Какие свойства дробей вы знаете

Какие свойства дробей вы знаете thumbnail

В данной статье разберем, в чем заключается основное свойство дроби, сформулируем его, приведем доказательство и наглядный пример. Затем рассмотрим, как применять основное свойство дроби при совершении действий сокращения дробей и приведения дробей к новому знаменателю.

Основное свойство дроби, формулировка, доказательство и примеры

Все обыкновенные дроби обладают важнейшим свойством, которое мы и называем основным свойством дроби, и звучит оно следующим образом:

Определение 1

Если числитель и знаменатель одной дроби умножить или разделить на одно и то же натуральное число, то в итоге получится дробь, равная заданной.

Представим основное свойство дроби в виде равенства. Для натуральных чисел a, b и mбудут справедливыми равенства:

a·mb·m=ab и  a:mb:m=ab

Рассмотрим доказательство основного свойства дроби. Опираясь на свойства умножения натуральных чисел и свойства деления натуральных чисел, запишем равенства: (a · m) · b = (b · m) · a  и (a : m) · b = (b : m) · a. Таким образом, дроби a·mb·m и ab, а также a:mb:m и ab являются равными по определению равенства дробей.

Разберем пример, который графически проиллюстрирует основное свойство дроби.

Пример 1

Допустим, у нас есть квадрат, разделенный на 9 «больших» частей-квадратов. Каждый «большой» квадрат разделен на 4 меньших по размеру. Возможно сказать, что заданный квадрат поделен на 4·9 = 36 «маленьких» квадратов. Выделим цветом 5 «больших» квадратов. При этом окрашенными будут 4·5 = 20 «маленьких» квадратов. Покажем рисунок, демонстрирующий наши действия:

Основное свойство дроби, формулировка, доказательство и примеры

Окрашенная часть – это 59 исходной фигуры или 2036, что является тем же самым. Таким образом,  дроби 59 и 2036 являются равными: 59=2036 или 2036=59.

Эти равенства, а также равенства 20 = 4·5, 36 = 4·9, 20:4 = 5 и 36:4 = 9 дают возможность сделать вывод, что 59=5·49·4 и 2036=20·436·4.

Чтобы закрепить теорию, разберем решение примера.

Пример 2

Задано, что числитель и знаменатель некоторой обыкновенной дроби умножили на 47, после чего эти числитель и знаменатель разделили на 3. Равна ли полученная в итоге этих действий дробь заданной?

Решение

Опираясь на основное свойство дроби, можно говорить о том, что умножение числителя и знаменателя заданной дроби на натуральное число 47 даст в результате дробь, равную исходной. То же самое мы можем утверждать, производя дальнейшее деление на 3. В конечном счете мы получим дробь, равную заданной.

Ответ: да, полученная в итоге дробь будет равна исходной.

Применение основного свойства дроби

Основное свойство применяется, когда нужно привести дроби к новому знаменателю и при сокращении дробей.

Приведение дроби к новому знаменателю – это действие замены заданной дроби равной ей дробью, но с большими числителем и знаменателем. Чтобы привести дробь к новому знаменателю, нужно умножить числитель и знаменатель дроби на необходимое натуральное число. Действия с обыкновенными дробями были бы невозможны без способа приводить дроби к новому знаменателю.

Определение 2

Сокращение дроби – действие перехода к новой дроби, равной заданной, но с меньшими числителем и знаменателем. Чтобы сократить дробь, нужно разделить числитель и знаменатель дроби на одно и то же необходимое натуральное число, которое будет называться общим делителем.

Возможны случаи, когда подобного общего делителя нет, тогда говорят о том, что исходная дробь несократима или не подлежит сокращению. В частности, сокращение дроби при помощи наибольшего общего делителя приведет дробь к несократимому виду.

Источник

У этого термина существуют и другие значения, см. Дробь.

Дробь в математике — число, состоящее из одной или нескольких равных частей (долей) единицы[1]. По способу записи дроби делятся на два формата: обыкновенные вида и десятичные вида .

В математической записи дроби вида или число перед (над) чертой называется числителем, а число после черты (под чертой) — знаменателем. Первый играет роль делимого, второй — делителя.

Обыкновенные дроби с целыми числителями и знаменателями образуют поле рациональных чисел.

Виды дробей[править | править код]

Обыкновенные дроби[править | править код]

Наглядное представление дроби 3/4

Обыкновенная (или простая) дробь — запись рационального числа в виде или где Горизонтальная или косая черта обозначает знак деления, в результате которого получается частное. Делимое называется числителем дроби, а делитель — знаменателем.

