Какие свойства есть только в электромагнитных волнах

Какие свойства есть только в электромагнитных волнах thumbnail

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свойства электромагнитных волн, различные виды электромагнитных излучений и их применение.

Важнейший результат электродинамики, вытекающий из уравнений Максвелла (мы уже не первый раз говорим об уравнениях Максвелла, а самих уравнений при этом не выписываем. Ничего не поделаешь — эти уравнения пока слишком сложны для вас. Вы познакомитесь с ними курсе на втором, когда будут освоены необходимые темы из высшей математики), состоит в том, что электромагнитные взаимодействия передаются из одной точки пространства в другую не мгновенно, а с конечной скоростью. В вакууме скорость распространения электромагнитных взаимодействий совпадает со скоростью света м/с.

Рассмотрим, например, два покоящихся заряда, находящихся на некотором расстоянии друг от друга. Сила их взаимодействия определяется законом Кулона. Шевельнём один из зарядов; согласно закону Кулона сила взаимодействия изменится мгновенно — второй заряд сразу «почувствует» изменение положения первого заряда. Так утверждала теория дальнодействия (теории дальнодействия и близкодействия обсуждались в листке «Напряжённость электрического поля»).

Однако в действительности дело обстоит иначе. При шевелении заряда электрическое поле вблизи него меняется и порождает магнитное поле. Это магнитное поле также является переменными, в свою очередь, порождает переменное электрическое поле, которое опять порождает переменное магнитное поле и т.д. В пространстве начинает распространяться процесс колебаний напряжённости электрического поля и индукции магнитного поля — электромагнитная волна. Спустя некоторое время эта электромагнитная волна достигнет второго заряда; лишь тогда — а не мгновенно! — он и «почувствует», что положение первого заряда изменилось.

Существование электромагнитных волн было предсказано Максвеллом и получило блестящее подтверждение в опыте Герца.

Опыт Герца: открытый колебательный контур

Электромагнитные волны должны быть достаточно интенсивными для того, чтобы можно было их наблюдать в эксперименте.

Нетрудно понять, что электромагнитные волны будут тем интенсивнее, чем быстрее меняется положение зарядов, излучающих эти волны. Действительно, в таком случае электрическое поле вблизи зарядов меняется с большей скоростью и порождает большее магнитное поле; оно, в свою очередь, меняется столь же быстро и порождает большее электрическое поле, и т.д.

В частности, интенсивные электромагнитные волны порождаются высокочастотными электромагнитными колебаниями.

Электромагнитные колебания создаются в хорошо знакомом нам колебательном контуре.

Частота колебаний заряда и тока в контуре равна:

(1)

С этой же частотой колеблются векторы и в заданной точке пространства. Таким образом, величина , вычисляемая по формуле (1), будет также частотой электромагнитной волны.

Чтобы увеличить частоту колебаний в контуре, нужно уменьшать ёмкость конденсатора и индуктивность катушки.

Но эксперименты показали, что дело не ограничивается одной лишь высокой частотой колебаний. Для образования интенсивных электромагнитных волн существенным оказывается ещё один фактор: переменное электромагнитное поле, являющееся источником электромагнитных волн, должно занимать достаточно большую область пространства.

Между тем, в обычном колебательном контуре, состоящем из конденсатора и катушки, переменное электрическое поле почти целиком сосредоточено в малой области внутри конденсатора, а переменное магнитное поле — в малой области внутри катушки. Поэтому даже при достаточно высокой частоте колебаний такой колебательный контур оказался непригоден для излучения электромагнитных волн.

Как добиться увеличения области, занимаемой высокочастотным электромагнитным полем? Герц нашёл красивое и гениально простое решение — открытый колебательный контур.

Возьмём обычный колебательный контур (рис. 1, слева). Начнём уменьшать число витков катушки — от этого её индуктивность будет уменьшаться. Одновременно уменьшаем площадь пластин конденсатора и раздвигаем их — это приводит к уменьшению ёмкости конденсатора и к увеличению пространственной области, занимаемой электрическим полем. Эта промежуточная ситуация изображена на рис. 1 в середине.

