Какие свойства частицы у электрона

Какие свойства частицы у электрона thumbnail

Здравствуйте уважаемые подписчики и гости моего канала! В этой статье я хочу затронуть очень сложный и важный вопрос для всей современной науки и порассуждать: Что же такое электрон и что мы про него знаем?

Интересно? Тогда усаживайтесь поудобнее и давайте начнем.

Что ты такое, электрон?

Абстракционное изображение атома

Электроны. Нам с вами еще со школьных скамей рассказывают, что это элементарная частица (то есть неделимая), и она как угорелая крутится вокруг ядра атома, прям как планеты, вращаются вокруг Солнца. Но так ли это на самом деле?

Ученый мир пока еще придерживается так сказать классики, ведь все самые суперсовременные приборы до сих пор не смогли запечатлеть неуловимый электрон. О первой субатомной частице, обнаруженной в 1890-х годах, зачастую пишут, что открытие совершено в 1897 году учеными Э. Вихертом и Дж. Дж. Томсоном.

Так какие свойства электрона известны на данный момент?

Электрон имеет массу

Вероятностная картина размещения единичного электрона

У электрона есть масса, она настолько мала что, например, в химии ее не учитывают, но вот для физики это важный параметр:

1. Электрон примерно весит 0,000548579909067(14) (9)(2) атомных единиц массы.

2. Масса электрона равна 1/1838 массы самого легчайшего из существующих атомов – атома водорода.

3. Энергия, которая заключена в массе электрона, равна 0,000 511 ГэВ. Это примерно в 200 000 раз больше энергии, чем переносит один фотон зеленого цвета.

У электрона есть электрический заряд

Электрон обладает электрическим зарядом, а из этого следует, что на него оказывает взаимодействие как электрическое, так и магнитное поля. При этом заряд единичного электрона равен:

Размер

На самом деле точный размер электрона до сих пор неизвестен. Он может оказаться точечным безразмерным зарядом или же обладать существенно малым размером. Так произведенные вычисления предлагают использовать для оценки радиуса электрона величину

Но данные размеры так же относительны, ведь хоть электрон и называют частицей, он так же обладает волновыми свойствами. И как звуковая волна от тамтама занимает весь объем помещения, так и электроны в атоме находятся как бы во всем объеме атома.

Это так называемый контекстуальный размер, то есть если вы оторвете электрон от атома и поместите его в замкнутое пространство (измените окружающий контекст), то его размер либо уменьшится, либо же увеличится.

Атом

Но контекстуальный размер не может быть меньше внутреннего размера. Многочисленные лабораторные исследования так и не позволили определить реального размера электрона (есть расчетная величина, написанная выше). А как далеко электрон распространяется в форме волны, целиком и полностью зависит от контекста.

Спин

Среди удивительного квантового мира есть уникальный факт (который был открыт еще в 1920-х годах Гаудсмитом и Уленбеком) – элементарные частицы способны вращаться при этом, не имея даже размера. Вообразить это практически нереально, но это факт.

Электроны, как и многие другие частицы прям как миниатюрные волчки. Если такой волчок поглотит тело большего размера, то это тело начнет медленно вращаться.

Абстрактное изображение вращающегося электрона

Но это не все странности. Как было выяснено каждый из типов частиц имеет одну и ту же скорость вращения! При этом у электрона самая малая (ненулевая) скорость вращения равная.

Магнетизм

Шар, обладающий электрическим зарядом да еще вращающийся, это не что иное, как магнит, а так как у электрона есть заряд и спин, то он тоже ведет себя как миниатюрный магнит. Дайте возьмем самый обычный магнит.

Электрон обладает свойствами обычного постоянного магнита

Он приобретает свои свойства по причине того, что невероятное количество электронов, чьи спины синхронизированы, создают огромный магнит из бесчисленного количества маленьких. Кстати тот факт, что электроны ведут себя как магниты, косвенно указывают тот факт, что электроны вращаются.

А существуют ли вообще электроны или это выдумка?

Пузырьковый след от пролетающего позитрона

Перед вами знаменитая фотография, выполненная еще в далеком 1932 году, на которой запечатлен тончайший пузырьковый след.

