на полюсах плазмолизированного протопласта. Отсюда данный тип плазмолиза получил название колпачкового плазмолиза.

Колпачковый плазмолиз обнаруживает первый тип проницаемости цитоплазмы, когда проникшее вещество связывается самой цитоплазмой и не поступает в вакуоль.

Другой тип проницаемости цитоплазмы связан с проникновением вещества в вакуоль. Далеко не все растворы вызывают долго длящийся плазмолиз. Если плазмолизировать протопласт клетки раствором мочевины или глицерина, то сначала наблюдается плазмолиз. Затем плазмолиз сравнительно быстро заканчивается. Мочевина и глицерин быстро проникают внутрь вакуоли, увеличивают концентрацию клеточного сока, который начинает поглощать воду из окружающего раствора. При этом цитоплазма вновь подходит к стенкам клетки. Это явление получило название деплазмолиза, и такой плазмолиз называется временным.

Колпачковый плазмолиз в растворе роданистого калия

Проникновение вещества в вакуоли клетки можно наблюдать на примере действия красителя метиленового синего (водный раствор 1:5000) на какое-нибудь водное растение, например элодею. Краситель скопляется внутри вакуолей, и очень часто в них даже образуется осадок из красителя, связанного с дубильными веществами вакуолей.

Проницаемость цитоплазмы связана с активной жизнедеятельностью (дыханием) растения. Поступление веществ (солей или, вернее, их катионов и анионов) в цитоплазму идет за счет обмена их на ионы, выходящие из клетки. Это происходит таким образом, что образованные в процессе дыхания Н+ и НСОз (ионы угольной кислоты) выделяются в окружающий раствор, а на их место в цитоплазму поступают ионы калия и натрия вместо ионов водорода, а на место иона НСОз— соответственные анионы.

Не всегда вещества проникают в цитоплазму за счет ее активной жизнедеятельности. Дело в том, что поверхностные слои цитоплазмы богаты липидами, которые не образуют сплошной пленки на поверхности цитоплазмы, а чередуются с молекулами белков или вкраплены в белковый остов поверхностных слоев, т. е. на поверхности цитоплазмы образуется своеобразная мозаика из участков белков и липидов. Растворимые в липидах вещества (спирт, эфир, хлороформ и др.) очень легко проникают в цитоплазму.

Вода и соли, нерастворимые в липидах, проникают в цитоплазму через белковые слои.

Проницаемость цитоплазмы не остается постоянной в течение жизни растения, а меняется с возрастом, а также увеличивается при повышении температуры и интенсивности освещения.

Движение цитоплазмы. Одним из характерных свойств цитоплазмы является ее способность к движению. Движение цитоплазмы и находящихся в ней включений происходит как в постенном слое, так и в тяжах, связывающих ядро с цитоплазмой.

Скорость перемещения цитоплазмы в эпидермисе чешуи лука составляет примерно 5—7 м/с. На скорость движения Цитоплазмы влияют температура, свет и другие факторы. В одном из опытов движение цитоплазмы в клетках водного растения валлиснерии начиналось при температуре 1,25°С, шло с наибольшей интенсивностью при 38,5°С и останавливалось при 45°С.

Движение цитоплазмы играет большую роль в жизнедеятельности растительного организма, способствуя перемещению веществ из одной клетки в другую.

Вязкость — одно из важнейших свойств цитоплазмы. Она очень сильно колеблется в зависимости от вида растения, а также от фаз его развития. У некоторых растений вязкость цитоплазмы немного превышает вязкость воды, а у других достигает вязкости глицерина, превосходящего в этом отношении воду в 87 раз. Вязкость цитоплазмы тесно связана с обменом веществ: чем выше вязкость, тем обычно менее интенсивен обмен. У созревших семян цитоплазма переходит в студенистое состояние — гель. Высокая вязкость цитоплазмы способствует увеличению устойчивости растений к повышенной температуре.

Сравнительное определение вязкости цитоплазмы производят по времени перехода вогнутого плазмолиза в выпуклый.

Насколько тесно связана вязкость цитоплазмы с температурой коагуляции белков, видно на примере озимой ржи. Вязкость цитоплазмы в различных органах ржи неодинакова. В тех органах, где она выше, белки цитоплазмы свертываются при более высокой температуре.

