Какие свойства алюминий придает стали
В предыдущей публикации мы рассмотрели влияние некоторых химических элементов на свойства стали, а именно влияние углерода, кремния, марганца, серы, фосфора.
В данной статье мы рассмотрим такой элемент, как алюминий, и то, как его наличие отражается на свойствах стали.
Алюминий (Al) — серебристо-белый активный металл. Температура плавления 657 °С, температура кипения 1800 °С, плотность — 2,6989 г/см3.
Устойчивость к коррозии
При соприкосновении с кислородом «чистый» алюминий становится пассивным и образует на своей поверхности тонкую пленку (оксид алюминия), благодаря которой предотвращается образование коррозии, даже в агрессивной среде. Устойчивость Al к коррозии присутствует и при взаимодействии с паром и водой (пресной). Для эксплуатации в соленой воде в алюминий добавляют магний и кремний.
Он растворяется в едких щелочах, соляной и серной кислотах.
Алюминий обладает высокой теплопроводностью и электропроводностью. Благодаря таким свойствам его применяются для изготовления электрических проводов и кабеля.
Раскисление алюминием
Раскисление — снижение содержания кислорода в металле или связывание его в прочные соединения.
Алюминий является сильным раскислителем. Он широко применяется при производстве спокойной стали, да бы избежать образования пористой структуры слитка.
Раскисление производится на этапе выплавки стали, методом введения в металл алюминиевой проволоки, слитков или гранул.
При высоких температурах он хорошо сплавляется с металлами, образуя тем самым прочные, но легкие сплавы.
Алюминий используют с целью удаления кислорода и азота из стали после продувки, что способствует уменьшению старения.
Он способствует удалению кислорода из стали, что так же увеличивает текучесть и ударную вязкость стали.
Наличие Al влияет на размер зерен (они становятся меньше), и придает повышенную жаростойкость. Благодаря этим свойствам его широко применяют при изготовлении азотированной стали, как добавку в ферритную жароустойчивую сталь. Получение стали с мелким зерном, за счет использования алюминия — обеспечивает допустимые показатели пластичности и вязкости.
Стоит отметить, что Al обладает способностью сильно повышать значение напряженности магнитного поля, которое влияет на характеристики размагничивания ферромагнитного и ферримагнитного веществ, поэтому его применяют в качестве легирующего элемента в магнитотвердых сплавах железа, никеля, кобальта, алюминия.
Негативные свойства
Негативными факторами влияния алюминия на сталь считается:
- снижение показателей текучести стали и вероятность (на машинах непрерывной разливки стали) затягивания сталевыпускного отверстия.
- образование сложных неметаллических включений, при соединении алюминия с кислородом, Al2O3 -типа корунд, который является концентратором напряжений при последующей переработке в метизном производстве.
Т.е. существует вероятность образования оксидов алюминия, которые имеют остроугольную форму и могут быть причиной надрывов (например, при волочении катанки).
Данные факторы могут частично нейтрализоваться добавлением кальциевой проволоки (FeCa).
В заключении
В отличии от углерода, серы, фосфора, алюминий не оказывает такого явного влияния на механические характеристики стали, однако содержание алюминия менее определенного уровня ведет к повышению физических и механических свойств, и в тоже время, если алюминия менее 0,002 % — свойства ухудшаются. При содержании в легированной алюминием стали 0,02-0,7% — подавляется процесс старения стали.
Подведя итоги всего сказанного, отметим, что главные свойства Al:
- хорошее раскисление стали;
- нейтрализация вредного влияния фосфора;
- повышение ударной вязкости стали.
Содержание алюминия менее определенного уровня ведет к повышению физических и механических свойств, и в тоже время, если алюминия менее 0,002 % — свойства ухудшаются.
Условные обозначения химических элементов:
хром ( Cr ) — Х никель ( Ni ) — Н молибден ( Mo ) — М титан ( Ti ) — Т медь ( Cu ) — Д ванадий ( V ) — Ф вольфрам ( W ) — В | азот ( N ) — А алюминий ( Аl ) — Ю бериллий ( Be ) — Л бор ( B ) — Р висмут ( Вi ) — Ви галлий ( Ga ) — Гл | иридий ( Ir ) — И кадмий ( Cd ) — Кд кобальт ( Co ) — К кремний ( Si ) — C магний ( Mg ) — Ш марганец ( Mn ) — Г | свинец ( Pb ) — АС ниобий ( Nb) — Б селен ( Se ) — Е углерод ( C ) — У фосфор ( P ) — П цирконий ( Zr ) — Ц |
ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА
Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.
Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)
Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.
Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).
Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ
Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.
Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.
Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.
Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.
Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.
Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.
Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.
Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.
Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.
Алюминий (Ю) — повышает жаростойкость и окалиностойкость.
Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.
Церий — повышает прочность и особенно пластичность.
Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.
Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.
При производстве сталии современная металлургия использует огромное количество примесей и добавок. Пропорции и количество легирующих элементов, как еще называют добавки, обычно составляют коммерческую тайну металлургической компании.
Углерод — неотъемлемая часть любой стали, так как сталь это сплав углерода с железом. Процентное содержание углерода определяет механические свойства стали. С увеличением содержания углерода в составе стали, твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость и свариваемость ухудшается.
Кремний — незначительное его содержание в составе стали особого влияния на ее свойства не оказывает. При повышении содержания кремния значительно улучшаются упругие свойства, магнитопроницаемость, сопротивление коррозии и стойкость к окислению при высоких температурах.
Марганец — в углеродистой стали содержится в небольшом количестве и особого влияния на ее свойства не оказывает. Однако он образует с железом твердое соединение повышающее твердость и прочность стали, несколько уменьшая ее пластичность. Марганец связывает серу в соединение MnS, препятствуя образованию вредного соединения FeS. Кроме того, марганец раскисляет сталь. Сталь в состав которой входит большое количество марганца приобретает существенную твердость и сопротивление износу.
Сера — является вредной примесью в составе стали, где она находится преимущественно в виде FeS. Это соединение придает стали хрупкость при высоких температурах — красноломкость. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость.
В углеродистой стали допустимое содержание серы — не более 0,07%.
Фосфор — также является вредной примесью в составе стали. Он образует с железом соединение Fe3P. Кристаллы этого соединения очень хрупки, вследствие чего сталь приобретает высокую хрупкость в холодном состоянии — хладноломкость. Отрицательное влияние фосфора наибольшим образом сказывается при высоком содержании углерода.
Легирующие компоненты в составе стали и их влияние на свойства:
Алюминий — сталь, состав которой дополнен этим элементом, приобретает повышенную жаростойкость и окалиностойкость.
Кремний — увеличивает упругость, кислостойкость, окалиностойкость стали.
Марганец — увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок при этом не уменьшает пластичности.
Медь — улучшает коррозионностойкие свойства стали.
Хром — повышает твердость и прочность стали, незначительно уменьшая пластичность, увеличивает коррозионностойкость. Содержание больших количеств хрома в составе стали придает ей нержавеющие свойства.
Никель — также как и хром придает стали коррозионную стойкость, а также увеличивает прочность и пластичность.
Вольфрам — входя в состав стали, образует очень твердые химические соединения — карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует расширению стали при нагреве, способствует устранению хрупкости при отпуске.
Ванадий — повышает твердость и прочность стали, увеличивает плотность стали. Ванадий является хорошим раскислителем.
Кобальт — повышает жаропрочность, магнитные свойства, увеличивает стойкость против ударных нагрузок .
Молибден — увеличивает красностойкость, упругость, предел прочности на растяжение, улучшает антикоррозионные свойства стали и сопротивление окислению при высоких температурах.
Титан — повышает прочность и плотность стали, является хорошим раскислителем, улучшает обрабатываемость и увеличивает коррозионностойкость.
Алюминий
Главную подгруппу III группы периодической системы составляют бор (В),
алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).
Как видно из приведенных данных, все эти
элементы были открыты в XIX столетии.
Открытие металлов главной подгруппы III группы
В | Al | Ga | In | Tl |
1806 г. | 1825 г. | 1875 г. | 1863 г. | 1861 г. |
Г.Люссак, | Г.Х.Эрстед | Л. де | Ф.Рейх, | У.Крукс |
Л. Тенар | (Дания) | (Франция) | И.Рихтер | (Англия) |
(Франция) | (Германия) |
Бор представляет собой неметалл.
Алюминий — переходный металл, а галлий, индий и таллий — полноценные металлы.
Таким образом, с ростом радиусов атомов элементов каждой группы периодической
системы металлические свойства простых веществ усиливаются.
В данной лекции мы подробнее рассмотрим
свойства алюминия.
1. Положение
алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени
окисления.
Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде
периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27. Его соседом слева в таблице является магний –
типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий
должен проявлять свойства некоторого промежуточного характера и его соединения
являются амфотерными.
Al +13 )2)8)3 , p – элемент,
Основное состояние 1s22s22p63s23p1 | |
Возбуждённое состояние 1s22s22p63s13p2 |
Алюминий проявляет в соединениях степень
окисления +3:
Al0 – 3 e- → Al+3
2. Физические свойства
Алюминий в свободном виде — серебристо-белый
металл, обладающий высокой тепло- и электропроводностью. Температура плавления 650 оС. Алюминий имеет невысокую
плотность (2,7 г/см3) — примерно втрое меньше, чем у железа или
меди, и одновременно — это прочный металл.