Обозначения обыкновенных дробей[править | править код]

Есть несколько видов записи обыкновенных дробей в печатном виде:

Правильные и неправильные дроби[править | править код]

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, у которой модуль числителя больше модуля знаменателя или равен ему, называется неправильной и представляет собой рациональное число, по модулю большее или равное единице.

Например, дроби , и  — правильные, в то время как , , и  — неправильные. Всякое отличное от нуля целое число можно представить в виде неправильной обыкновенной дроби со знаменателем .

Читайте также:  Какие свойства применяли в этих равенствах

Смешанные дроби[править | править код]

Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой.

Например, . В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь, а также из-за более громоздкой записи и менее удобных вычислений.

Составные дроби[править | править код]

Многоэтажной, или составной, дробью называется выражение, содержащее несколько горизонтальных (или реже — наклонных) черт:

или или .

Десятичные дроби[править | править код]

Десятичной дробью называют позиционную запись дроби. Она выглядит следующим образом (знак вне аримфетических выражений обычно опускается):

Пример: .

Часть записи, которая стоит до позиционной запятой, является целой частью числа (дроби), а стоящая после запятой — дробной частью. Всякую обыкновенную дробь можно преобразовать в десятичную, которая в этом случае либо имеет конечное число знаков после запятой, либо является периодической дробью.

Вообще говоря, для позиционной записи числа́ можно использовать не только десятичную систему счисления, но и другие (в том числе и специфические, такие, как фибоначчиева).

Значение дроби и основное свойство дроби[править | править код]

Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные.

Если умножить числитель и знаменатель дроби на одинаковую величину:

то значение дроби останется прежним, хотя дроби — разные.
Например:

И обратно, если числитель и знаменатель заданной дроби имеют общий делитель, то обе части можно разделить на него; такая операция называется сокращением дроби. Пример:

 — здесь числитель и знаменатель дроби сократили на общий делитель .

Несократимой называется дробь, числитель и знаменатель которой взаимно просты, то есть не имеют общих делителей, кроме

Для десятичной дроби запись почти всегда однозначна, однако имеются исключения. Пример:

 — две разные дроби соответствуют одному числу.

Действия с дробями[править | править код]

В этом разделе рассматриваются действия над обыкновенными дробями. О действиях над десятичными дробями см. Десятичная дробь.

Приведение к общему знаменателю[править | править код]

Для сравнения, сложения и вычитания дробей их следует преобразовать (привести) к виду с одним и тем же знаменателем. Пусть даны две дроби: и . Порядок действий:

После этого знаменатели обеих дробей совпадают (равны ). Вместо наименьшего общего кратного можно в простых случаях взять в качестве любое другое общее кратное, например, произведение знаменателей. Пример см. ниже в разделе Сравнение.

Сравнение[править | править код]

Чтобы сравнить две обыкновенные дроби, следует привести их к общему знаменателю и сравнить числители получившихся дробей. Дробь с бо́льшим числителем будет больше.

Пример. Сравниваем и . . Приводим дроби к знаменателю .

Следовательно,

Сложение и вычитание[править | править код]

Чтобы сложить две обыкновенные дроби, следует привести их к общему знаменателю. Затем сложить числители, а знаменатель оставить без изменений:

+ = + =

НОК знаменателей (здесь и ) равно .
Приводим дробь к знаменателю , для этого числитель и знаменатель надо умножить на .
Получилось .
Приводим дробь к тому же знаменателю, для этого числитель и знаменатель надо умножить на . Получилось .
Чтобы получить разность дробей, их также надо привести к общему знаменателю, а затем вычесть числители, знаменатель при этом оставить без изменений:

 — =  — =

НОК знаменателей (здесь и ) равно . Приводим дробь к знаменателю , для этого надо числитель и знаменатель умножить на . Получаем .

Умножение и деление[править | править код]

Чтобы умножить две обыкновенные дроби, нужно перемножить их числители и знаменатели:

В частности, чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить тем же:

В общем случае, числитель и знаменатель результирующей дроби могут не быть взаимно простыми, и может потребоваться сокращение дроби, например:

Чтобы поделить одну обыкновенную дробь на другую, нужно умножить первую дробь на дробь, обратную второй:

Например:

Преобразование между разными форматами записи[править | править код]

Чтобы преобразовать обыкновенную дробь в дробь десятичную, следует разделить числитель на знаменатель. Результат может иметь конечное число десятичных знаков, но может быть и бесконечной периодической дробью. Примеры:

 — бесконечно повторяющийся период принято записывать в круглых скобках.

