Какие свойства характеризуют щелочи

Какие свойства характеризуют щелочи thumbnail

Щелочи — это водорастворимые сильные основания. В настоящее время в химии принята Щелочи теория Брёнстеда — Лоури и Льюиса, которая определяет кислоты и основания. В соответствии с этой теорией, кислоты — это вещества, способные отщеплять протон, а основания — отдавать электронную пару OH−.  Можно сказать, что под основаниями понимают соединения, которые при диссоциации в воде образуют только анионы вида OH−.  Если совсем просто, то щелочами называют соединения, состоящие из металла и гидроксид-иона OH−.

К щелочам принято относить гидроксиды щелочных и щелочно-земельных металлов.

Все щелочи — это основания, но не наоборот, нельзя считать определения «основание» и «щелочь» синонимами.  

Правильное химическое название щелочей — гидроксид (гидроокись), например, гидроокись натрия, гидроксид калия. Часто употребляются также названия, которые сложились исторически. Ввиду того, что щелочи разрушают материалы органического происхождения — кожу, ткани, бумагу, древесину, их называют едкими: например, едкий натр, едкий барий. Однако понятием «едкие щелочи» химики определяют гидроксиды щелочных металлов — лития, натрия, калия, рубидия, цезия.

Свойства щелочей

Щелочи — твердые вещества белого цвета; гигроскопичные, водорастворимые. Растворение в воде сопровождается активным выделением тепла. Вступают в реакции с кислотами, образуя соль и воду. Эта реакция нейтрализации является важнейшей из всех свойств щелочей. Кроме этого, гидроксиды реагируют с кислотными оксидами (образующими кислородосодержащие кислоты), с переходными металлами и их оксидами, с растворами солей.

Гидроксиды щелочных металлов растворяются в метиловом и этиловом спиртах, способны выдерживать температуры до +1000 °С (за исключением гидроксида лития).

ЩелочьЩелочи — активные химические реагенты, поглощающие из воздуха не только водяные пары, но и молекулы углекислого и сернистого газа, сероводорода, диоксида азота. Поэтому хранить гидроксиды следует в герметичной таре или, например, доступ воздуха в сосуд со щелочью организовать через хлоркальциевую трубку. В противном случае хим.реактив после хранения на воздухе будет загрязнен карбонатами, сульфатами, сульфидами, нитратами и нитритами.

Если сравнивать щелочи по химической активности, то она увеличивается при движении по столбцу таблицы Менделеева сверху вниз.

Концентрированные щелочи разрушают стекло, а расплавы щелочей — даже фарфор и платину, поэтому растворы щелочей не рекомендуется хранить в сосудах с пришлифованными стеклянными пробками и кранами, так как пробки и краны может заклинить. Хранят щелочи, обычно, в полиэтиленовых емкостях.

Именно щелочи, а не кислоты, вызывают более сильные ожоги, так как их сложнее смыть с кожи и они проникают глубоко в ткань. Смывать щелочь надо неконцентрированным раствором уксусной кислоты. Работать с ними необходимо в средствах защиты. Щелочной ожог требует немедленного обращения к врачу!

Применение щелочей

— В качестве электролитов.
— Для производства удобрений.
— В медицине, химических, косметических производствах.
— В рыбоводстве для стерилизации прудов.

В магазине «ПраймКемикалсГрупп» вы найдете самые востребованные щелочи по выгодным ценам.

Едкий натр

Самая популярная и востребованная в мире щелочь.

Применяется для омыления жиров в производстве косметических и моющих средств, для изготовления масел в процессе нефтепереработки, в качестве катализатора и реактива в химических реакциях; в пищепроме.

Едкое кали

Применяется для производства мыла, калийных удобрений, электролитов для батареек и аккумуляторов, синтетического каучука. Также — в качестве пищевой добавки; для профессиональной очистки изделий из нержавеющей стали.  

Гидроксид алюминия

Востребован в медицине как отличный адсорбент, антацид, обволакивающее средство; ингредиент вакцин в фармацевтике. Кроме этого, вещество применяется в очистных сооружениях и в процессах получения чистого алюминия.