Какие свойства есть только в электромагнитных волнах

Рис. 1. Превращение обычного колебательного контура в открытый

К чему мы придём, продолжая этот процесс? Катушка ликвидируется вовсе, превращаясь в кусок проводника. Пластины конденсатора раздвигаются максимально далеко и оказываются на концах этого проводника (рис. 1, справа). Остаётся уменьшить до предела размеры пластин — и получится самый обычный прямолинейный стержень! Это и есть открытый колебательный контур (рис. 2).

Какие свойства есть только в электромагнитных волнах

Рис. 2. Открытый колебательный контур

Как видим, идея Герца об открытом колебательном контуре позволила «убить двух зайцев»:

1) ёмкость и индуктивность стержня очень малы, поэтому в нём возбуждаются колебания весьма высокой частоты; 2) переменное электромагнитное поле занимает довольно большую область пространства вокруг стержня.
Поэтому такой стержень может служить источником достаточно интенсивных электромагнитных волн.

Но как возбудить в стержне электромагнитные колебания? Герц разрезал стержень посередине, раздвинул половинки на небольшое расстояние (создав так называемый разрядный промежуток) и подключил их к источнику высокого напряжения. Получился излучающий вибратор Герца (рис. 3; концы провода в разрядном промежутке снабжались небольшими шариками).

Какие свойства есть только в электромагнитных волнах

Рис. 3. Излучающий вибратор Герца

Когда напряжение между шариками превышало напряжение пробоя, в разрядном промежутке проскакивала искра. Во время существования искры цепь замыкалась, и в стержне возникали электромагнитные колебания — вибратор излучал электромагнитные волны.

Герц регистрировал эти волны с помощью приёмного вибратора — проводника с шариками на концах разрядного промежутка (рис. 4). Приёмный вибратор находился поодаль, на некотором расстоянии от излучающего вибратора.

Какие свойства есть только в электромагнитных волнах

Рис. 4. Приёмный вибратор Герца

Переменное электрическое поле электромагнитной волны возбуждало в приёмном вибраторе переменный ток. Если частота этого тока совпадала с собственной частотой приёмного вибратора, то возникал резонанс, и в разрядном промежутке проскакивала искра!

Наличие этой искры, появляющейся на концах совершенно изолированного проводника, явилось ярким свидетельством существования электромагнитных волн.

Свойства электромагнитных волн

Для излучения электромагнитных волн заряд не обязательно должен совершать колебательное движение; главное — чтобы у заряда было ускорение. Любой заряд, движущийся с ускорением, является источником электромагнитных волн. При этом излучение будет тем интенсивнее, чем больше модуль ускорения заряда.

Так, при равномерном движении по окружности (скажем, в магнитном поле) заряд имеет центростремительное ускорение и, стало быть, излучает электромагнитные волны. Быстрые электроны в газоразрядных трубках, налетая на стенки, тормозятся с очень большим по модулю ускорением; поэтому вблизи стенок регистрируется рентгеновское излучение высокой энергии (так называемое тормозное излучение).

Читайте также:  Какие кусты чем полезные свойства

Электромагнитные волны оказались поперечными — колебания векторов напряжённости электрического поля и индукции магнитного поля происходят в плоскости, перпендикулярной направлению распространения волны.

Рассмотрим, например, излучение заряда, совершающего гармонические колебания с частотой вдоль оси вокруг начала координат. Во все стороны от него бегут электромагнитные волны — в частности, вдоль оси . На рис. 5 показана структура излучаемой электромагнитной волны на большом расстоянии от заряда в фиксированный момент времени.

Какие свойства есть только в электромагнитных волнах

Рис. 5. Синусоидальная электромагнитная волна

Скорость волны направлена вдоль оси . Векторы и в каждой точке оси совершают синусоидальные колебания вдоль осей и соответственно, меняясь при этом синфазно.

