Какие соли содержатся в природной воде

Какие соли содержатся в природной воде thumbnail

Питьевая вода является необходимым элементом жизнеобеспечения населения. От ее качества и количества зависит состояние здоровья людей и уровень санитарно-эпидемиологического благополучия. Ее пригодность для питьевых и хозяйственно-бытовых нужд определяется государственными органами Санэпиднадзора (СанПин 2.1.4.1074-01. Вода питьевая. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества, 2002; СанПин 2.1.4.544-96. Питьевая вода и водоснабжение населенных мест, 1996).

Общее содержание солей в питьевой воде — минерализация — весьма важный фактор нормальной жизнедеятельности человеческого организма. В мировой практике стандартами на питьевую воду лимитируются только верхние уровни общей минерализации (1000-1500 мг/л) и основных солевых компонентов — хлоридов и сульфатов.

С учетом имеющихся данных ( Рахманин Ю.А. и др., 1975; Плитман СИ. и др., 1998 ) нижним пределом минерализации питьевой воды следует считать 300 мг/л — 500 мг/л.

Общая жесткость воды определяется содержанием в воде двухвалентных ионов — кальция, магния, железа, а также трехвалентных ионов алюминия и железа.

На практике железо и марганец оказывают на жесткость столь небольшое влияние, что ими, как правило, пренебрегают. Алюминий (Аl3+) и трехвалентное железо (Fe3+) также влияют на жесткость, но при уровнях рН, встречающихся в природных водах, их растворимость и, соответственно, «вклад» в жесткость ничтожно малы.

В отношении эффектов прямого влияния фактора жесткости воды на состояние здоровья человека, мнения отечественных и зарубежных исследователей существенно расходятся. В настоящее время нет общепризнанных критериев для количественной оценки возможного риска, связанного с жесткостью питьевой воды.

Разберем структурные макроэлементы, определяющие жесткость воды отдельно.

Железо

Железо является одним из наиболее распространенных элементов, содержащихся в природных водах, используемых для центрального водоснабжения. Особенно много соединений железа в подземных водах. ПДК железа в питьевой воде составляет 0,3 мг/л. Железо, являясь, безусловно, необходимым элементом для организма человека, сыграло злую шутку с солями жесткости. При его избытке, превышающем 0,3 — 0,5 мг/л, проявляет серьезные токсические воздействия на организм людей и животных (Лысогорова И.К., 1974; Королев А.А. и др., 1991). У людей, употребляющих воду с содержанием железа в такой концентрации, обнаруживается зуд, сухость, шелушение кожи, кожные высыпания, симптомы — традиционно несправедливо приписываемые избытку кальция в воде.

Магний

Магний активизирует ферменты углеводного обмена, участвует в образовании белков, регулирует хранение и высвобождение энергии АТФ, снижает возбуждение в нервных клетках, расслабляет сердечную мышцу. Суточная потребность 500-700 мг (Schaumann, Bergmann, 1984). Взрослым мужчинам магния требуется несколько больше, чем женщинам, особенно при сильных стрессах. Основные пути выведения из организма почки и кишечник. Содержание магния в питьевой воде нормируется по органолептическим показателям (Назарова О.Б., 1973). Недостаток магния является главным фактором развития заболеваний сердечно-сосудистой системы, гипертонической болезни, уролитиаза, судорог, различных кожных заболеваниях, нарушениях эмоциональной сферы (Ковальский В.В., 1974). Токсичны только очень высокие дозы элемента. Доза 5 мг/кг считается не действующей (Феофанов В.Н. и др., 1983).

Кальций

Кальций является самым загадочным и самым важным макроэлементом, входящим во многие биологические структуры организма. При этом он самый несправедливо критикуемый разного рода «специалистами» элемент. Потребность взрослого человека в кальции 600 — 800 — 1000 мг/сутки. Содержание в крови 9,47 мг/%. Всего в теле человека весом около 70 кг содержится 1700 г кальция. Выделяется кальций через кишечник (74%) и почки (26%) (Левина Э.Н., 1972; Уильямс, 1975).