Гидроокись кальция

Популярная щелочь с очень широким спектром применения, которую в быту знают под названием «гашеная известь». Используется для дезинфекции, смягчения воды, в производстве удобрений, едкого натра, «хлорки», строительных материалов. Применяется для защиты деревьев и деревянных сооружений от вредителей и огня; в пищепроме как пищевая добавка и реактив при производстве сахара.

Гидроокись лития

Востребованное соединение в химпроме как сырье; в стекольной, керамической, Фиксаналырадиотехнической индустрии; для производства смазочных материалов, электролитов; для поглощения вредных газов.

Гидроокись бария

Применяется в химпроме как катализатор, а также в пищепроме для очистки жиров, сахара.

В аналитической химии применяются фиксаналы щелочей, которые можно купить у нас:
— стандарт-титр Натрий гидроокись (Натрий гидроксид) 0,1 H
— стандарт-титр Калий гидроокись (Калий гидроксид) 0,1 Н

Источник

•Восстановительная способность увеличивается в ряду ––Li–Na–K–Rb–Cs.

•Все соединения щелочных металлов имеют ионный характер.

•Практически все соли растворимы в воде.

•Вследствие своей активности щелочные металлы хранят под слоем керосина, чтобы преградить доступ воздуха и влаги. Литий очень легкий и в керосине всплывает на поверхность, поэтому его хранят под слоем вазелином.

1.      Щелочные металлы активно взаимодействуют с водой:

Щелочные металлы бурно реагируют с водой

2Na + 2H2O → 2NaOH + H2­

2Li + 2H2O → 2LiOH + H2­

 2.      Реакция щелочных металлов с кислородом:

4Li + O2 → 2Li2O (оксид лития)

2Na + O2 → Na2O2 ( пероксид натрия)

K + O2 → KO2  (надпероксид калия)

Читайте также:  Какими свойствами обладают углы четырехугольника вписанного в окружность

На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).

3.      В реакциях щелочных металлов с другими неметаллами образуются бинарные соединения:

2Li + Cl2 → 2LiCl (галогениды)

2Na + S → Na2S (сульфиды)

2Na + H2 → 2NaH (гидриды)

6Li + N2 → 2Li3N (нитриды)

2Li + 2C → Li2C2 (карбиды)

4.      Реакция щелочных металлов с кислотами

(проводят редко, идет конкурирующая реакция с водой):

2Na + 2HCl → 2NaCl + H2­

5. Взаимодействие щелочных металлов с аммиаком

(образуется амид натрия):

2Li + 2NH3 = 2LiNH2 + H2

6. Взаимодействие щелочных металлов со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

2Na + 2C2H5OH = 2C2H5ONa + H2;

2K + 2C6H5OH = 2C6H5OK + H2;

7. Качественная реакция на катионы щелочных металлов — окрашивание пламени в следующие цвета:

Li+ – карминово-красныйЩелочные металлы окрашивают цвета пламени

Na+ – желтый

K+, Rb+ и Cs+ – фиолетовый

Получение щелочных металлов

Металлические литий, натрий и калий получают электролизом расплава солей (хлоридов), а рубидий и цезий – восстановлением в вакууме при нагревании их хлоридов кальцием: 2CsCl+Ca=2Cs+CaCl2
В небольших масштабах используется также вакуум-термическое получение натрия и калия:

2NaCl+CaC2=2Na+CaCl2+2C;
4KCl+4CaO+Si=4K+2CaCl2+Ca2SiO4.

Активные щелочные металлы выделяются в вакуум-термических процессах благодаря своей высокой летучести (их пары удаляются из зоны реакции).