Кратчайший поворот вектора к вектору всегда совершается против часовой стрелки, если глядеть с конца вектора .

В любой фиксированный момент времени распределение вдоль оси значений модуля векторов и имеет вид двух синфазных синусоид, расположенных перпендикулярно друг другу в плоскостях и соответственно. Длина волны — это расстояние между двумя ближайшими точками оси , в которых колебания значений поля происходят в одинаковой фазе (в частности — между двумя ближайшими максимумами поля, как на рис. 5).

Частота, с которой меняются значения и в данной точке пространства, называется частотой электромагнитной волны; она совпадает с частотой колебаний излучающего заряда. Длина электромагнитной волны , её частота и скорость распространения c связаны стандартным для всех волн соотношением:

(2)

Эксперименты показали, что электромагнитным волнам присущи те же основные свойства, что и другим видам волновых процессов.

1. Отражение волн. Электромагнитные волны отражаются от металлического листа — это было обнаружено ещё Герцем. Угол отражения при этом равен углу падения.

2. Поглощение волн. Электромагнитные волны частично поглощаются при прохождении сквозь диэлектрик.

3. Преломление волн. Электромагнитные волны меняют направление распространения при переходе из воздуха в диэлектрик (и вообще на границе двух различных диэлектриков).

4. Интерференция волн. Герц наблюдал интерференцию двух волн: первая приходила к приёмному вибратору непосредственно от излучающего вибратора, вторая — после предварительного отражения от металлического листа.

Меняя положение приёмного вибратора и фиксируя положения интерференционных максимумов, Герц измерил длину волны . Частота собственных колебаний в приёмном вибраторе была Герцу известна. По формуле (2) Герц вычислил скорость распространения электромагнитных волн и получил приближённо м/с. Именно такой результат предсказывала теория, построенная Максвеллом!

5. Дифракция волн. Электромагнитные волны огибают препятствия, размеры которых соизмеримы с длиной волны. Например, радиоволны, длина волны которых составляет несколько десятков или сотен метров, огибают дома или горы, находящиеся на пути их распространения.

Плотность потока излучения

Электромагнитные волны переносят энергию из одних участков пространства в другие. Перенос энергии осуществляется вдоль лучей — воображаемых линий, указывающих направление распространения волны (мы не даём строгого определения понятия луча и надеемся на ваше интуитивное понимание, которого пока будет вполне достаточно).

Важнейшей энергетической характеристикой электромагнитных волн служит плотность потока излучения.

Представим себе площадку площадью , расположенную перпендикулярно лучам. Допустим, что за время волна переносит через эту площадку энергию . Тогда плотность потока излучения определяетcя формулой:

(3)

Иначе говоря, плотность потока излучения — это энергия, переносимая через единичную площадку (перпендикулярную лучам) в единицу времени; или, что то же самое — это мощность излучения, переносимая через единичную площадку. Единицей измерения плотности потока излучения служит Вт/м2.

Плотность потока излучения связана простым соотношением с плотностью энергии электромагнитного поля.

Фиксируем площадку , перпендикулярную лучам, и небольшой промежуток времени . Сквозь площадку пройдёт энергия:

(4)

Эта энергия будет сосредоточена в цилиндре с площадью основания и высотой (рис. 6), где — скорость электромагнитной волны.

Какие свойства есть только в электромагнитных волнах

Рис. 6. К выводу формулы (6)

Объём данного цилиндра равен: . Поэтому если — плотность энергии электромагнитного поля, то для энергии получим также:

(5)

Приравнивая правые части формул (4) и (5) и сокращая на , получим соотношение:

(6)

Плотность потока излучения характеризует, в частности, степень воздействия электромагнитного излучения на его приёмники; когда говорят об интенсивности электромагнитных волн, имеют в виду именно плотность потока излучения.

