Какие свойства гена лежат в основе наследственности

Какие свойства гена лежат в основе наследственности thumbnail

Насле́дственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей генетической информации. У эукариот материальными единицами наследственности являются гены, локализованные в хромосомах ядра и ДНК органелл. Наследственность наряду с изменчивостью обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы[1]. Наследственность и изменчивость являются предметом изучения генетики.

История развития представлений о наследственности[править | править код]

Явление наследственного сходства родителей и их потомства у людей, животных и растений привлекало внимание многих натуралистов и врачей, которые пытались предложить для объяснения этого явления различные гипотезы. Первая из таких попыток принадлежит ещё «отцу медицины», Гиппократу (около 460—470 гг. до н. э.), полагавшему, что экстракты из организма собираются в мужских и женских зародышевых элементах, после чего служат причиной, определяющей особенности развития зародыша. Демокрит (около 460—470 гг. до н. э.) также придерживался материалистических воззрений на явление наследственности и считал, что мужской и женский пол равноправны в наследственности, благодаря материальным частицам, передаваемым как отцом, так и матерью[2].

Идеалистическую идею в проблеме наследственности высказывал Аристотель (384—322 гг. до н. э.), считавший, что наследственность, определяющая развитие организма, представляет собой нематериальное начало, которое он назвал энтелехией. По Аристотелю, материю для развития организма в виде пассивного начала даёт мать. Энтелехия в виде духа, активного, нематериального начала, вносится со стороны отца[2].

Концепция наследственности часто выражалась и выражается до сих пор через теорию «крови», если вообще можно применять термин «теория» к этой форме вненаучных поверий. Она проявляется в таких устойчивых словосочетаниях, как «чистота крови», «полукровка» или «голубая кровь». Эта концепция, разумеется, не связывает наследственные факторы с красной жидкостью, текущей по кровеносным сосудам, она скорее выражает убеждение, что родители передают ребёнку все свои характеристики, а ребёнок представляет собой сплав характеристик родителей, дедушек и бабушек, а также более отдалённых родственников[3].

Вообще, следует отметить, что до XIX века слова «наследственность» и « наследование» использовались практически исключительно в социальной сфере. Например, в Англии термин «наследственность» (англ. — heredity) до конца XIX века относительно редко употреблялся в биологических текстах, хотя Чарльз Дарвин использовал в своих работах слово «наследование» (англ. — inheritance). Во Франции термин «естественная наследственность» (франц. — hérédité naturelle) стал широко использоваться с 1830 года[4].

С середины XIX столетия изучение явлений наследственности приобрело тот характер, который может считаться уже вполне научным. Именно в это время появляется обширный труд Проспера Люка (англ.)русск. об естественной наследственности (1847-50), в котором содержится обширный фактический материал о наследовании различных особенностей у человека. На основании его он устанавливает три типа наследственности: избирательную, когда признаки получаются от одного родителя; смешанную, когда происходит смешение родительских свойств, и комбинативную, связанную с появлением новых признаков. Несколько позже Эрнст Геккель (1866) предложил иную классификацию явлений наследственности, проведя в ней впервые ясное различие между наследованием прирождённых и наследованием приобретённых свойств под именем закона консервативной и закона прогрессивной наследственности[5].

Умозрительные теории наследственности XIX века[править | править код]

Во второй половине XIX века было несколько попыток охватить всю тёмную область наследственности при помощи одной теории, которая должна объяснить все относящиеся сюда вопросы. В 70-80-е годы XIX века целым рядом выдающихся учёных были предложены чисто умозрительные спекулятивные теории наследственности, и первым, кто выступил с подобной теорией, был сам Чарльз Дарвин[5].

Чарльз Дарвин в последней главе своей книги «Об изменениях животных и растений в состоянии приручения» (англ. — «The Variation of Animals and Plants under Domestication», 1868 год) предложил временную гипотезу пангенезиса. Он предположил, что все части организма выделяют мельчайшие зародыши («геммулы»), которые, будучи представителями клеток и органов, собираются в зародышевых клетках, после чего определяют развитие потомства[2]. Надо отметить, что близкие гипотезы наследственности выдвигали Гиппократ в V—IV в. до н. э., Дж. Борелли в XVII веке, Ж. Бюффон в XVIII веке[6].