Щелочные металлы Li, Na, K

shhelochnyk-metОсобенности химических свойств s-элементов I группы и их физиологическое действие

Электронная конфигурация атома лития 1s22s1 .  У него самый большой во 2-м периоде атомный радиус, что облегчает отрыв валентного электрона и возникновение иона Li+ со стабильной конфигурацией инертного газа (гелия). Следовательно, его соединения образуются с передачей электрона от лития к другому атому и возникновением ионной связи с небольшой долей ковалентности. Литий ‑ типичный металлический элемент. В виде вещества это щелочной металл. От других членов I группы он отличается малыми размерами и наименьшей, по сравнению с ними, активностью. В этом отношении он напоминает расположенный по диагонали от Li элемент II группы ‑ магний. В растворах ион Li+ сильно сольватирован; его окружают несколько десятков молекул воды. Литий по величине энергии сольватации — присоединения молекул растворителя, стоит ближе к протону, чем к катионам щелочных металлов.

Малый размер иона Li+, высокий заряд ядра и всего два электрона создают условия для возникновения вокруг этой частицы довольно значительного поля положительного заряда, поэтому в растворах к нему притягивается значительное число молекул полярных растворителей и его координационное число велико, металл способен образовывать значительное число литийорганических соединений.

Натрием начинается 3-й период, поэтому у него на внешнем уровне всего 1е—, занимающий 3s-орбиталь. Радиус атома Na — наибольший в 3-м периоде. Эти две особенности определяют характер элемента. Его электронная конфигурация 1s22s22p63s1.  Единственная степень окисления натрия +1. Электроотрицательность его очень мала, поэтому в соединениях натрий присутствует только в виде положительно заряженного иона и придает химической связи ионный характер. По размеру ион Na+ значительно больше, чем Li+, и сольватация его не так велика. Однако в растворе в свободном виде он не существует.

Физиологическое значение ионов К+ и Na+ связано с их различной адсорбируемостью на поверхности компонентов, входящих в состав земной коры. Соединения натрия лишь незначительно подвержены адсорбции, в то время как соединения калия прочно удерживаются глиной и другими веществами. Мембраны клеток, являясь поверхностью раздела клетка ‑ среда, проницаемы для ионов К+, вследствие чего внутриклеточная концентрация К+ значительно выше, чем ионов Na+ . В то же время в плазме крови концентрация Na+ превышает содержание в ней калия. С этим обстоятельством связывают возникновение мембранного потенциала клеток. Ионы К+ и Na+ ‑  одни из основных компонентов жидкой фазы организма. Их соотношение с ионами Са2+ строго определенно, а его нарушение приводит к патологии. Введение ионов Na+ в организм не оказывает заметного вредного влияния. Повышение же содержания ионов К+ вредно, но в обычных условиях рост его концентрации никогда не достигает опасных величин. Влияние ионов Rb+, Cs+, Li+ еще недостаточно изучено.

Из различных поражений, связанных с применением соединений щелочных металлов, чаще всего встречаются ожоги растворами гидроксидов. Действие щелочей связано с растворением в них белков кожи и образованием щелочных альбуминатов. Щелочь вновь выделяется в результате их гидролиза и действует на более глубокие слои организма, вызывая появление язв. Ногти под влиянием щелочей становятся тусклыми и ломкими. Поражение глаз, даже очень разбавленными растворами щелочей, сопровождается не только поверхностными разрушениями, но нарушениями более глубоких участков глаза (радужной оболочки) и приводит к слепоте. При гидролизе амидов щелочных металлов одновременно образуется щелочь и аммиак, вызывающие трахеобронхит фибринозного типа и воспаление легких.

Калий был получен Г. Дэви практически одновременно с натрием в 1807 г. при электролизе влажного гидроксида калия. От названия этого соединения ‑ «едкое кали» и получил свое наименование элемент. Свойства калия заметно отличаются от свойств натрия, что обусловлено различием величин радиусов их атомов и ионов. В соединениях калия связь более ионная, а в виде иона К+ он обладает меньшим поляризующим действием, чем натрий, из-за больших размеров. Природная смесь состоит из трех изотопов 39К, 40К, 41К. Один из них 40Крадиоактивен и определенная доля радиоактивности минералов и почвы связана с присутствием этого изотопа. Его период полураспада велик ‑ 1,32 млрд. лет. Определить присутствие калия в образце довольно легко: пары металла и его соединения окрашивают пламя в фиолетово-красный цвет. Спектр элемента довольно прост и доказывает наличие 1е— на 4s-орбитали. Изучение его послужило одним из оснований для нахождения общих закономерностей в строении спектров.