Интересным является вопрос о том, как интенсивность излучения зависит от его частоты.

Пусть электромагнитная волна излучается зарядом, совершающим гармонические колебания вдоль оси по закону . Циклическая частота колебаний заряда будет в то же время циклической частотой излучаемой электромагнитной волны.

Для скорости и ускорения заряда имеем : и . Как видим, . Напряжённость электрического поля и индукция магнитного поля в электромагнитной волне пропорциональны ускорению заряда: и . Стало быть, и .

Плотность энергии электромагнитного поля есть сумма плотности энергии электрического поля и плотности энергии магнитного поля: . Плотность энергии электрического поля, как мы знаем, пропорциональна квадрату напряжённости поля: . Аналогично можно показать, что . Следовательно, и , так что .

Согласно формуле (6) плотность потока излучения пропорциональна плотности энергии: . Поэтому . Мы получили важный результат: интенсивность электромагнитного излучения пропорциональна четвёртой степени его частоты.

Другой важный результат заключается в том, что интенсивность излучения убывает с увеличением расстояния до источника. Это понятно: ведь источник излучает в разных направлениях, и по мере удаления от источника излучённая энергия распределяется по всё большей и большей площади.

Количественную зависимость плотности потока излучения от расстояния до источника легко получить для так называемого точечного источника излучения.

Точечный источник излучения — это источник, размерами которого в условиях данной ситуации можно пренебречь. Кроме того, считается, что точечный источник одинаково излучает во всех направлениях.

Конечно, точечный источник является идеализацией, но в некоторых задачах эта идеализация отлично работает. Например, при исследовании излучения звёзд их вполне можно считать точечными источниками — ведь расстояния до звёзд настолько громадны, что их собственные размеры можно не принимать во внимание.

На расстоянии от источника излучённая энергия равномерно распределяется по поверхности сферы радиуса . Площадь сферы, напомним, . Если мощность излучения нашего источника равна , то за время через поверхность сферы проходит энергия . С помощью формулы (3) получаем тогда:

Читайте также:  Какими физическими свойствами обладает алюминий

Таким образом, интенсивность излучения точечного источника обратно пропорциональна расстоянию до него.

Виды электромагнитных излучений

Спектр электромагнитных волн необычайно широк: длина волны может измеряться тысячами километров, а может быть меньше пикометра. Тем не менее, весь этот спектр можно разделить на несколько характерных диапазонов длин волн; внутри каждого диапазона электромагнитные волны обладают более-менее схожими свойствами и способами излучения.

Мы рассмотрим эти диапазоны в порядке убывания длины волны. Диапазоны плавно переходят друг в друга, чёткой границы между ними нет. Поэтому граничные значения длин волн порой весьма условны.

1. Радиоволны ( > 1 мм).

Источниками радиоволн служат колебания зарядов в проводах, антеннах, колебательных контурах. Радиоволны излучаются также во время гроз.

Сверхдлинные волны ( > 10 км). Хорошо распространяются в воде, поэтому используются для связи с подводными лодками.

Длинные волны (1 км Средние волны (100м Короткие волны (10 м Метровые волны (1 м Дециметровые волны (10 см Сантиметровые волны (1 см Миллиметровые волны (1 мм Инфракрасное излучение (780 нм тепловым — когда оно попадает на наше тело, мы чувствуем тепло. Человеческим глазом инфракрасное излучение не воспринимается (некоторые змеи видят в инфракрасном диапазоне).

Мощнейшим источником инфракрасного излучения служит Солнце. Лампы накаливания излучают наибольшее количество энергии (до 80%) в как раз в инфракрасной области спектра.

Инфракрасное излучение имеет широкую область применения: инфракрасные обогреватели, пульты дистанционного управления, приборы ночного видения, сушка лакокрасочных покрытий и многое другое.

