Какие свойства характерны для анилина
Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов.
С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком.
С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол.
I. Основные свойства
Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот.
Анилин более слабое основание, чем предельные амины и аммиак.
Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H2SO4) и, в отличие от алифатических аминов и аммиака, не образует с водой гидроксида, а его водный раствор не окрашивает лакмус в синий цвет.
Анилин с водой не реагирует и не изменяет окраску индикатора!!!
Видеоопыт «Изучение среды раствора анилина»
Соли анилина, в отличие от анилина, хорошо растворимы в воде.
II. Особые свойства анилина
Реакции с участием аминогруппы
1. Взаимодействие с кислотами (образование солей)
Анилин реагирует с сильными кислотами, образуя соли фениламмония, которые растворимы в воде, но не растворимы в неполярных органических растворителях:
Видеоопыт «Взаимодействие анилина с соляной кислотой»
Анилин, который практически не растворяется в воде, можно растворить в соляной кислоте и отделить нерастворимые примеси.
Солянокислый анилин хорошо растворим в воде. Если к такому раствору добавить достаточное количество щелочи, то анилин снова выделится в свободном виде:
Реакции с участием бензольного ядра
Аминогруппа как заместитель I рода облегчает реакции замещения в бензольном ядре, при этом заместители становятся в орто- и пара-положения к аминогруппе.
При бромировании анилин легко образует 2, 4, 6 — тризамещенные продукты реакции. По той же причине анилин легко окисляется.
1. Галогенирование
Анилин энергично реагирует с бромной водой с образованием белого осадка 2,4,6-триброманилина. Эта реакция может использоваться для качественного и количественного определения анилина:
Качественная реакция на анилин!
Видеоопыт «Бромирование анилина»
2. Сульфирование
Сульфаниловая кислота является важным промежуточным продуктом в синтезе лекарственных веществ (сульфаниламидных препаратов).
III. Окисление анилина
Анилин легко окисляется различными окислителями с образованием ряда соединений, поэтому он темнеет при хранении.
При действии хлорной извести Ca (Cl) OCl на водный раствор анилина появляется интенсивное фиолетовое окрашивание.
Качественная реакция на анилин!
Видеоопыт «Окисление анилина раствором хлорной извести – качественная реакция»
При взаимодействии анилина с хромовой известью (смесь концентрированной серной кислоты и дихромата калия К2Cr2O7) образуется черный осадок, называемый черным анилином (краситель «анилиновый черный»).
Черный анилин применяется как прочный краситель (для окраски тканей и меха в черный цвет). Обычно ткань сначала пропитывают раствором окислителя. Образующийся черный анилин откладывается в порах волокна. Он не растворим в воде и устойчив к мылу и свету.
Видеоопыт «Окисление анилина раствором дихроматом калия – получение красителей»
IV. Диазотирование анилина
Практическое значение имеет реакция взаимодействия анилина с азотистой кислотой при пониженной температуре (около 0°С). В результате этой реакции (реакции диазотирования) образуются соли диазония, которые используются в синтезе азокрасителей и ряда других соединений.
При более высокой температуре реакция идет с выделением азота и анилин превращается в фенол:
Подобно анилину реагируют с азотистой кислотой и другие первичные ароматические амины.
Анилин
Анилин: химические свойства, получение, применение, токсичность
Анилин — это органическое соединение, содержащее ароматическое ядро и аминогруппу, соединенную с ним. Его также иногда называют фениламином или аминобензолом. Представляет собой маслянистую жидкость, не имеющую цвета, но с характерным запахом. Сильно ядовит.
Получение
Анилин — очень полезное промежуточное вещество, поэтому производится он в относительно больших масштабах. Промышленный синтез начинается с бензола. Его нитруют при температуре 60 °C смесью концентрированных серной и азотной кислот. Далее полученный нитробензол восстанавливают водородом при температуре около 250 °C, используя катализаторы. Также может применяться повышенное давление.
В лаборатории восстановление может производится водородом в момент его выделения. Для этого в реакционной смеси проводят взаимодействие металлического цинка или железа с кислотой. Полученный атомарный водород вступает во взаимодействие с нитробензолом.
Получать анилин можно в одну стадию, если проводить взаимодействие бензола со смесью азида натрия и хлорида алюминия. Реакция длится 12 часов. Выход такой реакции составляет 63 %.