Читайте также:  Какие свойства воздуха используются в растениях

В 1861 г. при исследовании соли минеральных источников спектральным анализом Роберт Бунзен обнаружил новый элемент. Его наличие доказывалось темно-красными линиями в спектре, которых не давали другие элементы. По цвету этих линий элемент и был назван рубидием (rubidus—темно-красный). В 1863 г. Р. Бунзен получил этот металл и в чистом виде восстановлением тартрата рубидия (виннокислой соли) сажей. Особенностью элемента является легкая возбудимость его атомов. Электронная эмиссия у него появляется под действием красных лучей видимого спектра. Это связано с небольшой разницей в энергиях атомных 4d и 5s-орбиталей. Из всех щелочных элементов, имеющих стабильные изотопы, рубидию (как и цезию) принадлежит один из самых больших атомных радиусов и маленький потенциал ионизации. Такие параметры определяют характер элемента: высокую электроположительность, чрезвычайную химическую активность, низкую температуру плавления (390C) и малую устойчивость к внешним воздействиям.

Открытие цезия, как и рубидия, связано со спектральным анализом. В 1860 г. Р.Бунзен обнаружил две яркие голубые линии в спектре, не принадлежащие ни одному известному к тому времени элементу. Отсюда произошло и название «цезиус» (caesius), что значит небесно-голубой. Это последний элемент подгруппы щелочных металлов, который ещё встречается  в измеримых количествах. Наибольший атомный радиус и наименьшие первые потенциалы ионизации определяют характер и поведение этого элемента. Он обладает ярко выраженной электроположительностью и ярко выраженными металлическими качествами. Стремление отдать внешний 6s-электрон приводит к тому, что все его реакции протекают исключительно бурно. Небольшая разница в энергиях атомных 5d- и 6s-орбиталей обусловливает легкую возбудимость атомов. Электронная эмиссия у цезия наблюдается под действием невидимых инфракрасных лучей (тепловых). Указанная особенность структуры атома определяет хорошую электрическую проводимость тока. Все это делает цезий незаменимым в электронных приборах. В последнее время все больше внимания уделяется цезиевой плазме как топливу будущего и в связи с решением проблемы термоядерного синтеза.

На воздухе литий активно реагирует не только с кислородом, но и с азотом и покрывается пленкой, состоящей из Li3N (до 75%) и Li2O. Остальные щелочные металлы образуют пероксиды (Na2O2) и надпероксиды (K2O4 или KO2).

Перечисленные вещества реагируют с водой:

Li3N + 3 H2O = 3 LiOH + NH3 ;

Na2O2 + 2 H2O = 2 NaOH + H2O2 ;

K2O4 + 2 H2O = 2 KOH + H2O2 + O2 .

Для регенерации воздуха на подводных лодках и космических кораблях, в изолирующих противогазах и дыхательных аппаратах боевых пловцов (подводных диверсантов) использовалась смесь «оксон»:

Na2O2+CO2=Na2CO3+0,5O2 ;

K2O4 + CO2 = K2CO3+ 1,5 O2 .

В настоящее время это стандартная начинка регенерирующих патронов изолирующих противогазов для пожарных.
Щелочные металлы реагируют при нагревании с водородом, образуя гидриды:

2Li+H2=2LiH.

Гидрид лития используется как сильный восстановитель.

Гидроксиды щелочных металлов разъедают стеклянную и фарфоровую посуду, их нельзя нагревать и в кварцевой посуде:

SiO2+2NaOH=Na2SiO3+H2O.

Гидроксиды натрия и калия не отщепляют воду при нагревании вплоть до температур их кипения (более 13000С). Некоторые соединения натрия называют содами:

а) кальцинированная сода, безводная сода, бельевая сода или просто сода – карбонат натрия Na2CO3;
б) кристаллическая сода – кристаллогидрат карбоната натрия Na2CO3.10H2O;
в) двууглекислая или питьевая – гидрокарбонат натрия NaHCO3;
г) гидроксид натрия NaOH называют  каустической содой или каустиком.