Частицу, обладающую зарядом, прогоняют через Камеру Вильсона. В результате прохождения тела частицы образуются мельчайшие пузырьки, которые очень быстро увеличиваются в размерах, тем самым формируется след, который и удалось сфотографировать.

А отклонение частицы от прямой обусловливается воздействием магнитного поля. Запечатленный изгиб на фото указал, что прошедшая частица была позитроном (античастица электрона, обладающая точно таким же зарядом, как и электрон, только со знаком «+»). Другие элементы на фото – артефакты и дефекты пленки.

Сам же электрон, в отличие от молекул и атомов (которые научились фотографировать с помощью специальных микроскопов), так и не удалось запечатлеть до сих пор. Отчасти потому что до сих пор нет более чувствительной аппаратуры, способной разглядеть сверхмалый и неуловимый электрон.

Атом с вращающимися электронами

Исследования элементарных частиц не прекращаются ни на минуту и, возможно, в скором будущем, мы с вами увидим первое реальное изображение неуловимого и, пожалуй, самого важного кирпичика нашей Вселенной.

Понравилась статья, тогда не забудьте подписаться, поставить лайк и сделать репост. Тогда вы точно не пропустите новые выпуски!

Источник

Электроном является элементарная частица, являющаяся одной из главных единиц в структуре вещества. Заряд электрона отрицательный. Самый точные измерения были сделаны в начале двадцатого века Милликеном и Иоффе.

Заряд электрона равен минус 1,602176487 (40)*10-19Кл.

Через эту величину измеряется электрический заряд других мельчайших частиц.

заряд электрона

Общее понятие об электроне

В физике элементарных частиц говорится, что электрон — неделимый и не обладающий структурой. Он задействован в электромагнитных и гравитационных процессах, принадлежит к лептоновой группе, так же как и его античастица — позитрон. Среди других лептонов обладает самым легким весом. Если электроны и позитроны сталкиваются, это приводит к их аннигиляции. Подобная пара может возникнуть из гамма-кванта частиц.

До того как измерили нейтрино, именно электрон считался самой легкой частицей. В квантовой механике его относят к фермионам. Также электрон имеет магнитный момент. Если к нему относят и позитрон, то разделяют позитрон как положительно заряженную частицу, а электрон называют негатроном, как частицу с отрицательным зарядом.

элементарный электрический заряд

Отдельные свойства электронов

Электроны относят к первому поколению лептонов, со свойствами частиц и волн. Каждый из них наделен состоянием кванта, которое определяют в результате измерения энергии, спиновой ориентации и других параметров. Принадлежность к фермионам у него раскрывается через невозможность нахождения в одном состоянии кванта одновременно двух электронов (по принципу Паули).

Его изучают так же, как квазичастицу в периодическом кристаллическом потенциале, у которой эффективная масса способна существенно отличаться от массы в состоянии покоя.

Посредством движения электронов происходит электрический ток, магнетизм и термо ЭДС. Заряд электрона в движении образует магнитное поле. Однако внешнее магнитное поле отклоняет частицу от прямого направления. При ускорении электрон приобретает способность поглощения или излучения энергии в качестве фотона. Из его множества состоят электронные атомические оболочки, число и положение которых определяют химические свойства.

Атомическая масса в основном состоит из ядерных протонов и нейтронов, в то время как масса электронов состовляет порядка 0,06 % от всего атомного веса. Электрическая сила Кулона является одной из главных сил, способных удерживать электрон рядом с ядром. Но когда из атомов создаются молекулы и возникают химические связи, электроны перераспределяются в новом образованном пространстве.

В появлении электронов участвуют нуклоны и адроны. Изотопы с радиоактивными свойствами способны излучать электроны. В условиях лабораторий эти частицы могут изучаться в специальных приборах, а например, телескопы могут детектировать от них излучения в плазменных облаках.

электрический заряд это

Открытие

Электрон открыли немецкие физики в девятнадцатом веке, когда изучали катодные свойства лучей. Затем другие ученые стали более детально изучать его, выводя в ранг отдельной частицы. Изучалось излучение и другие связанные физические явления.