Читайте также:  В каком направлении усиливаются металлические свойства

Положения хромосомной теории наследственности[править | править код]

  1. Гены находятся в хромосомах. Каждая хромосома представляет группу сцепления генов. Число групп сцепления у каждого вида равно числу пар хромосом
  2. Каждый ген в хромосоме занимает определённый локус. Гены в хромосоме расположены линейно
  3. Между гомологичными хромосомами происходит обмен аллельными генами.
  4. Расстояние между генами в хромосоме пропорционально частоте кроссинговера между ними[7]

См. также[править | править код]

  • Наследование
  • Наследственные заболевания

Примечания[править | править код]

  1. Тарантул В. З. Толковый биотехнологический словарь. Русско-английский. — М.: Языки славянских культур, 2009. — 936 с. — ISBN 978-5-9551-0342-6.
  2. 1 2 3 Дубинин Н. П. Генетика. — Кишинёв: Штиинца, 1985. — С. 19-36. — 536 с.
  3. Dobzhansky T., Griffiths A. J. F., Robinson A. (англ.)русск.. Heredity. Britannica. Дата обращения 27 октября 2012. Архивировано 4 ноября 2012 года.
  4. Raphael Falk. Genetic Analysis. A History of genetic thinking. — Cambridge: Cambridge University Press, 2009. — ISBN 9780521884181.
  5. 1 2 Филипченко Ю. А. Генетика. — Л.: Типография «Печатный Двор», 1929. — 379 с.
  6. ↑ Пангенезис / Бляхер Л. Я. // Отоми — Пластырь. — М. : Советская энциклопедия, 1975. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 19).
  7. Бекиш О.-Я. Л., Бекиш В. Я. Медицинская биология. — Витебск: Ураджай, 2000. — С. 130-131.

Литература[править | править код]

  • Гайсинович А. Е. Зарождение и развитие генетики. — М.: Наука, 1988. — 424 с. — ISBN 5-02-005265-5.
  • Инге-Вечтомов С. Г. Генетика с основами селекции. — М.: Высшая школа, 1989. — 591 с. — ISBN 5-06-001146-1.

 

  Словари и энциклопедии

Новый

Источник

Генетика. Наследственность и изменчивость

Раздел ЕГЭ 3.4. Генетика, ее задачи. Наследственность и изменчивость — свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме

Генетика: задачи, методы, понятия, символика

Генетика — наука о закономерностях наследственности и изменчивости организмов. Наследственность и изменчивость являются фундаментальными свойствами всех живых организмов. Они обеспечивают постоянство и многообразие видов и являются основой эволюции живой природы.

задачи генетики

Задачи генетики:

  • Исследование механизмов хранения и передачи генетической информации от родительских форм дочерним.
  • Изучение механизма реализации генетической информации в процессе онтогенеза под контролем генов и влиянием условий внешней среды.
  • Исследование типов, причин и механизмов изменчивости всех живых существ.
  • Изучение взаимосвязи процессов наследственности, отбора и изменчивости как движущих факторов эволюции органического мира.

Методы генетики:

  • Гибридологический — анализ наследования признаков при скрещиваниях.
  • Цитологический — изучение хромосом: подсчёт их числа, описание структуры, поведения при делении клетки, а также связь между изменением структуры хромосом с изменчивостью признаков.
  • Биохимические и физико-химические методы — изучение структуры и функции генетического материала и выяснение этапов пути лен — признак» и механизмов взаимодействия различных молекул на атом пути.
  • Популяционный — изучение генетической структуры популяций и характера распределения в них генных частот для установления факторов, которые влияют на эти процессы.
  • Близнецовый и онтогенетический — анализ и сравнение изменчивости признаков в пределах различных групп близнецов позволяют оценить роль генотипа и среды и наблюдаемой изменчивости.
  • Генеалогический (метод анализа родословных) даёт возможность изучить наследование признаков и семьях.