Источник

Запрос «Каустик» перенаправляется сюда; о других значениях см. Каустик (значения).

Щёлочи (в русском языке происходит от слова «щёлок», возможно, производное от того же корня, что и др.-исл. «skola» — «стирать»[1]) — гидроксиды щелочных, щёлочноземельных металлов и некоторых других элементов, например, таллия. К щелочам относятся хорошо растворимые в воде основания. При диссоциации щёлочи образуют анионы OH− и катион металла.

К щелочам относятся гидроксиды металлов подгрупп Iа и IIа (начиная с кальция) периодической системы, например NaOH (едкий натр), KOH (едкое кали), Ba(OH)2 (едкий барий). В качестве исключения можно отнести к щелочам гидроксид одновалентного таллия TlOH, который хорошо растворим в воде и является сильным основанием. Едкие щёлочи — тривиальное название гидроксидов лития LiOH, натрия NaOH, калия КОН, рубидия RbOH и цезия CsOH. Название «едкая щёлочь» обусловлено свойством разъедать кожу и слизистые оболочки, (вызывая сильные ожоги), бумагу и другие органические вещества.

Читайте также:  Каким свойством должны обладать данные для того чтобы сообщение можно было сжать

Из-за очень большой химической активности щелочных металлов едкие щёлочи долгое время не удавалось разложить и они потому считались простыми веществами. Одним из первых предположение о сложном составе едких щелочей высказал Лавуазье. Основываясь на своей теории о том, что все простые вещества могут окисляться, Лавуазье решил, что едкие щёлочи — это уже окисленные сложные вещества. Однако подтвердить это удалось лишь Дэви в начале XIX века после применения им электрохимии[2].

Физические свойства[править | править код]

Гидроксиды щелочных металлов (едкие щёлочи) представляют собой твёрдые, белые, очень гигроскопичные вещества. Щёлочи — сильные основания, очень хорошо растворимые в воде, причём реакция сопровождается значительным тепловыделением. Сила основания и растворимость в воде возрастает с увеличением радиуса катиона в каждой группе периодической системы. Самые сильные щёлочи — гидроксид цезия (поскольку из-за очень малого периода полураспада гидроксид франция не получен в макроскопических количествах) в группе Ia и гидроксид радия в группе IIa.
Кроме того, едкие щёлочи растворимы в этаноле и метаноле.

Химические свойства[править | править код]

Щёлочи проявляют основные свойства. В твёрдом состоянии все щёлочи поглощают H2O из воздуха, а также CO2 (также и в состоянии раствора) из воздуха, постепенно превращаясь в карбонаты. Щёлочи широко применяются в промышленности.

Качественные реакции на щёлочи[править | править код]

Водные растворы щелочей изменяют окраску индикаторов.

