Какие свойства атома оказывают влияние на электроотрицательность элемента

Какие свойства атома оказывают влияние на электроотрицательность элемента thumbnail

Эле́ктроотрица́тельность (χ) (относительная электроотрицательность) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары, то есть способность атомов оттягивать к себе электроны других атомов. Самая высокая степень электроотрицательности у галогенов и сильных окислителей (p-элементов, F, O, N, Cl), а низкая — у активных металлов (s-элементов I группы).

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Он использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A—B (A, B — символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A—A и B—B.

Первая и широко известная (самая распространённая) шкала относительных атомных электроотрицательностей Полинга охватывает значения от 0,7 для атомов франция до 4,0 для атомов фтора. Фтор — наиболее электроотрицательный элемент, за ним следует кислород (3,5) и далее азот и хлор (щелочные и щёлочноземельные металлы имеют наименьшие значения электроотрицательности, лежащие в интервале 0,7—1,2, а галогены — наибольшие значения, находящиеся в интервале 4,0—2,5. Электроотрицательность типичных неметаллов находится в середине общего интервала значений и, как правило, близка к 2 или немного больше 2. Электроотрицательность водорода принята равной 2,1. Для большинства переходных металлов значения электроотрицательности лежат в интервале 1,5—2,0. Близки к 2,0 значения электроотрицательностей тяжёлых элементов главных подгрупп. Существует также несколько других шкал электроотрицательности, в основу которых положены разные свойства веществ. Но относительное расположение элементов в них примерно одинаково.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA — соответственно энергия ионизации атома и его сродство к электрону.

В настоящее время для определения электроотрицательностей атомов существует много различных методов, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и во всяком случае внутренне непротиворечивы.
Помимо шкалы Малликена, описанной выше, существует более 20 различных других шкал электроотрицательности (в основу расчёта значений которых положены разные свойства веществ), среди которых шкала Л. Полинга (основана на энергии связи при образовании сложного вещества из простых), шкала Олреда-Рохова (основана на электростатической силе, действующей на внешний электрон) и др.

Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, типа соединения, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, то есть от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности (полярности), силовую постоянную и т. д.

В период бурного развития квантовой химии как средства описания молекулярных образований (середина и вторая половина XX века) плодотворным оказался подход Л. Полинга, который в числе прочих исследований ввёл собственную шкалу электроотрицательностей, в которой из «стандартных» элементов максимальную имеет фтор (), а минимальную — франций (). Степень ионности связи, то есть вклад структуры, при которой более электроотрицательный атом полностью «забирает» себе валентные электроны, в общую резонансную «картину», в этой теории определяется как

где  — разность электроотрицательностей образующих связь атомов.

Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы.[1] Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.[2][3][4]

Детальный поиск взаимосвязи между шкалами электроотрицательностей позволил сформировать новый подход к выбору практической шкалы электроотрицательностей атомов. В основу практической шкалы электроотрицательностей атомов взята концепция Луо-Бенсона, использующая понятие ковалентного радиуса r. По физическому смыслу электроотрицательность атома χЛБ — это величина, пропорциональная энергии притяжения валентного электрона, находящегося на расстоянии r от атомного ядра:
χ ЛБ=(m+n)/r,

Читайте также:  Какие свойства кислот характерны для всех карбоновых кислот

Где m и n — число p- и s- электронов в валентной оболочке атома.