Основные генетические понятия

Ген — структурная и функциональная единица наследственности живых организмов; участок ДНК, задающий последовательность определённого белка либо функциональной РНК.
Аллели — различные формы одного и того же гена, расположенные в одинаковых локусах гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака.
Доминирование — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет проявление другого (рецессивного). Доминантный признак проявляется у гетерозигот и доминантных гомозигот.
Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.
Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.
Гомозигота — диплоидный организм, несущий идентичные аллели гена в гомологичных хромосомах.
Гетерозигота — диплоидный организм, копии генов которого в гомологичных хромосомах представлены разными аллелями.
Локус — участок хромосомы, в которой расположен определённый ген.
Гены эукариот состоят из нескольких элементов: регуляторная часть (влияние на активность гена в разные периоды жизни организма) и структурная часть (информация о первичной структуре кодируемого белка). Гены эукариот прерывисты, их ДНК содержит кодирующие участки — экзоны, чередующиеся с некодирующими — нитронами.
Генотип — совокупность генов организма.
Фенотип — совокупность всех внешних и внутренних признаков организма, сформировавшегося на базе генотипа во время индивидуального развития.
Геном — совокупность генов, свойственных для гаплоидного набора хромосом данного биологического вида. Геном, в отличие от генотипа, является характеристикой вида, а не особи, поскольку описывает набор генов, свойственных данному виду, а не их аллели, обусловливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.

Читайте также:  Какие существуют механические свойства

Генетическая символика

АА ⇒ Доминантная гомозигота (даёт один тип гамет (А))
аа ⇒ Рецессивная гомозигота (один тип гамет (а))
Аа ⇒ Гетерозигота (два типа гамет (А; а))
Р ⇒ Родители
G ⇒ Гаметы
F ⇒ Потомство, число внизу или сразу после буквы указывает на порядковый номер поколения
F1 ⇒ Гибриды первого поколения
F2 ⇒ Гибриды второго поколения
⇒ Материнский организм
⇒ Отцовский организм
× ⇒ Значок скрещивания

Наследственность и изменчивость

Наследственность проявляется в способности организма передавать свои признаки и свойства из поколения в поколение. Материальной единицей наследственности являются гены, расположенные у прокариот в нуклеоиде, а у эукариот — в генетическом материале ядра и двумембранных органелл. Совокупность генов организма называют генотипом. Именно он обуславливает развитие большинства его признаков.

Изменчивость — это способность организмов приобретать новые признаки под действием условий среды. Различают генотипическую и фенотипическую изменчивость.

Генотипическая (наследственная) изменчивость затрагивает наследственную информацию организма и проявляется в двух формах: мутационной и комбинативной. В основе комбинативной изменчивости лежат половой процесс, кроссинговер и случайный характер встреч гамет в процессе оплодотворения. Это создаёт огромное разнообразие генотипов. Мутационная связана с возникновением мутаций, которые могут затрагивать как отдельные гены, так и целые хромосомы или даже весь их набор. В зависимости от природы возникновения мутации делят на спонтанные и индуцированные. Мутации делят на соматические и генеративные в зависимости от типа клеток, в которых они возникают. Наблюдения показывают, что многие мутации вредны для организма. Лишь некоторые из них могут оказаться полезными. Вещества и воздействия, приводящие к возникновению мутаций, называются мутагенными факторами, или мутагенами.

Фенотипическая (ненаследственная, или модификационная) изменчивость связана с возникновением модификационных изменений признаков организма, не затрагивающих его геном. Исследования модификационной изменчивости доказывают, что наследуется не сам признак, а способность проявлять этот признак в определённых условиях. Модификационная изменчивость не имеет эволюционного значения, т. к. не связана с образованием новых генов. Так, размеры листьев одного дерева варьируют в довольно широких пределах, хотя генотип их одинаков. Если листья расположить в порядке нарастания или убывания их длины, то получится вариационный ряд изменчивости данного признака.