ОРГАНОИДЫ КЛЕТКИ

Помимо цитоплазмы, в световом микроскопе можно наблюдать и другие составные части, получившие название органоидов клетки. К ним относятся ядро, пластиды, митохондрии.

Крупные органоиды (ядро, пластиды) хорошо видны в световом микроскопе, другие органоиды (митохондрии, рыбосомы) и структурные элементы цитоплазмы (аппарат Гольджи, эндоплазматическая сеть) только лишь в электронном микроскопе.

Ядро является обязательной составной частью любой растительной и животной клетки. Оно имеет обычно округлую или слегка вытянутую форму. Абсолютные размеры ядра не превышают 7—8 мкм. Ядро состоит из ядерной плазмы (кариоплазмы), ядрышка, ядерной оболочки, отграничивающей ядро от окружающей цитоплазмы. Кариоплазма содержит твердую часть — хроматин и жидкую — ядерный сок. Хроматин — это сложное образование, в состав которого входят нуклеопротеиды, т. е. соединения белков с нуклеиновыми кислотами. В ядре содержится дезоксирибонуклеиновая кислота, ДНК, а в ядрышке — рибонуклеиновая кислота — РНК.

Лейкопласты в эпидермисе листьев традесканции: 1— лейкопласты; 2—ядро; 3— оболочка

Ядро играет огромную роль в жизни клеток. При делении клеток (митозе) из хроматина ядра образуются хромосомы, которые являются носителями наследственности. Число хромосом строго определенно для каждого отдельного вида растений и животных. Ядро имеет большое значение и в неделящейся клетке. О роли ядра можно судить по изучению физиологии безъядерных клеток. В 1890 г. И.И. Герасимов, действуя на делящуюся клетку водоросли спирогиры низкой температурой, или эфиром, получал безъядерные клетки и клетки, содержащие двойное количество ядерного вещества. Безъядерные клетки хотя и продолжали некоторое время жить, но переставали расти, обмен веществ в них шел ненормально. Образовавшийся в процессе фотосинтеза крахмал не претерпевал дальнейших превращений, и клетки им переполнялись.

Отделенная от ядра цитоплазма сравнительно быстро погибает из-за нарушения обмена веществ. Изолированное от цитоплазмы ядро также не может существовать. Жизнеспособными являются только клетки, содержащие цитоплазму и ядро. Пластиды. Пластидами называются особые органоиды в клетке. К ним относят бесцветные лейкопласты, зеленые хлоропласты и оранжевые хромопласты. Все виды пластид могут возникать из бесцветных пропластид. Окраска пластид обусловлена особыми пигментами (красящими веществами): в хлоропластах — зеленым хлорофилле м, а в хромопластах — оранжевым каротином.

Источник

Цитоплазму называют внутренней средой организма, потому что она постоянно перемещается и приводит в движение все клеточные компоненты. В цитоплазме постоянно идут обменные процессы, содержатся все органические и не органические вещества.

Строение

Цитоплазма состоит из постоянной жидкой части – гиалоплазмы и элементов, которые меняются – органелл и включений.

Строение и функции цитоплазмы

Органеллы цитоплазмы делятся на мембранные и немембранные, последние в свою очередь могут быть двухмембранные и одномембранные.

  1. Немембранные органеллы: рибосомы, вакуоли, центросома, жгутики.
  2. Двухмембранные органеллы: митохондрии, пластиды, ядро.
  3. Одномембранные органеллы: аппарат Гольджи, лизосомы, вакуоли эндоплазматический ретикулум.

Также к компонентам цитоплазмы относятся клеточные включения, представлены в виде липидных капель или гранул гликогена.

Основные признаки цитоплазмы:

  • Бесцветная;
  • эластичная;
  • слизисто-вязкая;
  • структурированная;
  • подвижная.

Жидкая часть цитоплазмы по своему химическому составу отличается в клетках разной специализации. Основное вещество – вода от 70% до 90%, также в состав входят протеины, углеводы, фосфолипиды, микроэлементы, соли.