3. Нахождение в природе
По распространённости в природе занимает
1-е среди металлов и 3-е место среди
элементов, уступая только кислороду и кремнию. Процент содержания алюминия
в земной коре по данным различных исследователей составляет от 7,45 до
8,14 % от массы земной коры.
В
природе алюминий встречается только в соединениях (минералах).
Некоторые
из них:
·
Бокситы —
Al2O3 • H2O (с примесями SiO2, Fe2O3,
CaCO3)
·
Нефелины —
KNa3[AlSiO4]4
·
Алуниты — KAl(SO4)2 • 2Al(OH)3
·
Глинозёмы
(смеси каолинов с песком SiO2, известняком CaCO3,
магнезитом MgCO3)
·
Корунд —
Al2O3
·
Полевой
шпат (ортоклаз) — K2O×Al2O3×6SiO2
·
Каолинит —
Al2O3×2SiO2 × 2H2O
·
Алунит — (Na,K)2SO4×Al2(SO4)3×4Al(OH)3
·
Берилл —
3ВеО • Al2О3 • 6SiO2
Боксит |
|
Al2O3 | Корунд
|
Рубин
| |
Сапфир
|
4.Химические
свойства алюминия и его соединений
Алюминий легко взаимодействует с
кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый
вид).
ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ
Алюминий |
Её толщина 0,00001 мм, но благодаря ней
алюминий не коррозирует. Для изучения
химических свойств алюминия оксидную пленку удаляют. (При помощи
наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления
оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия
со ртутью – амальгамы).
I. Взаимодействие с простыми веществами
Алюминий уже при комнатной температуре
активно реагирует со всеми галогенами, образуя галогениды. При нагревании он
взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и
углеродом (2000 °С), с йодом в присутствии катализатора — воды:
2Аl
+ 3S = Аl2S3 (сульфид алюминия),
2Аl
+ N2 = 2АlN (нитрид
алюминия),
Аl
+ Р = АlР (фосфид алюминия),
4Аl
+ 3С = Аl4С3 (карбид алюминия).
2 Аl +
3 I2 = 2 AlI3
(йодид алюминия) ОПЫТ
Все эти соединения
полностью гидролизуются с образованием гидроксида алюминия и, соответственно,
сероводорода, аммиака, фосфина и метана:
Al2S3 + 6H2O
= 2Al(OH)3 + 3H2S
Al4C3 + 12H2O
= 4Al(OH)3+ 3CH4
В виде стружек или порошка он ярко горит
на воздухе, выделяя большое количество теплоты:
4Аl
+ 3O2 = 2Аl2О3 +
1676 кДж.
ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ
ОПЫТ
II. Взаимодействие со сложными
веществами
Взаимодействие с водой:
2 Al + 6 H2O = 2 Al
(OH)3 + 3 H2
без оксидной пленки
ОПЫТ
Взаимодействие с оксидами металлов:
Алюминий –
хороший восстановитель, так как является одним из активных металлов. Стоит в
ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов.
Такая реакция – алюмотермия – используется для получения чистых редких
металлов, например таких, как вольфрам, ваннадий и др.
3 Fe3O4 + 8
Al = 4 Al2O3 + 9 Fe
+Q
Термитная смесь Fe3O4 и Al
(порошок) –используется ещё и в термитной сварке.
Сr2О3 +
2Аl = 2Сr + Аl2О3
Взаимодействие с кислотами:
С раствором
серной кислоты: 2 Al + 3 H2SO4 = Al2(SO4)3
+ 3 H2
С холодными
концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную
кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен
восстанавливать эти кислоты без выделения водорода:
2Аl + 6Н2SО4(конц)
= Аl2(SО4)3
+ 3SО2 + 6Н2О,
Аl + 6НNO3(конц) = Аl(NO3)3 +
3NO2 + 3Н2О.
Взаимодействие со щелочами.
2 Al + 2 NaOH + 6 H2O = 2 Na[Al(OH)4]
+ 3 H2
ОПЫТ
Na[Аl(ОН)4] – тетрагидроксоалюминат
натрия
По
предложению химика Горбова, в русско-японскую войну эту реакцию использовали
для получения водорода для аэростатов.
С растворами солей:
2Al + 3CuSO4 = Al2(SO4)3 +
3Cu
Если
поверхность алюминия потереть солью ртути, то происходит реакция:
2Al + 3HgCl2
= 2AlCl3
+ 3Hg
Выделившаяся
ртуть растворяет алюминий, образуя амальгаму.