К примеру, группа во главе с Томсоном оценила заряд электрона и массу катодных лучей, отношения которых, как она выяснили, не зависят от материального источника.
А Беккерель выяснил, что минералы излучают радиацию сами по себе, а их бета-лучи способны отклоняться посредством воздействия электрического поля, причем у массы и заряда сохранялось то же отношение, что и у катодных лучей.

элементарный электрический заряд

Атомная теория

Согласно этой теории, атом состоит из ядра и электронов вокруг него, расположенных в виде облака. Они находятся в неких квантованных состояниях энергии, изменение которых сопровождается процессом поглощения или излучения фотонов.

Квантовая механика

В начале двадцатого века была сформулирована гипотеза, согласно которой материальные частицы имеют свойства как собственно частиц, так и волн. Также и свет способен проявляться в виде волны (ее называют волной де Бройля) и частиц (фотонов).

В результате было сформулировано знаменитое уравнение Шредингера, где описывалось распространение электронных волн. Этот подход и назвали квантовой механикой. При помощи него вычисляли электронные состояния энергии в атоме водорода.

Фундаментальные и квантовые свойства электрона

Частица проявляет фундаментальные и квантовые свойства.

К фундаментальным относятся масса (9,109*10-31 килограмм), элементарный электрический заряд (то есть минимальная порция заряда). Согласно тем измерениям, что проведены до настоящего времени, у электрона не обнаруживается никаких элементов, способных выявить его субструктуру. Но некоторые ученые придерживаются мнения, что он является точечной заряженной частицей. Как указано в начале статьи, электронный электрический заряд — это -1,602*10-19Кл.

элементарный электрический заряд

Являясь частицей, электрон одновременно может быть волной. Эксперимент с двумя щелями подтверждает возможность его одновременного прохождения через обе из них. Это вступает в противоречие со свойствами частицы, где каждый раз возможно прохождение только через одну щель.

Считается, что электроны имеют одинаковые физические свойства. Поэтому их перестановка, с точки зрения квантовой механики, не ведет к изменению системного состояния. Волновая функция электронов является антисимметричной. Поэтому ее решения обращаются в нуль тогда, когда одинаковые электроны попадают в одно квантовое состояние (принцип Паули).

Источник

1923 год ознаменовался событием, значимо ускорившим развитие квантовой физики. Французским физиком Л. де Бройлем была предложена гипотеза, предполагающая универсальность корпускулярно-волнового дуализма.  В своей концепции Де Бройль сформулировал утверждение о том, что, помимо фотонов и электроны, а также прочие частицы материи имеют как корпускулярные, так и волновые свойства.

Описание гипотезы де Бройля

Идеи де Бройля содержали мысль о том, что любой микрообъект имеет, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота v и длина волны λ. При этом количественное соотношение корпускулярных и волновых характеристик аналогично тому же для фотона:

E=hv, p=hvc=hλ.

Как уже было сказано выше, в гипотезе французского физика шла речь о всех видах микрочастиц, соответственно и указанное выше соотношение применимо для любых из них, в том числе, и для обладающих массой m. Любая частица, обладающая импульсом, была сопоставлена с волновым процессом с длиной волны λ=hp.

Для частиц, имеющих массу: λ=hp=h1-v2/c2mv.

В нерелятивистском приближении (υ<<c)

λ=hmv.

Основой идей де Бройля стали размышления о симметрии свойств материи, и в то время, увы, гипотеза не получила опытного подтверждения. Однако, она стала мощнейшим катализатором развития новых идей о природе материальных объектов. На протяжении последующих нескольких лет выдающиеся умы XX века (физики В. Гейзенберг, Э. Шредингер, П. Дирак, Н. Бор и др.) создавали теоретические основы новой науки, названной квантовой механикой.

Дифракция электронов

Впервые гипотеза де Бройля была экспериментально подтверждена в 1927 году, когда американские физики К. Девиссон и Л. Джермер выяснили, что пучок электронов, рассеивающийся на кристалле никеля, дает ясную дифракционную картину, похожую на возникающую тогда, когда на кристалле рассеивается коротковолновое рентгеновское излучение. В исследованиях физиков кристалл служил естественной дифракционной решеткой. По тому, какое положение имели дифракционные максимумы, выяснилась длина волны электронного пучка, и она полностью соответствовала той, что вычислялась по формуле де Бройля.