Сами Луо и Бенсон рекомендовали для величины χ ЛБ (электроотрицательности атомов) более точное название «ковалентный потенциал». В процессе разработки практической шкалы электроотрицательностей шкала Луо и Бенсона была дополнена электроотрицательностями d- и f-элементов, для которых в расчётное управление введено число внешних электронов, равное двум. Значения электроотрицательностей атомов в практической шкале χ * и их ковалентных радиусов r (Å) приведены в таблице:

ZЭлементχ*r
1H2,70,371
3Li0,751,337
4Be2,080,96
5B3,660,82
6C5,190,771
7N6,670,75
8O8,110,74
9F9,9150,706
11Na0,651,539
12Mg1,541,30
13Al2,401,248
14Si3,411,173
15P4,551,10
16S5,771,04
17Cl7,040,994
19K0,511,953
20Ca1,151,74
21Sc1,491,34
22Ti1,571,27
23V1,651,21
24Cr1,721,16
25Mn1,711,17
26Fe1,721,16
27Co1,831,09
28Ni1,921,04
29Cu2,300,87
30Zn1,871,07
31Ga2,381,26
32Ge3,241,223
33As4,201,19
34Se5,131,17
35Br6,131,141
37Rb0,482,087
38Sr1,051,91
39Y1,311,52
40Zr1,401,43
41Nb1,431,40
42Mo1,461,37
43Tc1,561,28
44Ru1,651,21
45Rh1,691,18
46Pd1,801,11
47Ag1,791,12
48Cd1,561,28
49In2,001,497
50Sn2,831,412
51Sb3,621,38
52Te4,381,37
53I5,251,333
55Cs0,432,323
56Ba1,011,98
57La1,171,71
59Pr1,201,66
61Pm1,231,63
63Eu1,231,62
65Tb1,281,56
67Ho1,311,53
69Tm1,331,50
70Yb1,341,49
71Lu1,361,47
72Hf1,411,42
73Ta1,441,39
74W1,451,38
75Re1,461,37
76Os1,461,37
77Ir1,461,37
78Pt1,491,34
79Au1,501,33
80Hg1,511,32
81Tl1,911,57
82Pb2,601,55
83Bi3,291,52
84Po4,031,49
85At4,671,50

Приведённая в таблице совокупность значение χ* демонстрирует важную особенность практической шкалы электроотрицательностей: значение электроотрицательности для водорода в этой шкале χ*(H)=2,7 определяет чёткую границу между металлами (М) и неметаллами [Н]: χ*(М) < χ*[Н]. Исключение составляют лишь постпереходные металлы (Sn, Bi, Po), в то время как в других шкалах значения электроотрицательностей, меньшие электроотрицательности водорода, помимо металлов, имеют большинство неметаллов (B, Si, Ge, As, Sb, Te), а в шкале Парра-Пирсона даже углерод, фосфор, сера, селен, иод.[5]

Особое положение водорода в практической шкале даёт основание рассматривать электроотрицательность водорода как «меру» электроотрицательности элементов, которая позволяет осуществить переход к безразмерной практической шкале χ*, определяемой как отношение χ*(X)/ χ*(Н).[5]

Источник

Все известные химические элементы можно разделить на металлы и неметаллы. 

Металлы — элементы, атомы которых способны отдавать электроны.

Неметаллы  — элементы, атомы которых могут принимать электроны.

При взаимодействии металла с неметаллом атом первого теряет электроны, а атом второго их присоединяет.

А что происходит, если взаимодействуют атомы двух неметаллов?

Сравним атомы серы и кислорода:

O8  +8  2e, 6e;    

S16  +16  2e, 8e, 6e.

Радиус атома серы больше, валентные электроны слабее связаны с ядром. При образовании связи произойдёт сдвиг электронов от серы к кислороду.

Сравним атомы углерода и кислорода:

O8  +8  2e, 6e;        

C6  +6  2е, 4е.

Заряд ядра атома кислорода больше, и притягивать к себе электроны он будет сильнее.

Значит, атомы разных неметаллов притягивают к себе электроны неодинаково.

Способность атомов элементов оттягивать к себе общие электронные пары в химических соединениях называется электроотрицательностью (ЭО).

Так как общие электронные пары образуются валентными электронами, то можно сказать, что электроотрицательность — это способность атома притягивать к себе валентные электроны от других атомов.

Обрати внимание!

Чем больше электроотрицательность, тем сильнее у элемента выражены неметаллические свойства.