формы изменчивости

Хромосомная теория наследственности

Т. Морган с учениками сформулировал хромосомную теорию наследственности в начале XX в. Основные её положения:

  1. Гены находятся в хромосомах, располагаются в них линейно на определённом расстоянии друг oi друга и не перекрываются.
  2. Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.
  3. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно.
  4. В потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера.
  5. Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.
  6. На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Это конспект для 10-11 классов по теме «Генетика. Наследственность и изменчивость». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по Биологии.
  • Найти конспект в Кодификаторе ЕГЭ по биологии

Источник

Читайте также:  Поясни какое свойство живых организмов отражено на рисунке
Оcновы генетики. Законы наследственности
 
Генетика — наука, изучающая закономерности наследственности
и изменчивости. Мендель, проводя опыты по скрещиванию различных сортов гороха,
установил ряд законов наследования, положивших начало генетике. Он разработал
гибридо-логический метод анализа наследования признаков организмами. Этот
метод предусматривает скрещивание особей с альтернативными признаками; анализ
исследованных признаков у гибридов без учета остальных; количественный учет
гибридов.
Проводя моногибриднре скрещивание (скрещивание по одной паре
альтернативных призкаков), Мендель установил закон единообразия первого
поколения. Он гласит: при скрещивании двух гомозиготных организмов, отличающихся
по одной паре альтернэтивных признаков, первое поколение гибридов единообразно
как по фенотипу, так и по генотипу. Этот закон так же называют законом доминирования,
т. к. один из признаков проявляется, а другой — подавлен.
Если потомков первого локоления скрестить между собой, то
во втором поколении исчезнувший в первом поколении признак проявляется вновь.
Это явление получило название второго закона Менделя или закона расщепления.
Он гласит: при скрещивании гибридов первого поколения между собой, во втором
поколении наблюдается расщепление доминантных и рецессивных признаков в
соотношении 3 :1. Генотипы второго поколения — АА, Аа, Аа, аа, то есть наблюдается
соотношение 1:2:1.
Расщепление признаков в потомстве прискрещивании гетерозиготных
особей обьясняется тем, что гаметы генетически чисты, несут только один
ген из аллельной пары. При образовании половых клеток в каждую гамету попадает
только один ген из аллельной пары (закон чистоты гамет).
Цитологической основой расщепления признаков при моногибридном
скрещивании является расхождение гомологичных хромосом к разным полюсам
клетки и образование гаплоидных половых клеток в мейозе.
Генотип — совокупность генов
организма, взаимодействующих между собой.
Фенотип — совокупность внешних
признаков организма.
В опытах Мендель использовал разные способы скрещивания:
моногибридное, дигибридное и полигибридное. При последнем скрещивании особи
отличаются более чем по двум парам признаков. Во всех случаях соблюдается
закон единообразия первого поколения, закон расщепления признаков во втором
поколении и закон независимого наследования.
Закон независимого наследования: каждая пара признаков наследуется
независимо друг от друга. В потомстве идет расщепление по фенотипу 3 :1
по каждой паре признаков.
Закон независимого наследования справедлив лишь в том случае,
если гены рассматриваемых пар признаков лежат в различных парах гомологичных
хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления
генов.
Поведение любых пар негомологичных хромосом в мейозе не зависит
друг от друга. Расхождение: их к полюсам клетки носит случайный характер.
Независимое наследование имеет, большое значение для эволюции; так как является
источником комбинативной наследственности.
Сцепленное наследование
Организм любого вида имеет большое разнообразие признаков,
которое обеспвг чивается тысячами генов. В то же время число хромосом невелико,
так у человека их всего 23 пары. Следовательно, в каждой хромосоме располагаются
сотни и тысячи генов. Наследование признаков, гены которых находятся в одной
хромосоме, исследовал американский генетик Т. Морган. Гены, расположенные
в одной хромосоме, называют группой сцепления. Количество групп сцепления
в клетке равно гаплоидному набору хромосом.
Закон сцепленного наследования, открытый Морганом, гласит:
гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются
вместе.
Дальнейшие исследования Моргана показали, что сцепление не
всегда бывает абсолютным. Причина тому — кроссинговер (обмен участками между
гомологичными хромосомами), который происходит в профазе первого деления
мейоза. Кроссинговер нарушает группы сцепления генов и ведет к появлению
особей с перекомбинацией признаков.
Частота кроссинговера зависит от расстояния между генами:
чем ближе располагаются гены в хромосоме, тем меньше вероятность кроссинговера
между ними и наоборот. Эта зависимость используется, для составления генетических
карт хромосом, где по вероятности кроссинговера рассчитывается положение
генов, в хромосоме.
Расстояние между генами определяется по формуле:
X = (A + C)/N x100,
где X — расстояние между генами (в морга-нидах), А и С —
количество кроссовертных особей, N — общее число особей.
 

Источник