В 1928 году физик из Англии Г. Томсон (являющийся сыном Дж. Томсона, который открыл за 30 лет до этого электрон) вновь подтвердил гипотезу де Бройля. Эксперименты Томсона позволили наблюдать дифракционную картину, которая возникала, когда пучок электронов проходил через тонкую поликристаллическую фольгу из золота.

Рисунок 5.4.1. Упрощенная схема опытов Г. Томсона по дифракции электронов.– накаливаемый катод, A– анод, Ф – фольга из золота.

За фольгой установлена фотопластинка, на которой наблюдались явные концентрические светлые и темные кольца. Радиусы этих колец варьировались в зависимости от скорости электронов (т. е. длины волны) согласно де Бройлю (рис. 5.4.2).

Рисунок 5.4.2. Картина дифракции электронов на поликристаллическом образце при длительной экспозиции (a) и при короткой экспозиции (b).

В случае (b) видны точки попадания отдельных электронов на фотопластинку.

В последующие годы эксперимент Г. Томсона многократно повторяли и результат был неизменен даже в тех случаях, когда поток электронов был столь слабым, что через прибор единовременно проходила только одна частица (например, опыт В. А. Фабриканта в 1948 г.). Так была доказана идея, что волновые свойства характерны как для большой совокупности электронов, так и для каждого электрона в отдельности.

В последующем явления дифракции обнаружились и для нейтронов, протонов, атомных и молекулярных пучков. Доказанное экспериментально наличие волновых свойств различных видов микрочастиц позволило сделать вывод об универсальности этого явления в природе, являющегося общим свойством материи. Если продолжать данное рассуждение, волновыми свойствами должны обладать и макроскопические тела. Но из-за больших показателей массы, присущих макроскопическим телам, их волновые свойства затруднительно доказать при помощи экспериментов.

Пример 1

К примеру, пылинка массой 10–9 г, которая движется со скоростью 0,5 м/с, обладает волной де Бройля с длиной примерно 10–21 м, т. е. меньше размера атома на 11 порядков. Подобная длина волны находится за границами области, которая доступна для наблюдения.

Приведенный пример демонстрирует, что для макроскопических тел доступно лишь проявление корпускулярных свойств.

Приведем еще пример.

Пример 2

U = 100 В, длину волны де Бройля для него мы можем определить по формуле: λ=h2meU

Приведенный пример — нерелятивистский случай, поскольку разница между кинетической энергией электрона eU=100 эВ и энергией покоя mc2≈0,5 МэВ достаточно значима (кинетическая энергия значимо меньше энергии покоя).

В результате расчета получим: λ≈0,1 нм, т. е. полученная длина волны примерно соответствует размерам атомов. Для таких электронов кристалл служит отличной решеткой для дифракции. Как раз подобные малоэнергичные электроны показывают четкую дифракционную картину при проведении экспериментов по дифракции электронов. Вместе с этим электрон с такими характеристиками, испытавший дифракционное рассеяние на кристалле как волна, осуществляет взаимодействие с атомами фотопластинки в качестве частицы и вызывает почернение фотоэмульсии в некоторой точке (рис. 5.4.2).

Резюмируя, еще раз отметим, что гипотеза де Бройля о корпускулярно-волновом дуализме, доказанная экспериментально, глобально поменяла представления о том, какими свойствами обладают микрообъекты.

Определение 1

Все микрообъекты обладают и волновыми, и корпускулярными свойствами, но при этом не являются ни волной, ни частицей в стандартном представлении.

Одновременного проявления различных свойств микрообъектов не происходит: они являются дополнением друг друга, и лишь их совокупность характеризует микрообъект в целом.

Эти заключения были сформулированы датским физиком Н.Бором и получили название принципа дополнительности. Упрощенно возможно говорить о том, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.