Индикатор
и номер перехода
х[3]Интервал pH
и номер перехода
Цвет
щёлочной формы
Метиловый фиолетовый0,13-0,5 [I]зелёный
Крезоловый красный [I]0,2-1,8 [I]жёлтый
Метиловый фиолетовый [II]1,0-1,5 [II]синий
Тимоловый синий [I]к1,2-2,8 [I]жёлтый
Тропеолин 00o1,3-3,2жёлтый
Метиловый фиолетовый [III]2,0-3,0 [III]фиолетовый
(Ди)метиловый жёлтыйo3,0-4,0жёлтый
Бромфеноловый синийк3,0-4,6сине-фиолетовый
Конго красный3,0-5,2синий
Метиловый оранжевыйo3,1-(4,0)4,4(оранжево-)жёлтый
Бромкрезоловый зелёныйк3,8-5,4синий
Бромкрезоловый синий3,8-5,4синий
Лакмоидк4,0-6,4синий
Метиловый красныйo4,2(4,4)-6,2(6,3)жёлтый
Хлорфеноловый красныйк5,0-6,6красный
Лакмус (азолитмин)5,0-8,0 (4,5-8,3)синий
Бромкрезоловый пурпурныйк5,2-6,8(6,7)ярко-красный
Бромтимоловый синийк6,0-7,6синий
Нейтральный красныйo6,8-8,0янтарно-жёлтый
Феноловый красныйо6,8-(8,0)8,4ярко-красный
Крезоловый красный [II]к7,0(7,2)-8,8 [II]тёмно-красный
α-Нафтолфталеинк7,3-8,7синий
Тимоловый синий [II]к8,0-9,6 [II]синий
Фенолфталеин[4] [I]к8,2-10,0 [I]малиново-красный
Тимолфталеинк9,3(9,4)-10,5(10,6)синий
Ализариновый жёлтый ЖЖк10,1-12,0коричнево-жёлтый
Нильский голубой10,1-11,1красный
Диазофиолетовый10,1-12,0фиолетовый
Индигокармин11,6-14,0жёлтый
Epsilon Blue11,6-13,0тёмно-фиолетовый

Взаимодействие с кислотами[править | править код]

Щёлочи, как основания, взаимодействуют с кислотами с образованием соли и воды (реакция нейтрализации). Это одно из самых важных химических свойств щелочей.

Щёлочь + Кислота → Соль + Вода

;.

Взаимодействие с кислотными оксидами[править | править код]

Щёлочи взаимодействуют с кислотными оксидами с образованием соли и воды:

Щёлочь + Кислотный оксид → Соль + Вода

;

Взаимодействие с амфотерными оксидами[править | править код]

.

Взаимодействие с переходными (амфотерными) металлами[править | править код]

Растворы щелочей взаимодействуют с металлами, которые образуют амфотерные оксиды и гидроксиды ( и др). Уравнения этих реакций в упрощённом виде могут быть записаны следующим образом:

;.

Реально в ходе этих реакций в растворах образуются гидроксокомплексы (продукты гидратации указанных выше солей):

;;

Взаимодействие с растворами солей[править | править код]

Растворы щелочей взаимодействуют с растворами солей, если образуется нерастворимое основание или нерастворимая соль:

Раствор щёлочи + Раствор соли → Новое основание + Новая соль

;
;

Получение[править | править код]

Растворимые основания получают различными способами.

Гидролиз щелочных/щёлочноземельных металлов[править | править код]

Получают путём электролиза хлоридов щелочных металлов или действием воды на оксиды щелочных металлов.

Применение[править | править код]

Щёлочи широко применяются в различных производствах и медицине; также для дезинфекции прудов в рыбоводстве и как удобрение, в качестве электролита для щелочных аккумуляторов.

В почвоведении[править | править код]

Слабощелочная почва в почвоведении — это почва, водородный показатель которой выше 7,3. Хотя кочанная капуста предпочитает именно щелочные почвы, они могут помешать другим растениям. Большинство растений предпочитает слабокислые почвы (с pH от 6,0 до 6,8)[5].

Примечания[править | править код]

  1. ↑ эх щелок // Словарь Фасмера
  2. ↑ А. С. Арсеньев. Анализ развивающегося понятия. М., «Наука», 1067. С. 332.
  3. ↑ *Столбец «х» — характер индикатора: к—кислота, о—основание.
  4. ↑ Фенолфталеин в сильно щелочной среде обесцвечивается. В среде концентрированной серной кислоты также он даёт красную окраску, обусловленную строением катиона фенолфталеина, хотя и не такую интенсивную. Эти малоизвестные факты могут привести к ошибкам при определении реакции среды.
  5. ↑ Chambers’s Encyclopaedia[en]. — 1888.

Литература[править | править код]

  • Колотов С. С. Щелочи // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Едкие щёлочи // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.

При написании этой статьи использовался материал из издания «Казахстан. Национальная энциклопедия» (1998—2007), предоставленного редакцией «Қазақ энциклопедиясы» по лицензии Creative Commons BY-SA 3.0 Unported.

Источник