Кислотно-щелочное равновесие поддерживается на уровне 7,1–8,5pH (слабощелочное).

Цитоплазма, при изучении на большом увеличении микроскопа, не является однородной средой. Различают две части – одна находится на периферии в области плазмолеммы (эктоплазма), другая – возле ядра (эндоплазма).

Эктоплазма служит связующим звеном с окружающей средой, межклеточной жидкостью и соседними клетками. Эндоплазма – это место расположения всех органелл.

В структуре цитоплазмы выделяют особые элементы – микротрубочки и микрофиламенты.

Микротрубочки – немембранные органоиды, необходимые для перемещения органелл внутри клетки и образования цитоскелета. Глобулярный белок тубулин – основное строительное вещество для микротрубочек. Одна молекула тубулина в диаметре не превышает 5нм. При этом молекулы способны объединятся друг с другом, вместе образуя цепочку. 13 таких цепочек формируют микротрубочку диаметром 25нм.

Молекулы тубулина находятся в постоянном движении для формирования микротрубочек, если на клетку воздействуют неблагоприятные факторы, процесс нарушается. Микротрубочки укорачиваются или вовсе денатурируются. Эти элементы цитоплазмы очень важны в жизни растительных и бактериальных клеток, так как принимают участие в строении их оболочек.

Микротрубочки и микрофиламентыМикротрубочки и микрофиламенты

Микрофиламенты – это субмикроскопические немембранные органеллы, которые образуют цитоскелет. Также входят в состав сократительного аппарата клетки. Микрофиламенты состоят из двух видов белка – актина и миозина. Актиновые волокна тонкие до 5нм в диаметре, а миозиновые толстые – до 25нм. Микрофиламенты в основном сосредоточены в эктоплазме. Существуют также специфические филаменты, которые характерны для конкретного вида клеток.

Микротрубочки и микрофиламенты вместе образуют цитоскелет клетки, который обеспечивает взаимосвязь всех органелл и внутриклеточный метаболизм.

В цитоплазме также выделяют высокомолекулярные биополимеры. Они объединяются в мембранные комплексы, которые пронизывают все внутреннее пространство клетки, предопределяют месторасположение органелл, отграничивают цитоплазму от клеточной стенки.

Особенности строения цитоплазмы заключаются в способности изменять свою внутреннюю среду. Она может пребывать в двух состояниях: полужидком (золь) и вязком (гель). Так, в зависимости от влияния внешних факторов (температура, радиация, химические растворы), цитоплазма переходит из одного состояния в другое.

Функции

  • Наполняет внутриклеточное пространство;
  • связывает между собой все структурные элементы клетки;
  • транспортирует синтезированные вещества между органоидами и за пределы клетки;
  • устанавливает месторасположение органелл;
  • является средой для физико-химических реакций;
  • отвечает за клеточный тургор, постоянство внутренней среды клетки.

Функции цитоплазмы в клетке зависят также от вида самой клетки: растительная она, животная, эукариотическая или прокариотическая. Но во всех живых клетках в цитоплазме происходит важное физиологическое явление – гликолиз. Процесс окисления глюкозы, который осуществляется в аэробных условиях и заканчивается высвобождением энергии.

Движение цитоплазмы

Цитоплазма находится в постоянном движении, эта характеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.

Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.

Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.

Роль цитоплазмы в биосинтезе белка. Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.

Сводная таблица строения и функций цитоплазмы

Структурные элементыСтроениеФункции
ЭктоплазмаПлотный слой цитоплазмыОбеспечивает связь с внешней средой
ЭндоплазмаБолее жидкий слой цитоплазмыМесто расположения органоидов клетки
МикротрубочкиПостроены из глобулярного белка — тубулина с диаметром 5нм, который способен полимеризироватьсяОтвечают за внутриклеточный транспорт
МикрофиламентыСостоят из актиновых и миозиновых волоконОбразуют цитоскелет, поддерживают связь между всеми органеллами

Источник

Основные классы веществ цитоплазмы нетрудно определить качественно. Воду, белки, липиды, соли и углеводы легко индетифицировать с помощью соответствующих методик. В небольших количествах в цитоплазме содержатся также и другие группы соединений как органических, так и неорганических.