Физические свойства
Как уже было отмечено выше, анилин — это бесцветная маслянистая жидкость. При температуре -5,9 °C он замерзает. Кипит при 184,4 °C. Плотность почти как у воды (1,02 г/см3). Анилин растворим в воде, хотя довольно слабо. Зато он смешивается в любых соотношениях с различными органическими растворителями: бензолом, толуолом, ацетоном, диэтиловым эфиром, этанолом и многими другими.
Химические свойства
Химические свойства анилина довольно разнообразны. Например, он проявляет как кислотные, так и основные свойства. Последние обусловлены тем, что аминогруппа может присоединять к себе ион водорода (протон). Отсюда и название этого процесса — протонирование. Благодаря этому анилин может взаимодействовать с кислотами, образуя соли:
C6H5NH2 + HCl → [C6H5NH3]+Cl-
Кислотные свойства объясняются тем, что атомы водорода в аминогруппе легко отщепляются и замещаются другими атомами. Так, анилин может взаимодействовать со щелочными металлами.
Реакция с калием идет без катализаторов, с натрием необходимо присутствие катализаторов: меди, никеля, кобальта или солей этих металлов.
Идти эта реакция может и с кальцием, но в этом случае необходимо нагревание до 200 °C.
Замещается водород и радикалами. Это происходит при взаимодействии анилина со спиртами. Реакция проводится в кислой среде, так как необходимо протонирование аминогруппы.
Температура реакционной смеси должна поддерживаться около 220 °C. Иногда применяется повышенное давление. Конечный продукт содержит моно-, ди- и тризамещенные производные анилина.
Поэтому для получения чистого вещества необходимо использовать очистку, например перегонку.
Алкилирование можно также проводить, используя алкилгалогениды. Здесь также может быть получены несколько продуктов.
Анилин может вступать в реакции и по ароматическому ядру. Обычно это реакции электрофильного замещения (нитрование, сульфирование, алкилирование, ацилирование). Аминогруппа активирует бензольное ядро, поэтому новые группы встают в пара-положение. Галогенирование происходит очень легко. В данном случае замещаются все атомы водорода в ядре.
Как видно из уравнений реакций, химические свойства анилина довольно разнообразные. Здесь указаны далеко не все.
Применение
Из-за своих физических и химических свойств, анилин в чистом виде применяется только в лабораториях, как реагент или органический растворитель. В промышленности весь анилин уходит на синтез более сложных и полезных соединений. Например, фосфат анилина применяется как ингибитор (замедлитель) коррозии углеродистых сталей.
Большая доля анилина идет на производство полиизоцианатов, из которых, в свою очередь, получают полиуретаны. Это органический полимер, который используют во многих отраслях промышленности для изготовления эластичных форм, защитных покрытий, лаков, герметиков.
7 % анилина применяется в качестве добавки для полимеров. Это может быть как чистый анилин, так и соединения, полученные из него. Они оказывают роль инициаторов, стабилизаторов, пластификаторов, порообразователей, вулканизаторов или ускорителей полимеризации. Такое разнообразие достигается благодаря специфичным химическим свойствам анилина.
Азотсодержащие органические вещества часто применяют в производстве красителей. Анилин не стал исключением. Из него напрямую синтезируют более 150 различных красителей, еще больше — из его производных. Самые важные из них — это анилиновый черный, пигмент глубоко-черный, нигрозины, индулины и азокрасители.
Токсичность
Анилин — токсичное вещество. Попадая в кровь, он образует соединения, которые вызывают кислородное голодание. Проникать в организм он может также и в виде паров, через кожу или слизистые оболочки. Признаками отравления анилином служат слабость, головокружение, головная боль. При более сильном отравлении возникает тошнота, рвота, а также учащение пульса.
Это вещество оказывает губительное воздействие на нервную систему. При хроническом отравлении может возникать снижение памяти, расстройства сна, а также психические нарушения.
Первая помощь при интоксикациии состоит в том, чтобы убрать источник отравления и омыть пострадавшего теплой водой. Это поможет растворить анилин, который осел на коже пострадавшего. Существуют и специальные антидоты. Их вводят в организм при тяжелых случаях.
Свойства и применение анилина
Анилин — органическое вещество. Впервые его получили в 1826 году. Другие названия – фениламин, аминобензол. Наименование «анилин» произошло от названия растения «индигофера анил», в котором содержится индиго. Раньше фениламин создавался с участием этого вещества. Рассмотрим свойства и применение анилина.