Содержание кальция в воде нормируется в пределах 200 мг/л (5). Токсическое действие кальция наблюдается при очень высоких концентрациях, которые в природных водах практически не встречаются (1).

Восстановление справедливости о пользе кальция

Существовало огромное недопонимание, касающееся этого минерала, и только совсем недавно истина стала очевидна. Для начала, кальций — это металл. Около 99% кальция в нашем организме сосредоточено в костях и зубах. Оставшийся 1% — в жидкой среде.

Мы нуждаемся в кальции и используем его больше, чем какого-либо другой минерал. В действительности, сейчас известно около 200 различных форм использования кальция в человеческом организме.

Свойства кальция:

Микроэлемент кальций обладает огромным спектром действия.

  • Являясь структурным элементом клеточных мембран, способствует поступлению питательных веществ в клетку
  • Он контролирует ритм сердца, формирование энзимов и гормонов, а также формирование ДНК в хромосомах.
  • Участвует в процессе соединения и связывания клеток, влияет на плотность межклеточной жидкости, что сказывается на функциональной активности клеток.
  • Он используется в процессе свёртывании крови, фильтрации урины, формировании и поддержке костей и зубов.
  • Необходим для сокращения и релаксации (расслабления мышц), в том числе и сердечной мышцы. <1i>Участвует в регуляции деятельности ферментов.
  • Влияет на секрецию инсулина.
  • Обладает антигистаминными свойствами при аллергических состояниях.
  • Играет важную роль в передаче нервных импульсов (недостаточность кальция приводит к повышенной возбудимости), контролирует сокращение и расслабление мышц, отвечает за передачу информации между клетками мозга.
  • Он контролирует всасывание и распространение через клеточные мембраны, а также передачу информации внутри клетки.
  • Способствует оплодотворению тем, что у сперматозоидов спереди в виде стрелки имеется кальциевое образование, которым сперматозоид пробивает оболочку яйцеклетки. При недостатке кальция сперматозоид не может пробить оболочку, в результате чего не происходит оплодотворение, что является одной из причин мужского бесплодия.
  • Способствует омоложению организма, придавая упругость коже, блеск волосам и красоту ногтям.
  • Является строительным материалом для всей системы соединительных тканей организма, которая включает в себя мышцы, фасции, сухожилия, кожу и кости.
  • Повышает иммунитет, сдвигая РН организма в щелочную сторону.
  • Кальций — это основной амортизатор и нейтрализатор кислоты, поддерживающий кислотно-щелочной баланс внутри тела.

Ионы кальция (Са++) — это физиологическая форма этого элемента. Несмотря на то, что ко рассматривается, как строительная поддержка для мягких тканей, она также служит хранилип для ионного кальция. Этот кальций доступен для организма и используется для поддержки нормального уровня кальция в крови в период недостатка его потребления человеком. Протеин, держащий кальций в крови, вероятно, служит в качестве вторичного резервуара, который становится, ступным только после чрезмерной потери или использования ионного кальция из костей. Все источники этого минерала, из пищи или из костей организма, должны быть в ионной форме, прежде чем будут усвоены организмом для выполнения любых вышеперечисленных функций.

Поддержка организмом абсолютного баланса кальция зависит от продуктов питания и эффективности всасывания ионов кальция из пищеварительного тракта. Кальций — один из наиболее трудно перевариваемых и всасываемых элементов. Из-за того, что кальций формирует нерастворимые соединения с множеством так называемых «анионов», присутствующих в пище, эффективное всасывание кальция сопровождается множеством проблем. Ион фосфата — наиболее часто встречаемый анион. В дополнение к этому, всасывание кальция полностью зависит от присутствия витамина D в тонком кишечнике. Витамина D, к сожалению, практически нет в большинстве наших продуктов, таким образом, наш организм зависим от действия солнечных лучей на нашу кожу, чтобы синтезировать витамин D. Всасывание кальция происходит в двенадцатипёрстной кишке при наличии соответствующих ферментов и витамина D3.