Цитоплазма любой растительной клетки содержит около 75–85 % воды, 10– 20 % белка, 2–3 % липидов, 1 % углеводов и около 1 % солей и других веществ. Несмотря на то, что вода составляет самую значительную часть цитоплазмы, основные признаки строения и свойства цитоплазмы определяются белком. Липиды играют важную роль в мембранах всех видов, тогда как углеводы образуют запасы питательных веществ.

Вода содержится в цитоплазме в двух видах – свободном и связанном. Свободная вода – это вода, которая может участвовать в процессах обмена веществ. Связанная вода удерживается белковыми молекулами при помощи водородных связей и образует поэтому часть структуры цитоплазмы (подсчитано, что всего 4,5 % всей воды цитоплазмы находится в связанном состоянии).

Соли содержатся во всех клетках и необходимы для процессов жизнедеятельности. Следует отметить, что из катионов наивысшей концентрации в клетке достигает калий. Содержание натрия и кальция ниже, в цитоплазме концентрация свободного кальция составляет всего 10 –7 моль/л. Преобладающим анионом в растительной клетке является хлорид. Наряду с основными солями в клетке найдены также многие другие элементы. Как уже отмечалось, характерная структура цитоплазмы определяется белками; молекулярный вес этих веществ очень высок – от 13 тыс. дальтон до многих миллионов. Своеобразные свойства белков обусловлены, вероятно, крупным размером их молекул. Все белки состоят из углерода, водорода, кислорода, азота и обычно серы, а некоторые, кроме того, содержат фосфор.

Цитоплазма. Химический состав, физическое состояние, строение и свойства.  

Цитоплазма бесцветная, имеет слизистую консистенцию и содержит различные вещества, в том числе и высокомолекулярные соединения, например белки, присутствие которых обусловливает коллоидные свойства цитоплазмы. Цитоплазма – часть протопласта, заключенная между плазмалеммой и ядром. Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель.
В цитоплазме растительных клеток имеются органоиды: небольшие тельца, выполняющие специальные функции, — пластиды, комплекс Гольджи, эндоплазматическая сеть, митохондрии и т.д. В цитоплазме осуществляется большая часть процессов клеточного метаболизма, исключая синтез нуклеиновых кислот, происходящих в ядре. Цитоплазма пронизана мембранами – тончайшими (4-10нм) пленками, построенными в основном из фосфолипидов и липопротеинов. Мембраны ограничивают цитоплазму от клеточной оболочки и вакуоли и внутри цитоплазмы образуют эндоплазматическую сеть (ретикулум) – систему мелких вакуолей и канальцев, соединенных друг с другом.
Важнейшим свойством цитоплазмы, связанным прежде всего с физико-химическими особенностями гиалоплазмы, является ее способность к движению. В клетках с одной крупной вакуолью движение осуществляется обычно в одном направлении (циклоз) за счет особых органоидов – микрофиламентов, представляющих собой нити особого белка — актина. Движущая гиалоплазма увлекает пластиды и митохондрии. Клеточный сок, находящийся в вакуолях, представляет собой водный раствор различных веществ: белков, углеводов, пигментов, органических кислот, солей, алкалоидов и т.п. Концентрация веществ, находящихся в клеточном соке, обычно выше концентрации веществ во внешней среде (почва, водоемы). Различие концентраций в известной мере обусловливает возможность поступления в клетку воды и почвенных растворов, что до некоторой степени объясняется явлением осмоса. В клетке роль полупроницаемой мембраны играет цитоплазма. Пограничные слои цитоплазмы, выстилающие оболочку и клеточную вакуоль, проницаемы только для воды и некоторых растворов, но непроницаемы для многих растворенных в воде веществ. Это свойство цитоплазмы получило название полупроницаемости или избирательной проницаемости. В отличие от цитоплазмы клеточная оболочка проницаема для всех растворов, непроницаема она только для твердых частиц. Поступление веществ в клетку нельзя сводить только к осмотическим явлениям, которые выражены во взрослых клетках с хорошо развитыми вакуолями. В действительности это очень сложный процесс, обусловленный многими факторами. Активное участие в поглощении веществ принимает вся система коллоидов цитоплазмы. Интенсивность движения зависит от температуры, степени освещения, снабжения кислородом и т.д.
В очень молодых клетках цитоплазма заполняет почти всю их полость. По мере роста клетки в цитоплазме появляются мелкие вакуоли, заполненные клеточным соком, представляющим собой водный раствор различных органических веществ. Впоследствии, при дальнейшем росте клетки, вакуоли увеличиваются в размерах и, сливаясь, часто образуют одну большую центральную вакуоль, оттесняющую цитоплазму к оболочке клетки. В таких клетках все органоиды располагаются в тонком постенном слое цитоплазмы. Иногда ядро остается в центре клетки. В этом случае цитоплазма, образующая вокруг него ядерный кармашек, соединяется с постенным слоем тонкими цитоплазматическими тяжами.
В слое цитоплазмы расположены хлоропласты, выстилающие верхнюю стенку. Они представляют собой почти округлые или слегка овальные тельца. Изредка можно встетить пластиды, перетянутые посередине.