Если смотреть на вопрос с позиции волновой теории: существует соответствие максимумов в дифракционной картине электронов и максимальной интенсивности волн де Бройля. Наибольшее количество электронов находится в областях максимумов, зарегистрированных на фотопластинке. Однако схема попадания электронов в различные места на фотопластинке не индивидуальна. В принципе нет возможности заранее предположить, куда попадет очередной электрон после рассеяния; допустима только некоторая вероятность попадания электрона в то или иное место. Следовательно, описать состояние микрообъекта и его поведение возможно только, опираясь на понятие вероятности.

Факт, что необходимо использовать вероятностный подход, описывая микрообъекты, является важной отличительной чертой квантовой теории. Квантовая механика для характеристики состояний микрообъектов включает в себя понятие волновой функции Ψ (пси-функции).

Определение 2

Квадрат модуля волновой функции |Ψ|2 пропорционален вероятности нахождения микрочастицы в единичном объеме пространства.

Определенный вид волновой функции задается внешними условиями, в которых находится микрочастица. Математический инструментарий квантовой механики дает возможность определять волновую функцию частицы, которая находится в заданных силовых полях. Безграничная монохроматическая волна де Бройля является волновой функцией свободной частицы, на которую не действуют никакие силовые поля.

Максимально четко явление дифракции наблюдается тогда, когда размерность препятствия, на котором происходит дифракция волн, соизмерима с длиной волны. Подобное поведение характерно для волн любой физической природы и, в частности, электронных волн. Для волн де Бройля естественная дифракционная решетка — это упорядоченная структура кристалла с пространственным периодом порядка размеров атома (приблизительно 0,1 нм). Нет возможности создать искусственным образом препятствие указанного размера (к примеру, отверстие в непрозрачном экране), однако, чтобы уяснить природу волн де Бройля, возможно проводить, так сказать, мысленные эксперименты.

Для примера разберем дифракцию электронов на одиночной щели шириной D (рис. 5.4.3)

Рисунок 5.4.3. Дифракция электронов на щели. График справа – распределение электронов на фотопластинке.

Из общей массы электронов, проходящих через щель, свыше 85% окажутся в центральном дифракционном максимуме. Угловая полуширина θ1 этого максимума определится из условия

Dsinθ=λ

Указанная формула — часть волновой теории. Если рассуждать, опираясь на корпускулярные свойства, возможно сказать, что, когда электрон проходит через щель, он получает дополнительный импульс в перпендикулярном направлении. Можем пренебречь оставшимися 15% электронов, попадающих на фотопластинку за пределами центрального максимума, и тогда будем считать, что максимальное значение py поперечного импульса равно:

pу=p·sin θ1=hλ·sin θ1

В этой формуле p является модулем полного импульса электрона, равным (по гипотезе де Бройля) hλ. Величина p, когда электрон проходит через щель, неизменна, поскольку неизменной является длина волны λ. Указанные выражения дают возможность записать следующее соотношение:

pу=hD

Для задач квантовой механики это несложное с виду соотношение, служащее следствием волновых свойств микрочастицы, имеет глубочайший смысл. Электроны проходят через щель, что есть эксперимент, где y – координата электрона – определяется с точностью Δy = D.

Определение 3

Величина Δy носит название неопределенности измерения координаты.

Вместе с тем, точность определения y – составляющей импульса электрона в момент прохождения через щель – равна py или даже больше, учитывая побочные максимумы дифракционной картины.

Определение 4

Эта величина носит название неопределенности проекции импульса и обозначается как Δpy.

Определение 5

Показатели Δy и Δpy связаны соотношением: 

∆у·∆p≥h

и оно названо соотношением неопределенностей Гейзенбурга.

Величины Δy и Δpy следует уяснить в том смысле, что микрочастицы не обладают одновременно точным значением координаты и соответствующей проекцией импульса. Соотношение неопределенностей не имеет отношения к несовершенству используемых приборов, чтобы одновременно измерить координаты и импульс микрочастицы. Соотношение Гейзенбурга есть проявление той самой дуальной корпускулярно-волновой природы материи микрообъектов. Соотношение дает возможность дать оценку тому, насколько применимы к микрочастицам постулаты классической механики. Оно также демонстрирует, что к микрообъектам невозможно применить понятие траектории в классическом понимании, поскольку характеристикой движения по траектории в любой момент времени являются определенные значения координат и скорости. В принципе нет возможности указать траекторию, по которой в некотором мысленном эксперименте двигался некий определенный электрон после прохождения щели до фотопластинки.