Наиболее простой способ усвоения кальция организмом — это водорастворимый кальций, который усваивается сравнительно легко в толстом кишечнике, при наличии минимальной кислотности. Кислотность обеспечивает наличие в толстом кишечнике полезной микрофлоры (бифидо -, лакто-, ацидофильные бактерии).

Очевидно, что большое количество фосфора в еде (высокое потребление красного мяса, карбонатных напитков и др.) неблагоприятно действуют на эффективное всасывание кальция. Кроме того, пища с излишком цинка может служить препятствием для всасывания кальция. Неправильное усвоение жиров из-за их высокого потребления или недостаточной желчной секреции (выделения) также будет помехой всасывания кальция, благодаря увеличению нерастворимого кальция. Как раз такие продукты, как ревень, шпинат, зелень свеклы, какао, соевые бобы, орех кэшью и капуста листовая, содержат высокого уровня окислитель, который ведёт себя как блокатор для всасывания кальция и образования нерастворимых солей. Итак, даже с высоким потреблением продуктов, содержащих кальций, существует множество факторов, которые могут быть помехой всасывания кальция.

Итак, биохимическое поглощение кальция — далеко не лёгкий процесс. Выделение кальция происходит в значительной степени через слизистую тонкого кишечника, и сравнительно меньшее количество (25-35%) его выделяется через мочу в виде фосфата кальция.

Следующая таблица показывает среднее количество кальция, необходимое для различных возрастных групп. Наибольшее количество кальция, до 2000 мг в день, рекомендуется беременным женщинам и кормящим мамам, девочкам в возрасте 11-16 лет, людям под высоким психическим стрессом и людям, страдающим остеопорозом. Людям, страдающим спазмами мышц, судорогами или переломами костей также нужно больше кальция.

Обратите, пожалуйста, внимание, что в таблице приведены показатели уже абсорбированного (усвоенного) кальция, а не кальция потреблённого!

ВозрастУсвоенный кальций, мг
1-3 лет500
4-8 лет800
9-18 лет1300
19-50 лет1000
51 год и более1200

Усвоение кальция нуждается в кислой среде в желудке для соответствующего пищеварения. А люди старше 60, вырабатывают только примерно 25% желудочной кислоты от той, что они вырабатывали в свои 20 лет. В дополнение к этому известен факт, что 40% женщин в климактерическом периоде испытывают недостаток желудочной кислоты для соответствующего усваивания кальция.

Недостаток кальция, который также называется гипокальцемия (hypocalcemia), ответственен примерно за 150 различных заболеваний и состояний, а также других проблем, которые могут быть губительными или опасными для организма. Взгляните на этот неполный список, и вы увидите, что только некоторые заболевания вам незнакомы.

  • Артрит
  • Сильное сердцебиение
  • Гипертония
  • Потеря умственных функций
  • Расстройство желудка
  • Рахит
  • Камни в почках и желчном пузыре
  • Мышечная боль
  • Заболевания дёсен
  • Астма
  • Колит (Воспаление толстой кишки)
  • Сердечные заболевания
  • Отрыжка
  • Подагра
  • Мышечные колики
  • Экзема
  • Повышенный уровень холестерина
  • Бессонница
  • Головные боли
  • Костяные шпоры
  • Грыжа
  • Боль в нижней части спины
  • Аллергии
  • Аритмия
  • Рак
  • Остеопороз

И ещё 125 других заболеваний

Интересен тот факт, что в этот список включено такое заболевание, как камни в почках. Камни в почках — это сосредоточение кальция в почках. Иногда бывает, необходима операция по их удалению — процесс движения таких камешек в почках очень болезнен. Одно время считалось, что камни образуются в почках из-за переизбытка кальция в пище и рекомендовали таким больным ограничивать потребление продуктов с кальцием. Но это предположение оказалось неверным.