Вещество относится к простейшим ароматическим аминам. Его формула C6H5NH2.
Физические свойства анилина
Ядовитое вещество, пары которого токсичны. Представляет собой маслянистую жидкость, не имеющую цвета. Запах слабый, характерный именно для этого вещества. При его возгорании пламя яркое, коптящее.
Частично растворим в воде (при температуре кипения растворимость 6,4 %). Минерализованная вода понижает его растворимость, за исключением содержания бромидов лития и цезия, а также йодида цезия. Последний, наоборот, повышает растворимость анилина.
При хранении вещество темнеет, особенно быстро это происходит при воздействии воздуха и света. При этом он делается более вязким. Иначе данный процесс называют «аутооксидацией». Окисление может быть замедленно при помощи добавления антиоксидантов – щавелевой кислоты, гидро- и тиосульфата натрия.
Ниже приведены характеристики анилина при нормальном атмосферном давлении:
- температура кипения — 184,4 °С;
- температура плавления/замерзания – минус 5,89 °С;
- плотность при температуре 20 °С — 1,02 г/см куб.;
- температура самовоспламенения на воздухе — 562 °C;
- температура вспышки на воздухе – 79 °C.
Основные области применения анилина
В России вещество в основном применяют для синтеза красителей и лекарственных средств, в текстильной и фармацевтической промышленности. С помощью анилина получают препараты группы сульфамидов, обладающие антибактериальным действием, а также синтезируют заменители сахара.
Существуют и другие области применения аниолина. В химии его используют для получения гидрохинона – вещества, использующегося в косметике, в основном в составе отбеливающих кожу средств. Также вещество применяется в создании взрывчатых веществ, клеев, герметиков.
При помощи анилина замедляется коррозия металлов: его фосфаты добавляют к растворам сильных электролитов, в результате чего ингибируется коррозия углеродистой стали.
Применяют анилин и для повышения антидетонационности топлива (автомобильного, ракетного, авиационного). Октановое число бензина при однопроцентном содержании анилина повышается на 3 единицы и более.
Но в чистом виде вещество стараются не использовать, так как при длительном хранении понижается качество бензина с анилином, а также токсичность его газов. Чаще используются производные вещества.
В ряде западных государств существуют ограничения на применение анилина в составе топлива.
В мире большая часть получаемого анилина используется в производстве полиуретанов, а также синтетических каучуков, красок, средств от сорняков.
Анилиновые красители
Самой главной сферой применения анилина было и остается производство красителей. Они изготовляются при помощи окисления анилина и его солей.
Первоначально анилиновые краски выпускались только в форме порошка. В СССР им находили применение в быту, реставрируя и переделывая вещи посредством их окраски. Но покрашенные вещи быстро блёкли при попадании солнечного света, краска вымывалась в процессе стирки.
В настоящее время анилиновые красители производятся и в форме растворов, причем некоторые производители выпускают концентрированные растворы, которые в отличие от порошков не требуют особой подготовки ткани.
Но, несмотря на ощутимый прогресс и улучшение красителей, ткани, покрашенные ими, по-прежнему быстро выгорают на солнце.
Токсичность анилина
Анилин — токсичное вещество. Может угнетать нервную систему, при попадании в кровь вызывает кислородное голодание тканей. Попасть в организм может в виде паров, а также проникнуть через кожу и слизистые оболочки.
Сейчас отравления анилином бывают редко. Опасность это вещество представляет в основном для тех, кто работает с ним. Во избежание попадания токсина в организм нужно соблюдать установленные меры безопасности.
При окрашивании дома вещей анилиновыми красителями, в особенности порошковыми, нужно беречь их от детей, проветривать помещение, в котором производится окраска, не глотать вещество, при попадании на части тела немедленно смывать его водой и производить окрашивание в перчатках.
Если анилин был случайно проглочен, нужно незамедлительно обращаться к врачу.
Анилин
- Введение
- 1 Химические свойства
- 2 История
- 3 Производство и применение
- 4 Токсичные свойства
Примечания
Анили́н (фениламин) — органическое соединение с формулой С6H5NH2, простейший ароматический амин. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит.
1. Химические свойства
Для анилина характерны реакции как по аминогруппе, так и по ароматическому кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов.
С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению с алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол.
Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок).
2. История
Впервые анилин был получен в 1826 году при перегонке индиго с известью немецким химиком Отто Унфердорбеном (нем. Otto Unverdorben), который дал ему название «кристаллин». В 1834 Ф. Pyнгe обнаружил анилин в кам.-уг. смоле и назвал «кианолом». В 1841 Ю. Ф. Фришце получил анилин нагреванием индиго с р-ром КОН и назвал его «анилином».
В 1842 анилин был получен Н. Н. Зининым восстановлением нитробензола действием (NH4)2SO3 и назван им «бензидамом». В 1843 А. В. Гофман установил идентичность всех перечисленных соединений.
Слово «анилин» происходит от названия одного из растений, содержащих индиго — Indigofera anil (современное международное название растения — Indigofera suffruticosa).
3. Производство и применение
Изначально анилин получали восстановлением нитробензола молекулярным водородом; практический выход анилина не превышал 15 %. В 1842 году профессором Казанского университета Н. Н.
Зининым был разработан более рациональный способ получения анилина восстановлением нитробензола (реакция Зинина). При взаимодействии концентрированной соляной кислоты с железом выделялся атомарный водород, более химически активный по сравнению с молекулярным.
В реакционную массу вливали нитробензол, восстанавливавшийся до анилина.
Промышленное производство фиолетового красителя мовеина на основе анилина началось в 1856 году.
В настоящий момент в мире основная часть (85 %) производимого анилина используется для производства метилдиизоцианатов, (MDI) используемых затем для производства полиуретанов. Анилин также используется при производстве искусственных каучуков (9 %), гербицидов (2 %) и красителей (2 %). [1]
В России он в основном применяется в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но в связи с ожидаемым ростом производства полиуретанов возможно значительное изменение картины потребителей в среднесрочной перспективе.
4. Токсичные свойства
Анилин оказывает негативное воздействие на центральную нервную систему. Вызывает кислородное голодание организма за счёт образования в крови метгемоглобина, гемолиза и дегенеративных изменений эритроцитов.
В организм анилин проникает при дыхании, в виде паров, а также через кожу и слизистые оболочки. Всасывание через кожу усиливается при нагреве воздуха или приёме алкоголя.
При лёгком отравлении анилином наблюдаются слабость, головокружение, головная боль, синюшность губ, ушных раковин и ногтей. При отравлениях средней тяжести также наблюдаются тошнота, рвота, иногда, шатающаяся походка, учащение пульса. Тяжёлые случаи отравления крайне редки.
При хроническом отравлении анилином (анилизм) возникают токсический гепатит, а также нервно-психические нарушения, расстройство сна, снижение памяти и т. д.
При отравлении анилином необходимо прежде всего удаление пострадавшего из очага отравления, обмывание тёплой (но не горячей!) водой. Так же вдыхание кислорода с карбогеном. Также применяют кровопускание, введение антидотов (метиленовая синь), сердечно-сосудистые средства. Пострадавшему надо обеспечить покой.
Предельно допустимая концентрация анилина в воздухе рабочей зоны 3 мг/м3. В водоёмах (при их промышленном загрязнении) 0,1 мг/л (100 мг/м3).[2]
Примечания
- Aniline producers price capacity market demand consumption production growth uses outlook n.d., The Chemical Market Reporter, Schnell Publishing Company. Retrieved January 12, 2002 from https://www.the-innovation-group.com/ChemProfiles/Aniline.htm — www.the-innovation-group.com/ChemProfiles/Aniline.htm
- Раздел составлен по материалам БСЭ
скачать
Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 11.07.11 01:41:21
Категории: Появились в 1826 году, Продукция основного органического синтеза, Ароматические амины.
Текст доступен по лицензии Creative Commons Attribution-ShareA.
Амины– азотсодержащие органические вещества,
производные аммиака (NH3), в молекулах
которых один или несколько атомов водорода замещены на углеводородный радикал
(- R или – CnH2n+1)
2. Функциональная
группа:
— NH2 аминогруппа
3. Классификация
аминов:
4. Нахождение
аминов в природе
Амины широко распространены в природе,
так как образуются при гниении живых организмов. Например, с триметиламином вы
встречались неоднократно. Запах селедочного рассола обусловлен именно этим
веществом. Обиходное словосочетание “трупный яд”, встречающиеся в
художественной литературе, связано с аминами.