6. Строение и функции органоидов общего назначения: эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии, пластиды, рибосомы, клеточный центр, микротрубочки. Органоиды специального назначения.
Органоиды
(органеллы) – это структурно организованные компоненты цитоплазмы, выполняющие жизненно важные функции. По особенностям строения выделяют мембранные и немембранные органоиды. К мембранным органоидам относятся: эндоплазматическая сеть, митохондрии, аппарат Гольджи, лизосомы, пероксисомы, а в растительных клетках – еще и пластиды и вакуоли. К немембранным органоидам относятся: рибосомы (и полисомы) и центросома. Все вышеуказанные органоиды относят к группе органоидов общего назначения. Кроме них, в ряде специализированных клеток присутствуют органоиды специального назначения, такие как реснички, жгутики, микроворсинки, миофибриллы.
Органоиды мембранного строения

Эндоплазматическая сеть – это совокупность трубчатых образований – каналов и плоских расширений – цистерн, которые в виде сети пронизывают всю цитоплазму. Их стенки образованы биологической мембраной. Различают гладкую и гранулярную эндоплазматическую сеть.

Рис.17.Схема строения эндоплазматической сети.

Гранулярная (шероховатая) эндоплазматическая сеть со стороны гиалоплазмы покрыта рибосомами. Последние участвуют в синтезе белков, выделяемых (экскретируемых) из клетки, а также белков-ферментов, необходимых для внутриклеточных процессов метаболизма или внутриклеточного пищеварения.

Белки, накапливающиеся в цистернах эндоплазматической сети, могут, минуя гиалоплазму, транспортироваться в комплекс Гольджи, где они накапливаются в лизосомах либо формируют секреторные гранулы, одетые мембраной. Кроме того, в гранулярной эндоплазматической сети происходят синтез интегральных белков, встраивающихся в мембраны, а также модификации белков путем их связывания с другими органическими соединениями, например, с сахарами.

Агранулярная (гладкая) эндоплазматическая сеть не содержит рибосом. Она связана с метаболизмом липидов и некоторых полисахаридов. В поперечно-полосатой мускулатуре гладкая эндоплазматическая сеть способна депонировать ионы кальция, необходимые для сократительной деятельности. Помимо этого, она участвует в дезактивации ряда вредных веществ, особенно в клетках печени.

Комплекс Гольджи(пластинчатый комплекс) представлен скоплениями сплющенных цистерн, покрытых мембраной. Такие скопления называются диктиосомами. Сами цистерны сужены по центру и расширены в виде ампул по краям. В их периферических участках происходит отшнуровывание мелких пузырьков (везикул). Отдельные диктиосомы могут связываться друг с другом системой везикул и цистерн, образуя рыхлую трехмерную сеть. Функции комплекса Гольджи состоят в накоплении продуктов, синтезированных в эндоплазматической сети, и их созревании.

На мембранах цистерн комплекса Гольджи синтезируются липиды и полисахариды, а также происходит комплексирование последних с белками (образуются мукопротеиды). За счет комплекса Гольджи происходит созревание и выделение секретов за пределы клеток. Кроме того, здесь образуются секреторные пузырьки и лизосомы, а также происходит сортировка белков для различных транспортных пузырьков.