Более того, верно абсолютно противоположное мнение! Камни в почках образуются из-за недостатка кальция в пище! Этот процесс протекает следующим образом: по каким-либо причинам организм закисляется и выщелачивает кальций из костей, чтобы нейтрализовать кислоту, как уже было описано выше, и сохранить оптимальный для организма уровень рН. А проблема в том, что кальций из костной ткани не очень биопригоден, и только небольшой процент его действительно используется, чтобы откорректировать уровень рН. После этого, остаток неиспользованного организмом кальция начинает накапливаться в почках, образуя песок и камни (это может вылиться и в проблему костяных шпор).

Научные эксперименты доказывают, что камни формируются не из кальция, усвоенного из пищи. Были проведены эксперименты с использованием радиоактивных меток на кальции в пище. Когда почечные камни и шпоры позже исследовались, в них не было ни единого радиоактивного кальция. Таким образом, было доказано, что 100% почечных камней и костяных шпор строятся из кальция, выщелачиваемого из костей для нейтрализации кислотности жидких сред организма. Некоторые врачи до сих пор советуют своим пациентам ограничивать приём кальций содержащих продуктов. Что ведёт, конечно, к ещё большим проблемам. И в результате — только операция.

Таким образом, резюмируя вышесказанное, можно сделать вывод, что для всех возрастных групп легче всего усваивается водорастворимый кальций (например, гидрокарбонат кальция), поскольку его усвоения в толстом кишечнике, как правило, существуют такие условия (естественная слабокислая среда).

И еще по поводу распространенного заблуждения, используемого во многих рекламных компаниях, проповедующих питье дистиллированной воды.Там проповедуется идея дистилляции воды с последующей минерализацией, аргументируя тем, что для обеспечения потребности в кальции, нужно выпить 20-30 литров воды в сутки, сводя на нет роль водорастворимого кальция.

По мнению большинства специалистов, искусственная минерализация кальцием дистиллированной или обратноосмотической воды никогда не повторит уникальную природную структуру воды с натуральным кальцием. Натуральный водный кальций не удастся создать ни в одной лаборатории, как ни старайся.

Ученые-медики убедились, что одни и те же вещества ведут себя неодинаково при их всасывании из натуральной воды и из искусственно минерализованной. Часто вместо пользы можно получить только вред. Кроме того, есть реальная опасность, что соль, используемая при минерализации, не может даже чисто теоретически быть 100-процентно очищенной, а значит, содержит в себе различные примеси.

Используемая литература:

1. Питьевая вода и здоровье населения: Информационное пособие/Под общ.ред. д.м.н., проф. Е.Н.Беляева. Вып. 1: Влияние химического состава питьевой воды на здоровье человека. — М. Федеральный центр Госсанэпиднадзора Минздрава России, 2002.

2. Бутилированная питьевая вода: Информационный сборник №5. ВНИИТИ 2004, АНО «Стандартсертис», 2004

3. Г.Г.Онищенко. Вода и здоровье. — Журнал «Экология и жизнь» №4, 1999

4. Е.Л.Насонов (Кафедра ревматологии ФППО Московской медицинской академии им. И.М.Се ченова). Кальций и витамин D: роль в профилактике и лечении остеопороза и других заболеваний человека.

5. Ковальский В.В. Геохимическая экология. М.: Наука, 1974.

6. Королев А.А. и др. Оценка токсичности марганца и железа при раздельном поступлении в организм //Гигиена и санитария. 1991, №11.

7. Левина Э.Н. Общая токсикология металлов. Л., 1972.

8. Лысогорова И.К. Санитарно-токсикологическая оценка соединения железа //Гигиена и санитария. 1974. №5.

9. Назарова О.Б. //Здравоохранение Туркменистана. 1973, №5.

10. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. СанПин 2.1.4.1074-01. М., 2002.

11. Питьевая воды и водоснабжение населенных мест. Требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников. СанПин 2.1.4.544-96. М., 1996.

12. Плитман СИ. и др. К вопросу корректировки гигиенических нормативов с учетом уровня жесткости питьевой воды //Гигиена и санитария. 1998. №7.