Чтобы преобразовать десятичную дробь в дробь обыкновенную, следует представить её дробную часть в виде натурального числа, делённого на соответствующую степень 10. Затем к результату приписывается целая часть со знаком, формируя смешанную дробь. Пример:

Читайте также:  Каким свойством обязательно обладает кристалл

История и этимология термина[править | править код]

Русский термин дробь, как и его аналоги в других языках, происходит от лат. fractura, который, в свою очередь, является переводом арабского термина с тем же значением: ломать, раздроблять. Фундамент теории обыкновенных дробей заложили греческие и индийские математики. Через арабов термин, в переводе на латинский, перешёл в Европу, он упоминается уже у Фибоначчи (1202 год). Слова числитель и знаменатель ввёл в оборот греческий математик Максим Плануд.

Дроби вычислялись ещё в Древнем Египте. До наших дней сохранились математические источники о египетских дробях: Математический папирус Ринда (ок. 1650 год до н. э.)[3], Египетский математический кожаный свиток (XVII век до н. э.)[4], Московский математический папирус (ок. 1850 год до н.э.), Деревянная табличка из Ахмима (англ.) (ок. 1950 год до н.э.)[5].

В Китае обыкновенные дроби встречаются в труде «Математика в девяти книгах» (X-II в до н. э.), отредактированной во II в до н. э. финансовым чиновником Чжан Цаном . Десятичные дроби впервые встречаются в Китае примерно с III века н. э. при вычислениях на счётной доске (суаньпань). В письменных источниках десятичные дроби ещё некоторое время изображали в традиционном (не позиционном) формате, но постепенно позиционная система вытеснила традиционную[6]. Персидский математик и астроном Джамшид Гияс-ад-дин ал-Каши (1380—1429) в трактате «Ключ арифметики» (1427 г.) объявил себя изобретателем десятичных дробей, хотя они встречались в трудах Ал-Уклидиси, жившего на пять веков раньше[7].

Поначалу европейские математики оперировали только с обыкновенными дробями, а в астрономии — с шестидесятеричными. Современное обозначение обыкновенных дробей происходит из Древней Индии — вначале его позаимствовали арабы, а затем, в XII-XVI веках, — европейцы. Вначале в дробях не использовалась дробная черта: числа записывались таким способом: Использование черты дроби стало постоянным лишь около 300 лет назад. В Европе первым учёным, который использовал и распространял индийскую систему счёта (известную как «арабские цифры»), в том числе способ записи дробей, стал итальянский купец, путешественник, сын городского писаря — Фибоначчи (Леонардо Пизанский)[8]. Полноценная теория обыкновенных дробей и действий с ними сложилась в XVI веке (Тарталья, Клавиус).

В Европе первые десятичные дроби ввёл Иммануил Бонфис около 1350 года, но широкое распространение они получили только после появления сочинения Симона Стевина «Десятая» (1585). Стевин записывал десятичные дроби сложными способами: например, число 42,53 записывалось как или 42 ⓪ 5 ① 3 ②, где в круге или над строкой означал целую часть, 1 — десятые, 2 — сотые, и так далее. Запятую для отделения целой части стали использовать с XVII века[8].

На Руси дроби называли долями. В первых российских учебниках математики — в XVII веке — дроби назывались ломаными числами[8]. Термин дробь, как аналог латинского fractura, используется в «Арифметике» Магницкого (1703) как для обыкновенных, так и для десятичных дробей.

Обобщения[править | править код]

  • Кольцо частных
  • Рациональная функция — дробь, составленная из многочленов.

См. также[править | править код]

  • Дроби в Юникоде
  • Цепная дробь
  • Египетские дроби

Литература[править | править код]

  • Дробь арифметическая // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 2. — С. 389—390.

Примечания[править | править код]

  1. ↑ Математическая энциклопедия, 1982.
  2. ↑ Дробная черта (Fraction bar, Solidus) — Справочник ПараТайп.
  3. ↑ The Rhind Mathematical Papyrus (англ.). British Museum. Дата обращения 13 января 2019.
  4. Clagett, Marshall. Ancient Egyptian Science: A Source Book. — Philadelphia: American Philosophical Society, 1999. — Т. 3: Ancient Egyptian Mathematics. Memoirs of the American Philosophical Society 232. — С. 17—18, 25, 37—38, 255—257.
  5. William K. Simpson. An Additional Fragment from the «Hatnub» Stela // Journal of Near Eastern Studies. — 1961. — Январь (т. 20, № 1). — С. 25—30.
  6. Jean-Claude Martzloff. A History of Chinese Mathematics. Springer. 1997. ISBN 3-540-33782-2.
  7. Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 978-0-691-11485-9.
  8. 1 2 3 Математика: Учеб. для 5 кл. средн. шк. / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. — 4-е изд. — Чебоксары : Чув. кн. изд-во, 1997. — 320 с.: ил. — С. 202—203, 230.