Шкала относительной электроотрицательности Полинга

Абсолютные значения ЭО — неудобные для работы числа. Поэтому обычно используют относительную электроотрицательность по шкале Полинга. За единицу в ней принята ЭО лития.

По шкале Полинга наиболее электроотрицательным среди элементов, способных образовывать соединения, является фтор, а наименее электроотрицательным — франций. ЭО франция равна (0,7), а ЭО  фтора — (4). ЭО остальных элементов изменяются в пределах от (0,7) до (4).

Читайте также:  Какие раньше были лечебные свойства

Как правило, неметаллы имеют ЭО больше двух. У металлов значение ЭО меньше двух. Некоторые элементы (B,Si,Ge,As,Te) со  значениями электроотрицательности, близкими к (2), способны проявлять промежуточные свойства.

Элементы с высокой и низкой электроотрицательностью считаются активными. С высокой — активные неметаллы, с низкой — активные металлы. У первых ЭО близка к (3)–(4), у вторых — к (1).

Изменение электроотрицательности в Периодической системе

С увеличением порядкового номера элементов ЭО изменяется периодически.

В периоде она растёт слева направо при накоплении электронов на внешнем слое.

В группе она убывает сверху вниз при увеличении числа электронных слоёв и увеличении атомных радиусов.

Наибольшей ЭО в каждом периоде обладают самые маленькие атомы с семью внешними электронами — атомы галогенов (инертные газы соединений не образуют).

Наименьшая ЭО в периоде у самого большого атома с одним внешним электроном — атома щелочного металла.

Обрати внимание!

Значения электроотрицательности элементов позволяют определить:

     — заряды атомов в соединении;

     — сдвиг электронов при образовании химической связи.

Установим, как происходит сдвиг электронов при взаимодействии атомов хлора и серы, cеры и кислорода.

Пример:

хлор и сера расположены в третьем периоде. Электроотрицательность по периоду возрастает слева направо. ЭО хлора больше ЭО серы, значит, электроны будут сдвинуты от серы к хлору. Заряд атома серы будет положительным, а хлора — отрицательным:

 Sδ&plus;→Clδ−.

Проверим вывод по шкале Полинга. Электроотрицательность хлора равна (3), а электроотрицательность серы — (2,5). Хлор более электроотрицательный.

Пример:

кислород и сера расположены в шестой А группе. Электроотрицательность по группе сверху вниз уменьшается. ЭО кислорода больше ЭО серы, значит, электроны будут сдвинуты от серы к кислороду. Атом серы имеет положительный заряд, а кислорода  — отрицательный:

 Sδ&plus;→Oδ−.

По шкале Полинга электроотрицательность кислорода равна (3,5), а электроотрицательность серы — (2,5). Более электроотрицательный — кислород.

При сравнении ЭО элементов часто используют ряд электроотрицательности, расположив элементы в порядке убывания её значения:

F,O,N,Cl,Br,S,C,P,H,Si,Mg,Li,Na.

Источники:

Габриелян О. С. Химия.  8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 71с                                      

Жилин Д. М. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Бином. Лаборатория знаний, 2011. — 245с.

Источник

Одно из основополагающих понятий в химии – электроотрицательность.

Электроотрицательность — это свойство атома притягивать к себе общие электронные пары, образующиеся химическую связь.

Можно говорить также, что электроотрицательность – способность атома притягивать к себе электроны других атомов при образовании химической связи. Существуют количественные характеристики электроотрицательности, но в курсе неорганической химии 8 класса они не изучаются. Нам будет достаточно качественного определения этого понятия.

Фото: fineartamerica.com

В первую очередь надо запомнить следующее:

электроотрицательность растёт при движении по периоду таблицы Менделеева слева направо и падает при движении по группе сверху вниз.