13. Рахманин Ю.А. с соавт. Экспериментальные и клинико-физиологические материалы к обоснованию нижних пределов минерализации опресненной питьевой воды //Гигиена и санитария. 1975. №7.

14. Уильяме Д. Металлы жизни. М., 1975.

15. Феофанов В.Н., Демиденко Н.М. //Гигиена и санитария. 1983. №;. 16. Schaumann E., Bergmann W.Z. Gesamt. Hyg. 1984. Bd.30. №2.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 января 2019;
проверки требуют 4 правки.

Стандартная морская вода производства OSIL

Солёность — содержание солей в воде. Измеряется в «‰» (промилле) или в ПЕС (практические единицы солёности)[1], PSU (англ. Practical Salinity Units) практической шкалы солёности (англ. Practical Salinity Scale).

Содержание некоторых элементов в морской воде

ЭлементСодержание,
мг/л
Хлор19 500
Натрий10 833
Магний1 311
Сера910
Кальций412
Калий390
Бром65
Углерод20
Стронций13
Бор4,5
Фтор1,0
Кремний0,5
Рубидий0,2
Азот0,1

Солёность в промилле — это количество твёрдых веществ в граммах, растворённое в 1 кг морской воды, при условии, что все галогены заменены эквивалентным количеством хлора, все карбонаты переведены в оксиды, органическое вещество сожжено.

В 1978 году введена и утверждена всеми международными океанографическими организациями шкала практической солёности (Practical Salinity Scale 1978, PSS-78)[2], в которой измерение солёности основано на электропроводности (кондуктометрия), а не на выпаривании воды. В 1970-х годах широкое применение в морских исследованиях получили океанографические CTD-зонды, и с тех пор солёность воды измеряется в основном электрическим методом. Для поверки работы ячеек электропроводности, которые погружаются в воду, используют лабораторные солемеры. В свою очередь, для поверки солемеров используют стандартную морскую воду. Стандартная морская вода, рекомендованная международной организацией IAPSO для поверки солемеров, производится в Великобритании лабораторией Ocean Scientific International Limited (OSIL) из натуральной морской воды. При соблюдении всех стандартов измерения можно получить точность измерения солёности до 0,001 ПЕС.

Шкала практической солёности PSS-78 основана на сравнении электропроводности исследуемой пробы воды с электропроводностью раствора хлорида калия, содержащего 32,4356 грамма KCl в 1 кг раствора. Измерения проводят при температуре растворов 15 °C и давлении 1 атм (стандартные условия по ISO 13443). Солёность рассчитывается из отношения электропроводности пробы и стандартного раствора по эмпирической формуле:

(ПЕС)

где

 — относительная электропроводность (отношение электропроводности измеряемой морской воды к электропроводности 32,4356 ‰ раствора хлорида калия) при стандартных условиях.

Шкала PSS-78 даёт числовые результаты, близкие к измерениям массовых долей, и различия заметны либо когда необходимы измерения с точностью выше 0,01 ПЕС, либо когда солевой состав не соответствует стандартному составу океанской воды.

Средняя солёность Мирового океана — 35 ‰ или 35 ПЕС.[2] Для калибровки приборов в Бискайском заливе добывается так называемая нормальная вода с солёностью, близкой к 35 ‰ или 35 ПЕС.

Показатель преломления воды зависит от солёности, на этом основан рефрактометрический метод её измерения. Преимущества этого метода в оперативности и возможности проводить измерения в небольших (несколько капель) пробах воды.

Солёность по географическим объектам[править | править код]

Солёность океанов[править | править код]

Средняя солёность Мирового океана — 35 ‰. Повышенная солёность соотносится с зонами максимального испарения и наименьшего количества атмосферных осадков. Пониженная солёность (менее 34 ‰) характерна для приарктических и приантарктических вод, где сказывается сильное опресняющее действие талых ледниковых вод. В зимнее время в этих районах солёность несколько повышается за счёт осолонения вод в процессе лёдообразования. От поверхности ко дну океана солёность убывает. Придонные воды от экватора до арктических широт имеют солёность 34,7—34,8 ‰[3].