5. Номенклатура аминов
1. В большинстве случаев названия аминов
образуют из названий углеводородных радикалов и суффикса амин.
CH3-NH2 Метиламин
CH3-CH2-NH2 Этиламин
Различные радикалы перечисляются в
алфавитном порядке.
CH3-CH2-NH-CH3 Метилэтиламин
При наличии одинаковых радикалов
используют приставки ди и три.
(CH3)2NH Диметиламин
2. Первичные амины часто называют как
производные углеводородов, в молекулах которых один или несколько атомов
водорода замещены на аминогруппы -NH2. В этом случае аминогруппа
указывается в названии суффиксами амин (одна группа -NH2),
диамин (две группы -NH2) и т.д. с добавлением цифр,
отражающих положение этих групп в главной углеродной цепи.
Например:
CH3-CH2-CH2-NH2 пропанамин-1
H2N-CH2-CH2-CH(NH2)-CH3 бутандиамин-1,3
6. Изомерия аминов
Структурная
изомерия
— углеродного скелета, начиная с С4H9NH2:
— положения аминогруппы, начиная с С3H7NH2:
— изомерия аминогруппы, связанная с
изменением степени замещенности атомов водорода при азоте, т.е. между типами
аминов:
Пространственная
изомерия
Возможна оптическая изомерия, начиная с
С4H9NH2:
7. Получение аминов
Из-за запаха низшие амины долгое время
принимали за аммиак, пока в 1849 году французский химик Шарль Вюрц не выяснил, что в отличие от аммиака, они горят на
воздухе с образованием углекислого газа. Он же синтезировал метиламин и
этиламин.
1842 г Н. Н. Зинин
получил анилин восстановлением нитробензола — в промышленности
Восстановление нитросоединений:
R-NO2 + 6[H] t,kat-Ni → R-NH2 + 2H2O
или
R-NO2+3(NH4)2S t, Feв кислой среде →R-NH2 +3S↓
+6NH3↑ + 2H2O (р. Зинина)
Другие способы:
1).
Промышленный
CH3Br + 2NH3 t, ↑p →
CH3-NH2 + NH4Br
2).
Лабораторный — Действие
щелочей на соли алкиламмония
(получение первичных, вторичных,
третичных аминов):
[R-NH3]Г + NaOH
t → R-NH2 + NaГ
+ H2O
3). Действием
галогеналканов на первичные алифатические и ароматические амины получают
вторичные и третичные амины, в том числе, смешанные.
8. Физические свойства аминов
Метиламин, диметиламин и триметиламин — газы, средние
члены алифатического ряда — жидкости, высшие — твердые вещества. Низшие амины
имеют характерный «рыбный» запах, высшие не имеют запаха.
Связь N–H является полярной, поэтому
первичные и вторичные амины образуют межмолекулярные водородные связи
(несколько более слабые, чем Н-связи с участием группы О–Н).
Это объясняет относительно высокую
температуру кипения аминов по сравнению с неполярными соединениями со сходной
молекулярной массой. Например:
Третичные амины не образуют
ассоциирующих водородных связей (отсутствует группа N–H). Поэтому их
температуры кипения ниже, чем у изомерных первичных и вторичных аминов
(триэтиламин кипит при 89 °С, а н-гексиламин – при 133 °С).
По сравнению со спиртами алифатические
амины имеют более низкие температуры кипения (т. кип. метиламина
-6 °С, т. кип. метанола +64,5 °С). Это свидетельствует о
том, что амины ассоциированы в меньшей степени, чем спирты, поскольку прочность
водородных связей с атомом азота меньше, чем с участием более
электроотрицательного кислорода.
При обычной температуре только низшие
алифатические амины CH3NH2, (CH3)2NH
и (CH3)3N – газы (с запахом аммиака), средние гомологи –
жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.
Ароматические амины – бесцветные высококипящие жидкости или твердые вещества.
Амины способны к образованию водородных
связей с водой:
Поэтому низшие амины хорошо растворимы в
воде. С увеличением числа и размеров углеводородных радикалов растворимость
аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия
образованию водородных связей. Ароматические амины в воде практически не
растворяются.
Анилин (фениламин) С6H5NH2 – важнейший из
ароматических аминов:
Анилин представляет собой бесцветную
маслянистую жидкость с характерным запахом (т. кип. 184 °С,
т. пл. – 6 °С). На воздухе быстро окисляется и приобретает
красно-бурую окраску. Ядовит.