Источник

Основное свойство дроби

Если ad=bc, то две дроби frac{a}{b}и frac{c}{d} считаются равными. К примеру, равными будут дроби frac35и frac{9}{15}, так как 3 cdot 15 = 15 cdot 9, frac{12}{7}и frac{24}{14}, так как 12 cdot 14 = 7 cdot 24.

Читайте также:  Какие полезные свойства эфирного масла

Из определения равенства дробей следует, что равными будут дроби frac{a}{b}и frac{am}{bm}, так как a(bm)=b(am) — наглядный пример применения сочетательного и переместительного свойств умножения натуральных чисел в действии.

Значит frac{a}{b} = frac{am}{bm} — так выглядит основное свойство дроби.

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Сокращение дроби — это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, frac{45}{60}=frac{15}{20}(числитель и знаменатель делится на число 3); полученную дробь снова можно сократить, разделив на 5, то есть frac{15}{20}=frac 34.

Несократимая дробь — это дробь вида frac 34, где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби — сделать дробь несократимой.

Приведение дробей к общему знаменателю

Возьмем в качестве примера две дроби: frac{2}{3}и frac{5}{8} с разными знаменателями 3 и 8. Для того, чтобы привести данные дроби к общему знаменателю и сначала перемножим числитель и знаменатель дроби frac{2}{3}на 8. Получаем следующий результат: frac{2 cdot 8}{3 cdot 8} = frac{16}{24}. Затем умножаем числитель и знаменатель дроби frac{5}{8}на 3. Получаем в итоге: frac{5 cdot 3}{8 cdot 3} = frac{15}{24}. Итак, исходные дроби приведены к общему знаменателю 24.

Арифметические действия над обыкновенными дробями

Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

frac{a}{b}+frac{c}{b}=frac{a+c}{b};

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а):

frac{7}{3}+frac{1}{4}=frac{7 cdot 4}{3}+frac{1 cdot 3}{4}=frac{28}{12}+frac{3}{12}=frac{31}{12}.

Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

frac{a}{b}-frac{c}{b}=frac{a-c}{b};

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а).

Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

frac{a}{b} cdot frac{c}{d}=frac{a cdot c}{b cdot d},

то есть перемножают отдельно числители и знаменатели.

Например:

frac{3}{5} cdot frac{4}{8} = frac{3 cdot 4}{5 cdot 8}=frac{12}{40}.

Деление обыкновенных дробей

Деление дробей производят следующим способом:

frac{a}{b} : frac{c}{d}= frac{ad}{bc},

то есть дробь frac{a}{b} умножается на дробь frac{d}{c}.

Пример: frac{7}{2} : frac{1}{8}=frac{7}{2} cdot frac{8}{1}=frac{7 cdot 8}{2 cdot 1}=frac{56}{2}.

Взаимно обратные числа

Если ab=1, то число b является обратным числом для числа a.

Пример: для числа 9 обратным является frac{1}{9}, так как 9 cdot frac{1}{9}=1, для числа 5 — frac{1}{5}, так как 5 cdot frac{1}{5}=1.

Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10,000, …, 10^n.

Например: frac{6}{10}=0,6;enspace frac{44}{1000}=0,044.

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 5frac{1}{10}=5,1;enspace frac{763}{100}=7frac{63}{100}=7,63.

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10.

Пример: 5 — делитель числа 100, поэтому дробь frac{1}{5}=frac{1 cdot 20}{5 cdot 20}=frac{20}{100}=0,2.

Арифметические действия над десятичными дробями

Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

Сложение десятичных дробей в столбик

Вычитание десятичных дробей

Выполняется аналогично сложению.

Вычитание десятичных дробей в столбик

Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3. Имеем 27 cdot 13=351. Отделяем справа две цифры запятой (у первого и второго числа — одна цифра после запятой; 1+1=2). В итоге получаем 2,7 cdot 1,3=3,51.

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Умножение десятичных дробей в столбик

Для умножения на 10, 100, 1000, надо в десятичной дроби перенести запятую на 1, 2, 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 cdot 10,000 = 14 700.

Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Деление десятичных дробей в столбик

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Деление десятичных дробей в столбик

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12. Первым делом, умножим делимое и делитель дроби на 100, то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112, то есть задача сводится к уже рассмотренному случаю:

Деление десятичных дробей в столбик

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

2,8 : 0,09= frac{28}{10} : frac {9}{100}= frac{28 cdot 100}{10 cdot 9}=frac{280}{9}=31 frac{1}{9}.

Источник