При повышении температуры тела длина волны инфракрасного излучения уменьшается, смещаясь в сторону видимого света. Засунув гвоздь в пламя горелки, мы можем наблюдать это воочию: в какой-то момент гвоздь «раскаляется докрасна», начиная излучать в видимом диапазоне.

3. Видимый свет (380 нм спектральные цвета.

• Красный: 625 нм — 780 нм;

• Оранжевый: 590 нм — 625 нм;

• Жёлтый: 565 нм — 590 нм;

• Зелёный: 500 нм — 565 нм;

• Голубой: 485 нм — 500 нм;

• Синий: 440 нм — 485 нм;

• Фиолетовый: 380 нм — 440 нм.

Глаз имеет максимальную чувствительность к свету в зелёной части спектра. Вот почему школьные доски согласно ГОСТу должны быть зелёными: глядя на них, глаз испытывает меньшее напряжение.

4. Ультрафиолетовое излучение (10 нм Рентгеновское излучение (5 пм тормозное излучение), а также при некоторых переходах электронов внутри атомов с одного уровня на другой (характеристическое излучение).

Рентгеновское излучение легко проникает сквозь мягкие ткани человеческого тела, но поглощается кальцием, входящим в состав костей. Это даёт возможность хорошо известные вам рентгеновские снимки.

В аэропортах вы наверняка видели действие рентгенотелевизионных интроскопов — эти приборы просвечивают рентгеновскими лучами ручную кладь и багаж.

Длина волны рентгеновского излучения сравнима с размерами атомов и межатомных расстояний в кристаллах; поэтому кристаллы являются естественными дифракционными решётками для рентгеновских лучей. Наблюдая дифракционные картины, получаемые при прохождении рентгеновских лучей сквозь различные кристаллы, можно изучать порядок расположения атомов в кристаллических решётках и сложных молекулах.

Так, именно с помощью рентгеноструктурного анализа было определено устройство ряда сложных органических молекул — например, ДНК и гемоглобина.

В больших дозах рентгеновское излучение опасно для человека — оно может вызывать раковые заболевания и лучевую болезнь.

6. Гамма-излучение ( синхротронное излучение).

В больших дозах гамма-излучение очень опасно для человека: оно вызывает лучевую болезнь и онкологические заболевания. Но в малых дозах оно может подавлять рост раковых опухолей и потому применяется в лучевой терапии.

Бактерицидное действие гамма-излучения используется в сельском хозяйстве (гамма-стерилизация сельхозпродукции перед длительным хранением), в пищевой промышленности (консервирование продуктов), а также в медицине (стерилизация материалов).

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Источник

Какие свойства есть только в электромагнитных волнах

Электромагнитные волны – это результат многолетних споров и тысяч экспериментов. Доказательство наличия сил природного происхождения, способных перевернуть сложившееся общество. Это фактическое принятие простой истины – мы слишком мало знаем о мире, в котором живем.

Физика – королева среди наук о природе, способная дать ответы на вопросы происхождения не только жизни, но и самого мира. Она дает ученым способность изучать электрическое и магнитное поле, взаимодействие которых порождает ЭМВ (электромагнитные волны).

На всех стадиях сборочно-монтажных операций выполняются операции контроля качества печатных плат: входной контроль, операционный контроль, выходной контроль. По степени охвата большинство операций относятся к сплошному контролю, т.е. проверке подвергаются все модули. Обнаруженные дефекты фиксируются в сопроводительной документации на узел для последующего устранения, для статистического учета и с целью выявления и устранения причин их появления. Протоколирование дефектов в соответствии с программой ведет и автоматическое оборудование, подробнее можно узнать на сайте https://a-contract.ru.

Что такое электромагнитная волна

Не так давно на экраны нашей страны вышел фильм «Война токов» (2018), где с ноткой художественного вымысла рассказывается о споре двух великих ученых Эдисона и Теслы. Один пытался доказать выгоду от постоянного тока, другой — от переменного. Эта продолжительная битва закончилась только в седьмом году двадцать первого века.