Обнаружение ионов алюминия в растворах: ОПЫТ
5. Применение алюминия и
его соединений
РИСУНОК 1
РИСУНОК 2
Физические и химические свойства
алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия
является авиационная промышленность: самолет на 2/3 состоит из
алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы
нести гораздо меньше пассажиров. Поэтому
алюминий называют крылатым металлом. Из
алюминия изготовляют кабели и провода: при одинаковой электрической проводимости
их масса в 2 раза меньше, чем соответствующих изделий из меди.
Учитывая коррозионную устойчивость
алюминия, из него изготовляют детали
аппаратов и тару для азотной кислоты. Порошок алюминия является основой при
изготовлении серебристой краски для защиты железных изделий от коррозии, а
также для отражения тепловых лучей такой
краской покрывают нефтехранилища, костюмы пожарных.
Оксид алюминия используется для
получения алюминия, а также как огнеупорный материал.
Гидроксид алюминия – основной компонент
всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного
сок.
Соли алюминия сильно гидролизуются. Данное свойство применяют в
процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое
количество гашеной извести для нейтрализации образующейся кислоты. В результате
выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой
взвешенные частицы мути и бактерии.
Таким образом, сульфат алюминия является
коагулянтом.
6. Получение алюминия
1) Современный рентабельный способ
получения алюминия был изобретен американцем Холлом и французом Эру в 1886
году. Он заключается в электролизе раствора оксида алюминия в расплавленном
криолите. Расплавленный криолит Na3AlF6 растворяет Al2O3,
как вода растворяет сахар. Электролиз “раствора” оксида алюминия в
расплавленном криолите происходит так, как если бы криолит был только
растворителем, а оксид алюминия — электролитом.
2Al2O3 эл.ток→ 4Al + 3O2
В
английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается
следующими словами: “23 февраля 1886 года в истории цивилизации начался новый
металлический век — век алюминия. В этот день Чарльз Холл, 22-летний химик,
явился в лабораторию своего первого учителя с дюжиной маленьких шариков
серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять
этот металл дешево и в больших количествах”. Так Холл сделался основоположником
американской алюминиевой промышленности и англосаксонским национальным героем,
как человек, сделавшим из науки великолепный бизнес.
2) 2Al2O3 + 3
C =
4 Al + 3 CO2
ЭТО ИНТЕРЕСНО:
- Металлический
алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед.
Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного
с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы
восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид
алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер.
Усовершенствовал метод, заменив амальгаму калия чистым калием. - В 18-19 веках
алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за
заслуги в развитии химии был награжден ценным подарком – весами, сделанными из
золота и алюминия. - К 1855 году
французский ученый Сен- Клер Девиль
разработал способ получения металлического алюминия в технических масштабах. Но
способ был очень дорогостоящий. Девиль пользовался особым покровительством
Наполеона III, императора Франции. В знак своей преданности и благодарности Девиль изготовил
для сына Наполеона, новорожденного принца, изящно гравированную погремушку –
первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить
своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В
то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только
после изобретения электролитического процесса алюминий по своей стоимости
сравнялся с обычными металлами. - А знаете ли вы, что алюминий, поступая в организм человека, вызывает
расстройство нервной системы. При его
избытке нарушается обмен веществ. А защитными средствами является витамин С,
соединения кальция, цинка. - При сгорании алюминия в кислороде и фторе выделяется
много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета
«Сатурн» сжигает за время полёта 36 тонн алюминиевого порошка. Идея
использования металлов в качестве компонента ракетного топлива впервые высказал
Ф. А. Цандер.
ТРЕНАЖЁРЫ
Тренажёр
№1 — Характеристика алюминия по положению в Периодической системе элементов Д.
И. Менделеева
Тренажёр
№2 — Уравнения реакций алюминия с простыми и сложными веществами
Тренажёр
№3 — Химические свойства алюминия
ЗАДАНИЯ ДЛЯ
ЗАКРЕПЛЕНИЯ
№1.
Для получения алюминия из хлорида алюминия в качестве восстановителя можно
использовать металлический кальций. Составьте уравнение данной химической
реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?
№2. Закончите уравнения химических реакций:
Al + H2SO4 (раствор) ->
Al + CuCl2 ->
Al + HNO3(конц) -t->
Al + NaOH + H2O ->
№3.
Осуществите превращения:
Al -> AlCl3 -> Al -> Al2S3 ->
Al(OH)3 -t->Al2O3 -> Al
№4.
Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора
гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите
процентный состав сплава, если его общая масса была 10 г?