И все же определенные условия создают ситуацию, когда соотношение неопределенностей не является противоречием классическому описанию движения тел, в частности, микрочастиц.

Пример 3

К примеру, электронный пучок в кинескопе телевизора при вылете из электронной пушки имеет диаметр D около 10–3 см. В телевизоре ускоряющее напряжение U≈15 кВ. 

Нетрудно рассчитать импульс электрона: p=2meU≈6,6·10-23 кг·м/с 

Данный импульс имеет направление вдоль оси трубки. Из соотношения неопределенностей вытекает, что электронам при формировании пучка сообщается неконтролируемый импульс Δp, являющийся перпендикуляром к оси пучка: Δp≈hD≈6,6·10–29 кг·м/с.

Допустим, до экрана кинескопа электроны проходят расстояние L≈0,5 м. В таком случае размытие Δlпятна на экране, заданное волновыми свойствами электрона, составит: 

∆l≈∆ppL≈5·10-5 см

Так как Δl<<D, возможно рассмотреть движение электронов в кинескопе телевизора при помощи основ классической механики.

Так, используя соотношение неопределенностей, есть возможность выяснять, насколько справедливы законы классической физики в отдельных случаях.

Проведем еще мысленный эксперимент: это будет дифракция электронного пучка на двух щелях
(рис. 5.4.4).

Структура эксперимента аналогична структуре оптического интерференционного опыта Юнга.

Рисунок 5.4.4. Дифракция электронов на двух щелях.

Проанализировав данный эксперимент, мы можем отметить некоторые трудности логических умозаключений в квантовой теории. Собственно, то же затруднение имеет место быть при попытке объяснить оптический опыт Юнга на основе концепции фотонов.

Если в ходе нашего эксперимента закрыть одну из щелей, мы будем наблюдать исчезновение интерференционных полос, а на фотопластинке будет зарегистрировано распределение электронов, продифрагировавших на одной щели (рис. 5.4.3), т.е. долетая до фотопластинки, электроны проходят через одну щель. Открыв обе щели, мы вновь наблюдаем интерференционные полосы, и становится закономерным вопрос: так сквозь какую из щелей проходит каждый электрон?

Конечно, довольно затруднительно представить с точки зрения присущей нашему мышлению логике, что единственным ответом на указанный выше вопрос является факт, что электрон проходит через обе щели. Нашему мышлению свойственно представлять поток микрообъектов в виде направленного движения, например, маленьких шариков и соответственно описывать это движение, опираясь на законы классической физики. Однако для всех микрочастиц характерны как корпускулярные, так и волновые свойства. Нам легко представится, как электромагнитная световая волна пройдёт сквозь две щели в оптическом эксперименте Юнга, поскольку волна не имеет локализации в пространстве. Но при рассмотрении концепции фотонов приходится принять, что и каждый фотон не имеет локализации. Мы не имеем возможности указать, через какую щель прошел фотон, как и не имеем возможности отследить точную траекторию полета фотона до фотопластинки с указанием точной точки его попадания. Опыты демонстрируют такую картину, что, даже когда фотоны проходят сквозь интерферометр поштучно, интерференционная картина после прохождения многих независимых фотонов все равно имеет место быть. Таким образом, квантовая физика формулирует вывод: фотон интерферирует сам с собой.

Сказанное выше имеет отношение и к эксперименту по дифракции электронов на двух щелях. Все известные экспериментальные факты в своей совокупности могут быть объяснены, если признать, что волна по де Бройлю каждого конкретного электрона проходит одномоментно сквозь обе щели, и, как результат, имеет место явление интерференции.

Определение 6

Поштучный поток электронов также дает интерференцию при длительной экспозиции, т. е. электрон, как и фотон, интерферирует сам с собой.

В заключение приведем иллюстрации:

Дифракция электронов

Рисунок 5.4.5. Модель волновых свойств частиц.

Дифракция электронов

Рисунок 5.4.6. Модель дифракции электронов.

Источник