Инертные газы (элементы VIII группы) имеют завершённый внешний электронный слой, поэтому понятие электроотрицательности к ним неприменимо, их мы в расчёт брать не будем. А теперь давайте сразу рассмотрим примеры, чтобы наглядно это увидеть. Взгляните на второй период таблицы Менделеева, он выглядит так:

Так вот при движении от лития к фтору электроотрицательность растёт, то есть минимальная электроотрицательноть будет во втором периоде у лития, максимальная – у фтора. Аналогичная ситуация наблюдается во всех периода: в начале стоят элементы с низкой электроотрицательностью, в конце – с высокой.

Теперь взглянем на первую группу:

При движении сверху вниз электроотрицательность падает, то есть теперь у лития будет максимальная электроотрицательность, а у франция – минимальная. Точно так же происходит и в других группах: чем выше элемент, тем выше электроотрицательность.

Таким образом,

элементы с максимальной электроотрицательностью сосредоточены в правом верхнем углу таблицы, с минимальной – в левом нижнем.

Также можно говорить, что неметаллы имеют высокую электроотрицательность, а металлы – низкую.

Зачем нужна электроотрицательность

Этот вопрос логичен, ведь мы уже столько поговорили об этом понятии, но так и не применили его на практике. Согласно определению,

электроотрицательность – это способность атома притягивать электронную пару.

Атомы с высокой электроотрицательностью будут сильно притягивать электронные пары, атомы с низкой электроотрицательностью будут пары отдавать. Чтобы это понять, рассмотрим ещё несколько примеров.

В хлориде натрия NaCl атом хлора будет притягивать электронную пару, а атом натрия отдавать (посмотрите в таблицу Менделеева и убедитесь, что хлор стоит сильно правее натрия). Кроме того, выше говорилось, что атомы металлов отдают электроны, а атомы неметаллов – притягивают их, именно это мы здесь и наблюдаем: натрий – металл, он имеет низкую электроотрицательность и отдаёт электроны, а атом хлор – неметалл, он имеет высокую электроотрицательность и притягивает электроны.

Ещё один пример – оксид азота (II) NO. Здесь два неметалла, но у кислорода электроотрицательность значительно выше (обратитесь к таблице и посмотрите на положение этих элементов). То есть в этом соединении отдавать электроны будет азот, а притягивать их будет кислород.

Читайте также:  Какими свойствами симметрии обладают пространство и время

Понятие электроотрицательности нельзя игнорировать, с ним непременно нужно разобраться, поскольку оно необходимо для понимания образования химической связи.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Источник

Статьи

Линия УМК В. В. Лунина. Химия (8-9)

Химия

Между атомами в молекуле образуется определенная химическая связь, которую в современном научном мире описывает квантовая механика. Заряженные частицы в атоме взаимодействуют между собой, обеспечивая молекуле определенную устойчивость.

09 августа 2019

В зависимости от расстояния между атомами, полярности и прочности, химическая связь между атомами может быть:

  • ковалентная полярная,
  • ковалентная неполярная,
  • ионная,
  • металлическая.

В 1932 году ученый-химик американского происхождения Лайнус Карл Поллинг ввел термин электроотрицательность. С помощью термохимических данных он определил, что энергия гетероядерной связи практически всегда больше, чем энергия гомоядерной связи.

Электроотрицательность — это способность атома в молекуле смещать к себе общие электронные пары. Она является необходимым показателем для описания молекулярных систем, определения типа связей в молекуле, распределения ионного заряда между взаимодействующими элементами. К факторам, которые влияют на эту величину, относятся: валентное состояние атома, степень окисления, координационное число и другие.

Химия. 8 класс. Учебник

Химия. 8 класс. Учебник

Учебник написан преподавателями химического факультета МГУ им. М. В. Ломоносова. Отличительными особенностями книги являются простота и наглядность изложения материала, высокий научный уровень, большое количество иллюстраций, экспериментов и занимательных опытов, что позволяет использовать её в классах и школах с углублённым изучением естественно-научных предметов.