В самом начале «сражения» другой ученый, занимаясь проработкой теории относительности, описывал электричество и магнетизм как похожие явления.

Какие свойства есть только в электромагнитных волнах

В тридцатом году девятнадцатого века физик английского происхождения Фарадей открыл явление электромагнитной индукции и ввел термин единства поля электрического и магнитного. Также он утверждал, что движение в этом поле ограничено скоростью света.

Чуть позже теория английского ученого Максвелла поведала о том, что электричество вызывает магнитный эффект, а магнетизм — появление электрического поля. Поскольку оба этих поля движутся в пространстве и времени, то образуют возмущения – то есть электромагнитные волны.

Читайте также:  Какими лечебными свойствами обладает малина

Говоря проще электромагнитная волна – это пространственное возмущение электромагнитного поля.

Экспериментально существование ЭМВ доказал немецкий ученый Герц.

Электромагнитные волны, их свойства и характеристика

Электромагнитные волны характеризуются следующими факторами:

  • длиной (достаточно широким диапазоном);
  • частотой;
  • интенсивностью (или амплитудой колебания);
  • количеством энергии.

Какие свойства есть только в электромагнитных волнах

Основное свойство всех электромагнитных излучений – это величина длины волны (в вакууме), которая обычно указывается в нанометрах для видимого светового спектра.

Каждый нанометр представляет тысячную часть микрометра и измеряется расстоянием между двумя последовательными пиками (вершинами).

Соответствующая частота излучения волны – это число синусоидальных колебаний и обратная пропорциональность длине волны.

Частота обычно измеряется в Герцах. Таким образом, более длинные волны соответствуют более низкой частоте излучения, а более короткие — высокой частоте излучения.

Основные свойства волн:

  • преломление;
  • отражение;
  • поглощение;
  • интерференция.

Скорость электромагнитной волны

Фактическая скорость распространения электромагнитной волны зависит от материала, которым обладает среда, ее оптической плотности и наличия такого фактора как давление.

Какие свойства есть только в электромагнитных волнах

Кроме того, различные материалы имеют разную плотность «упаковки» атомов, чем ближе они расположены, тем меньше расстояние и выше скорость. В результате скорость электромагнитной волны зависит от материала, через который она движется.

Подобные эксперименты ставятся в адронном коллайдере, где главным инструментом воздействия является заряженная частица. Изучение электромагнитных явлений происходит там на квантовом уровне, когда свет раскладывается на мельчайшие частицы – фотоны. Но квантовая физика – это отдельная тема.

Согласно теории относительности, наибольшая скорость распространения волны не может превышать световую. Конечность скоростного предела в своих трудах описал Максвелл, объясняя это наличием нового поля – эфир. Современная официальная наука подобную взаимосвязь пока не изучала.

Электромагнитное излучение и его виды

Электромагнитное излучение состоит из электромагнитных волн, которые наблюдаются в виде колебания электрического и магнитного полей, распространяющиеся на скорости света (300 км за секунду в вакууме).

Какие свойства есть только в электромагнитных волнах

Когда ЭМ-излучение взаимодействует с веществом, его поведение качественно меняется по мере изменения частоты. Отчего оно преобразуется в:

  1. Радиоизлучение. На радиочастотах и микроволновых частотах эм–излучение взаимодействует с веществом в основном в виде общего набора зарядов, которые распределены по большому количеству затронутых атомов.
  2. Инфракрасное излучение. В отличие от низкочастотного радиоизлучения и СВЧ-излучения, инфракрасный излучатель обычно взаимодействует с диполями, присутствующими в отдельных молекулах, которые по мере вибрации изменяются на концах химической связи на атомном уровне.
  3. Видимое световое излучение. По мере того как частота увеличивается в видимый ряд, фотоны имеют достаточную энергию для изменения скрепленной структуры некоторых отдельно взятых молекул.
  4. Ультрафиолетовое излучение. Частота увеличивается. В ультрафиолетовых фотонах теперь достаточно энергии (более трех вольт), чтобы воздействовать вдвойне на связи молекул, постоянно химически их перестраивая.
  5. Ионизирующее излучение. На самых высоких частотах и наименьших по длине волны. Поглощение этих лучей материей затрагивает весь гамма-спектр. Самый известный эффект – радиация.