ВИДЕО:
Изучениефизических свойств анилина
9. Свойства аминов
I. Основные свойства
Для аминов характерны основные свойства,
которые обусловлены наличием не поделённой электронной пары на атоме азота
Алифатические
амины
– более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают
электронную плотность на атоме азота за счет +I-эффекта. По этой причине
электронная пара атома азота удерживается менее прочно и легче взаимодействует
с протоном.
Ароматические
амины
являются более слабыми основаниями, чем аммиак, поскольку неподеленная
электронная пара атома азота смещается в сторону бензольного кольца, вступая в
сопряжение с его π-электронами.
Ряд увеличения основных свойств аминов:
C6H5-NH2 < NH3 < R3N < R-NH2 < R2NH
————————————————-→
возрастание основных свойств
В растворах оснoвные свойства третичных
аминов проявляются слабее, чем у вторичных и даже первичных аминов, так как три
радикала создают пространственные препятствия для сольватации образующихся
аммониевых ионов. По этой же причине основность первичных и вторичных аминов
снижается с увеличением размеров и разветвленности радикалов.
Водные растворы аминов
имеют щелочную реакцию (амины
реагируют с водой по донорно-акцепторному механизму):
R-NH2 + H2O → [R-NH3]+
+ OH-
ион алкиламмония
ВИДЕО:
Получениегидроксида диметиламмония и изучение его свойств
Анилин с водой не
реагирует и не изменяет окраску индикатора!!!
ВИДЕО:
Изучение среды раствора анилина
Взаимодействие с кислотами
(донорно-акцепторный
механизм):
CH3-NH2 + H2SO4 → [CH3-NH3]HSO4
(соль — гидросульфатметиламмония)
2CH3-NH2 + H2SO4 → [CH3-NH3]2SO4
(соль
— сульфат метиламмония)
Соли неустойчивы, разлагаются щелочами:
[CH3-NH3]2SO4 + 2NaOH
→ 2CH3-NH2
↑ + Na2SO4 + H2O
Способность
к образованию растворимых солей с последующим их разложением под действием
оснований часто используют для выделения и очистки аминов, не растворимых в
воде. Например, анилин, который практически не растворяется в воде, можно
растворить в соляной кислоте и отделить нерастворимые примеси, а затем, добавив
раствор щелочи (нейтрализация водного раствора), выделить анилин в свободном
состоянии.
II. Реакции окисления
Реакция горения (полного окисления) аминов на примере метиламина:
4СH3NH2 + 9O2 → 4CO2 + 10H2O + 2N2
Ароматические
амины легко окисляются даже кислородом воздуха. Являясь в чистом виде
бесцветными веществами, на воздухе они темнеют. Неполное окисление
ароматических аминов используется в производстве красителей. Эти реакции обычно
очень сложны.
ВИДЕО:
Получение диметиламина и его горение
III. Особые свойства анилина
Для анилина характерны реакции как по
аминогруппе, так и по бензольному кольцу. Особенности этих реакций обусловлены взаимным
влиянием атомов.
1).
Для анилина характерны свойства бензольного кольца – действие
аминогруппы на бензольное кольцо приводит к увеличению подвижности водорода в
кольце в орто- и пара- положениях:
С одной стороны, бензольное кольцо
ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и
даже с аммиаком.
С другой
стороны, под влиянием аминогруппы бензольное кольцо становится более активным в
реакциях замещения, чем бензол.
Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина
(белый осадок). Эта реакция может использоваться для качественного и количественного
определения анилина:
ВИДЕО:
Бромированиеанилина
2). Свойства аминогруппы:
С6Н5NН2 +
HCl → [С6Н5NН3 ]+Сl-
хлорид фениламмония
ВИДЕО:
Взаимодействиеанилина с соляной кислотой
ВИДЕО:
Окисление анилина раствором хлорной извести – качественная реакция
Взаимодействие анилина с дихроматом калия – получение красителей
10. Применение
Амины используют при
получении лекарственных веществ, красителей и исходных продуктов для
органического синтеза. Гексаметилендиамин при поликонденсации с адипиновой
кислотой дает полиамидные волокна.
Анилин находит широкое
применение в качестве полупродукта в производстве красителей, взрывчатых
веществ и лекарственных средств (сульфаниламидные препараты).