Купить

Приняв значение электроотрицательности водорода равной 2.1 произвольно и используя известные термодинамические данные, сравнивая электроотрицательность элементов с водородом, Поллинг составил первую шкалу относительных атомных электроотрицательностей.

Необходимо помнить, что электроотрицательность — величина не постоянная, а относительная, и позволяет лишь определить, в сторону какого элемента сдвигается общая электронная пара.

Помимо шкалы Поллинга, что изучают в школьном курсе химии, и которую можно найти на странице 276 учебника «Химия 8 класс» под редакцией В.В.Еремина, в мире существует около двадцати шкал определения электроотрицательности.

Наиболее известные:

  • Шкала Малликена. Она учитывает энергию, необходимую для превращения атома в ион или энергию ионизации, и количество энергии, выделяющееся при соединении электрона с атомом, или сродство к электрону.
  • Шкала Олреда-Рохова. Построена с учетом силы электростатического взаимодействия, которая действует на электрон на наружном энергетическом уровне.

Таблица электроотрицательности Поллинга — справочный материал, и не всегда есть под рукой. Однако существуют общие закономерности электроотрицательности, и, зная расположение элемента в Периодической системе Д.И.Менделеева, можно косвенно оценить, в сторону какого из элементов в молекуле будет сдвигаться общая электронная пара.

Электроотрицательность химических элементов, расположенных правее, больше, чем у элементов, расположенных левее в одном периоде. Электроотрицательность элементов, расположенных выше, больше, чем у элементов, расположенных ниже в одной группе. Исходя из этих данных, самый высокий показатель у элементов, расположенных в правом верхнем углу, и самый низкий у элементов внизу слева.

По этим данным был составлен ряд электроотрицательности, в котором химические элементы расположены в порядке убывания ее величины: F, O, N, Cl, Br, S, C, P, H, Si, Mg, Li, Na.

Если таблица Поллинга под рукой, с помощью несложных арифметических действий можно определить тип связи в молекуле. Для этого нужно найти относительную электроотрицательность атомов, входящих в молекулу по таблице, и из большего значения вычесть меньшее, а по результату оценить связь.

Химия. 9 класс. Учебник

Химия. 9 класс. Учебник

Учебник написан преподавателями химического факультета МГУ им. М. В. Ломоносова. Отличительными особенностями книги являются простота и наглядность изложения материала, высокий научный уровень, большое количество иллюстраций, экспериментов и занимательных опытов, что позволяет использовать её в классах и школах с углублённым изучением естественно-научных предметов.

Купить

Разность значений равна 0,5 или меньше — сила притяжения у атомов практически равна, электронное облако находится примерно посередине расстояния между атомами веществ, а связь является ковалентной неполярной. Если молекула состоит из двух одинаковых атомов, то разность значений электроотрицательностей равна 0. Атомы в молекуле с ковалентной полярной связью прочно соединены.

Разность значений составляет от 0,5 до 1,6 — сила притяжения у одного из атомов значительно больше, и он смещает общую электронную пару к себе, приобретая таким образом частичный отрицательный заряд. Атом, от которого общая электронная пара на более далеком расстоянии, приобретает частичный положительный заряд. Между атомами возникает ковалентная полярная связь. Сдвиг общей электронной пары приводит к определенному дисбалансу и молекула может вступать в определенные химические превращения.

Разность значений равна 2,0 и выше. В этом случае общая пара электронов достанется атому, чья электроотрицательность больше. Заряд у такого атома становится отрицательным, а у другого атома в молекуле за счет потери электрона — положительным. Между атомами возникает ионная связь. Ионная связь нестойкая, и молекулы легко вступают в реакции с другими атомами и полярными молекулами.

Разность значений составляет от 1,6 до 2,0. Самый сложный для определения тип связи, поскольку зависит от входящих в состав молекулы атомов. Если в молекулу входит атом металла, то связь ионная. Если в молекуле атомы металла отсутствуют — связь ковалентная полярная.

#ADVERTISING_INSERT#

Источник