  • Атлантический океан — 35,4 ‰ Наибольшая солёность поверхностных вод в открытом океане наблюдается в субтропической зоне (до 37,25 ‰), а максимум — в Средиземном море: 39 ‰. В экваториальной зоне, где отмечено максимальное количество осадков, солёность снижается до 34 ‰. Резкое опреснение воды происходит в приустьевых районах (например, в устье Ла-Платы — 18—19 ‰)[3].
  • Индийский океан — 34,8 ‰. Максимальная солёность поверхностных вод наблюдается в Персидском заливе и Красном море, где она достигает 40—41 ‰. Высокая солёность (более 36 ‰) также наблюдается в южном тропическом поясе, особенно в восточных районах, а в северном полушарии также в Аравийском море. В соседнем Бенгальском заливе за счёт опресняющего влияния стока Ганга с Брахмапутрой и Иравади солёность снижается до 30—34 ‰. Сезонное различие солёности значительно только в антарктической и экваториальной зонах. Зимой опреснённые воды из северо-восточной части океана переносятся муссонным течением, образуя язык пониженной солёности вдоль 5° с. ш. Летом этот язык исчезает.
  • Тихий океан — 34,5 ‰. Максимальную солёность имеют тропические зоны (максимально до 35,5—35,6 ‰), где интенсивное испарение сочетается со сравнительно небольшим количеством осадков. К востоку под влиянием холодных течений солёность понижается. Большое количество осадков также понижает солёность, особенно на экваторе и в зонах западной циркуляции умеренных и субполярных широт[3].
  • Северный Ледовитый океан — 32 ‰. В Северном Ледовитом океане выделяются несколько слоёв водных масс. Поверхностный слой имеет низкую температуру (ниже 0 °C) и пониженную солёность. Последняя объясняется распресняющим действием речного стока, талых вод и очень слабым испарением. Ниже выделяется подповерхностный слой, более холодный (до −1,8 °C) и более солёный (до 34,3 ‰), образующийся при перемешивании поверхностных вод с подстилающим промежуточным водным слоем. Промежуточный водный слой — это поступающая из Гренландского моря атлантическая вода с положительной температурой и повышенной солёностью (более 37 ‰), распространяющаяся до глубины 750—800 м. Глубже залегает глубинный водный слой, формирующийся в зимнее время также в Гренландском море, медленно ползущий единым потоком от пролива между Гренландией и Шпицбергеном. Температура глубинных вод — около −0,9 °C, солёность близка к 35 ‰.[3].

Солёность океанических вод изменяется в зависимости от географической широты, от открытой части океана к берегам. В поверхностных водах океанов она понижена в области экватора, в полярных широтах.

Солёность морей[править | править код]

Солёность морской воды зависит от количества выпадающих атмосферных осадков и испарения, а также от течений, притока речных вод, образования льдов и их таяния. При испарении морской воды солёность повышается, при выпадении осадков — уменьшается. Тёплые течения несут обычно более солёную воду, чем холодные. В береговой полосе морские воды опресняются реками. При замерзании морской воды солёность возрастает, при таянии льдов — наоборот, понижается.

Солёность озёр[править | править код]

Солёное (минеральное) озеро — это озеро, солёность (минерализация) которого превышает 1 промилле. Вода таких водоёмов отличается резким вкусом и непригодна для питья без дополнительной обработки.

Минеральные озёра подразделяются на солоноватые (от 1 до 25 ‰), солёные (от 25 до 50 ‰) и соляные (свыше 50 ‰).

По химическому составу минеральные озёра делятся на: карбонатные (содовые), сульфатные (горько-солёные) и хлоридные (солёные).

Примечания[править | править код]

Ссылки[править | править код]

  • Данные о солёности Мирового океана в NODC
  • История определения солёности
  • Шкала практической солёности 1978
  • Калькулятор практической солёности
  • OSIL — производитель стандартной морской воды

Источник