Что является источником электромагнитных волн

Мир, согласно молодой теории о происхождении всего, возник благодаря импульсу. Он освободил колоссальную энергию, которую назвали большим взрывом. Так в истории мироздания появилась первая эм-волна.

Какие свойства есть только в электромагнитных волнах

В настоящее время к источникам формирования возмущений относятся:

  • эмв излучает искусственный вибратор;
  • результат колебания атомных групп или частей молекул;
  • если происходит воздействие на внешнюю оболочку вещества (на атомно-молекулярном уровне);
  • эффект схожий со световым;
  • при ядерном распаде;
  • последствие торможения электронов.

Шкала и применение электромагнитных излучений

Под шкалой излучения понимается большой диапазон частоты волны от 3·106÷10-2до 10-9÷ 10-14.

Какие свойства есть только в электромагнитных волнах

Каждая часть электромагнитного спектра обладает обширной областью применения в нашей повседневной жизни:

  1. Волны маленькой длины (микроволны). Данные электроволны используются в качестве спутникового сигнала, поскольку способны миновать атмосферу земли. Также немного усиленный вариант используется для разогрева и готовки на кухне – это микроволновая печь. Принцип приготовления прост – под действием микроволнового излучения поглощаются и ускоряются молекулы воды, отчего блюдо нагревается.
  2. Длинные возмущения используется в радиотехнологиях (радиоволны). Их частота не позволяет пройти облака и атмосферу, благодаря чему нам доступно Фм-радио и телевидение.
  3. Инфракрасное возмущение непосредственно связано с теплом. Увидеть его практически невозможно. Попробуйте заметить без специального оборудования луч из пульта управления вашего телевизора, музыкального центра или магнитолы в машине. Приборы, способные считывать подобное волны, используются в армиях стран (прибор ночного виденья). Также в индуктивных плитах на кухнях.
  4. Ультрафиолет также имеет отношение к теплу. Самый мощный природный «генератор» такого излучения – это солнце. Именно из-за действия ультрафиолета на коже человека образуется загар. В медицине этот тип волн используется для дезинфекции инструментов, убивая микробы и бактерии.
  5. Гамма-лучи – это самый мощный тип излучения, в котором сконцентрировалось коротковолновое возмущение с большой частотой. Энергия, заключенная в эту часть электромагнитного спектра, дает лучам большую проникающую способность. Применима в ядерной физике – мирное, ядерное оружие – боевое применение.

Влияние электромагнитных волн на здоровье человека

Измерение влияния эмв на человека – это обязанность ученых. Но не нужно быть специалистом, чтобы оценить интенсивность ионизирующего излучения – оно провоцирует изменения на уровне ДНК человека, что влечет за собой такие серьезные заболевания как онкология.

Какие свойства есть только в электромагнитных волнах

Не зря пагубное воздействие катастрофы ЧАЭС считается одной самых опасных для природы. Несколько квадратных километров некогда красивой территории стали зоной полного отчуждения. До конца века взрыв на ЧАЭС представляет опасность, пока не закончится полураспад радионуклидов.

Некоторые типы эмв (радио, инфракрасные, ультрафиолет) не наносят человеку сильного вреда и представляют собой лишь дискомфорт. Ведь магнитное поле земли нами практически не ощущается, а вот эмв от мобильного телефона может вызвать головную боль (воздействие на нервную систему).

Для того чтобы обезопасить здоровье от электромагнетизма, следует просто использовать меры разумной предосторожности. Вместо сотен часов за компьютерной игрой выйти погулять.

Источник