Рис.18.Схема ультрамикроскопического строения пластинчатого комплекса.

Сами мембраны комплекса Гольджи формируются при участии гранулярной эндоплазматической сети.

Лизосомы.Это шаровидные тельца (размер 0,2-0,4 мкм), покрытые мембраной. Они содержат более 30 видов гидролитических ферментов (гидролаз), которые расщепляют различные биополимеры. Местом синтеза этих ферментов служит гранулярная эндоплазматическая сеть.

Рис.19.Динамика преобразования лизосом.

Различают: первичные, вторичные лизосомы (фаголизосомы и аутофаголизосомы) и остаточные тельца (телолизосомы). Первичные лизосомы содержат гидролазы, в том числе и кислую фосфатазу, которая служит маркером для лизосом. Вторичные лизосомы, или внутриклеточные пищеварительные вакуоли, образуются за счет слияния первичных лизосом с фагоцитарными (фагосомами) или пиноцитозными вакуолями. Они называются фаголизосомами (или гетерофагосомами). Те же лизосомы, которые сливаются с измененными клеточными органоидами и переваривают их, называются аутофагосомами. Конечные вещества как продукты расщепления в виде мономеров попадают в гиалоплазму, где включаются в различные обменные процессы.

Если лизосомы переваривают субстрат не до конца, то в них накапливаются непереваренные продукты, и такие лизосомы называют телолизосомами (или остаточными тельцами).

Пероксисомы.Это небольшие округлые тельца (0,3-1,5 мкм), покрытые мембраной. Их содержимое представлено гранулярным матриксом, в центре которого встречаются кристаллоподобные структуры, состоящие из фибрилл и трубок. Пероксисомы, видимо, образуются на цистернах эндоплазматической сети. Особенно характерны для клеток печени и почек. В них обнаруживаются ферменты окисления аминокислот. При этом образуется перекись водорода, которая разрушается ферментом каталазой, присутствующей в пероксисомах. Это очень важно, так как перекись водорода – токсическое для клеток вещество.

Митохондрии –это органоиды, обеспечивающие синтез АТФ за счет окисления органических веществ. Их форма и размеры в животных клетках разнообразны от округлой до палочковидной, а длина колеблется от 1 мкм до 10 мкм. Митохондрии покрыты двумя мембранами. Наружная мембрана, отделяющая их от гиалоплазмы, гладкая. Внутренняя митохондриальная мембрана ограничивает содержимое митохондрий (матрикс) и образует многочисленные гребневидные впячивания (кристы) внутрь митохондрий. Проницаемость внутренней мембраны очень мала, и через нее могут диффундировать только небольшие молекулы.

Рис.20.Схема ультрамикроскопического строения митохондрий.

Для активного транспорта этих веществ в ней имеются транспортные белки. В качестве интегральных белков во внутренней мембране и кристах находятся ферменты, участвующие в транспорте электронов (дыхательная цепь).

Со стороны матрикса на внутренней мембране и кристах располагаются грибовидные мембранные ферменты – АТФ-азы с округлой головкой на ножке. Матрикс содержит промежуточные продукты обмена, митохондриальную ДНК, которая способна к репликации и транскрипции, а также рибосомы и все виды РНК, за счет чего в матриксе идет синтез некоторых митохондриальных белков. Большинство же последних кодируется в хромосомах ядра и синтезируется на рибосомах цитоплазмы. ДНК митохондрий, как и ДНК прокариот, имеет кольцевидную форму и свободна от гистоновых и негистоновых белков.

Митохондрии размножаются поперечным делением.

Пластиды.Эти органоиды характерны для растительных клеток и представлены зеленого цвета хлоропластами, красными, оранжевыми или желтыми хромопластами и бесцветными лейкопластами. Филогенетически более поздние формы пластиды – это хромопласты и лейкопласты. Основным пигментом хлоропластов является хлорофилл. Кроме него, хлоропласты содержат каротиноиды (оранжево-красные и желтые пигменты). У красных и сине-зеленых водорослей встречается голубой фикоцианин и красный фикоэритрин.

Клетки водорослей содержат один или несколько хлоропластов различной формы, а в клетках высших растений, как и у некоторых водорослей, имеется около 10-100 чечевицеобразных хлоропластов величиной 3-10 мкм.

Оболочка хлоропластов состоит из 2-х мембран, которая окружает бесцветный матрикс (строму). Наружная мембрана гладкая, а внутренняя имеет складки – тилакоиды. Среди последних имеются короткие группировки в виде стопок мембранных дисков с плотно упакованным хлорофиллом – это граны.

Между гранами, соединяя их, располагаются сетевидно переплетающиеся стромальные тилакоиды. В мембранах тилакоидов осуществляется та часть реакций фотосинтеза, с которй связано преобразование энергии (световые реакции). В этом процессе участвуют хлорофилл — содержащие фотосистемы, связанные цепью транспорта электронов, а также продуцирующая АТФ мембранная АТФ-аза.

Рис.21.Схема ультрамикроскопического строения хлоропласта.

Пластидная строма (матрикс) осуществляет темновые реакции фотосинтеза, в результате которых откладывается продукт реакций фотосинтеза – крахмал.

Содержащаяся в строме ДНК замкнута в кольцо и свободна от гистонов и негистоновых хромосомных белков. Имеет интроны. На каждый хлоропласт приходится от 3 до 30 копий ДНК. Они кодируют р-РНК, т-РНК, ферменты ДНК- и РНК-полимеразы, некоторые белки рибосом, пластидные цитохромы и большинство ферментов темнового этапа фотосинтеза. Однако большая часть пластидных белков кодируется в хромосомах.

Лейкопласты – это бесцветные пластиды округлой, яйцевидной или веретеновидной формы, характерные для подземной части растений, семян, эпидермиса и сердцевины стебля. Они содержат ДНК, зерна крахмала, единичные тилакоиды и скопление пузырьков и разветвленных трубочек, расположенных в центре пластид.

В зависимости от природы накапливающихся веществ лейкопласты делят на: амилопласты (запасающие крахмал); липидопласты, запасающие липиды в виде масел и жиров (например, в плодах ореха, в семенах подсолнечника); протеинопласты (в некоторых семенах, запасающих белки).

Хромопласты – пластиды, содеражащие пигменты каротиноиды желтого или оранжевого цвета. Их роль состоит в создании зрительной приманки для животных, что способствует опылению цветков и распространению плодов и семян.

Незрелые пластиды (пропластиды) имеют неправильную форму. Их оболочка состоит из 2-х мембран. Они не имеют характерных мембранных тилакоидов. Из пропластид в зависимости от их местоположения в растениях могут формироваться разные типы пластид. Для превращения пропластид в хлоропласты необходим свет, который стимулирует образование тилакоидов стромы и гран. В темноте эти процессы прерываются, и образуется небольшое количество предшественника хлорофилла – прохлорофиллида. При освещении из последнего образуется хлорофилл, появляются тилакоиды и образуется хлоропласт.

Из хлоропластов могут формироваться хромопласты, а из лейкопластов – хлоропласты.

Размножение пластид связано с репликацией ДНК и последующим делением пропластиды или хлоропласта надвое. Пропластиды не только быстро делятся, но и могут возникать путем отпочковывания от хлоропластов или путем перестройки целых хлоропластов или лейкопластов.

Вакуоли.В растительных клетках к мембранным органоидам относятся вакуоли, которые представляют собой наполненный жидкостью мембранный мешок.

Вакуоли встречаются и в некоторых животных клетках: фагоцитозные, пищеварительные, автофагические и сократительные.

В растительных клетках имеется одна крупная центральная вакуоль. Ее окружает мембрана, которая носит название «тонопласт». Жидкость, заполняющая эту вакуоль, называется клеточным соком. Это концентрированный раствор минеральных солей, сахара, органических кислот, кислорода, оксида углерода, пигментов, вторичных продуктов метаболизма. Иногда у растений в вакуолях содержатся гидролитические ферменты, и тогда вакуоли действуют как лизосомы, вызывающие после гибели клеток их аутолиз.

Источник