Какие продукты образуются при взаимодействии цинка с разбавленной серной кислотой

Какие продукты образуются при взаимодействии цинка с разбавленной серной кислотой thumbnail

[Deposit Photos]

Общая характеристика элемента

Цинк располагается во второй группе, побочной подгруппе периодической системы Менделеева и является переходным металлом. Порядковый номер элемента — 30, масса — 65,37. Электронная конфигурация внешнего слоя атома — 4s2. Единственная и постоянная степень окисления равна «+2». Для переходных металлов характерно образование комплексных соединений, в которых они выступают в качестве комплексообразователя с разными координационными числами. Это относится и к цинку. Существует 5 устойчивых в природе изотопов с массовыми числами от 64 до 70. При этом изотоп 65Zn является радиоактивным, период его полураспада составляет 244 дня.

[Wikimedia]

Цинк — это серебристо-голубой металл, который на воздухе быстро покрывается защитной оксидной пленкой, скрывающей его блеск. При удалении оксидной пленки цинк проявляет свойства металлов — сияние и характерный яркий блеск. В природе цинк содержится в составе многих минералов и руд. Самые распространенные: клейофан, цинковая обманка (сфалерит), вюрцит, марматит, каламин, смитсонит, виллемит, цинкит, франклинит.

Смитсонит

[Wikimedia]

В составе смешанных руд цинк встречается со своими постоянными спутниками: таллием, германием, индием, галлием, кадмием. В земной коре содержится 0,0076% цинка, а 0,07 мг/л этого металла содержится в морской воде в виде солей. Формула цинка как простого вещества — Zn, химическая связь — металлическая. У цинка гексагональная плотная кристаллическая решетка.

Физические и химические свойства цинка

Температура плавления цинка — 420 °С. При нормальных условиях это хрупкий металл. При нагревании до 100-150 °С ковкость и пластичность цинка повышается, возможно изготовление из металла проволоки и прокатка фольги. Температура кипения цинка — 906 °С. Этот металл — отличный проводник. Начиная от 200 °С, цинк легко растирается в серый порошок и теряет пластичность. У металла хорошая теплопроводность и теплоемкость. Описанные физические параметры позволяют использовать цинк в соединениях с другими элементами. Латунь — наиболее известный сплав цинка.

Духовые инструменты из латуни

[Deposit Photos]

При обычных условиях поверхность цинка мгновенно покрывается оксидом в виде серо-белого тусклого налета. Он образуется из-за того, что кислород воздуха окисляет чистое вещество. Цинк как простое вещество реагирует с халькогенами, галогенами, кислородом, фосфором, щелочами, кислотами, аммонием (его солями), аммиаком. Цинк не взаимодействует с азотом, водородом, бором, углеродом и кремнием. Химически чистый цинк не реагирует с растворами кислот и щелочей. Цинк — металл амфотерный, и при реакциях со щелочами образует комплексные соединения — гидроксоцинкаты. Нажмите здесь, чтобы узнать, какие опыты на изучение свойств цинка можно провести дома.

Реакция серной кислоты с цинком и получение водорода

Взаимодействие разбавленной серной кислоты с цинком — основной лабораторный способ получения водорода. Для этого используется чистый зерненый (гранулированный) цинк либо технический цинк в виде обрезков и стружек.

Если взяты очень чистые цинк и серная кислота, то водород выделяется медленно, особенно в начале реакции. Поэтому к остывшему после разбавления раствору иногда добавляют немного раствора медного купороса. Осевшая на поверхности цинка металлическая медь ускоряет реакцию. Оптимальный способ разбавить кислоту для получения водорода — разбавить водой концентрированную серную кислоту плотностью 1,19 в соотношении 1:1.

Реакция концентрированной серной кислоты с цинком

[Deposit Photos]

В концентрированной серной кислоте окислителем является не катион водорода, а более сильный окислитель — сульфат-ион. Он не проявляет себя как окислитель в разбавленной серной кислоте из-за сильной гидратации, и, как следствие, малоподвижности.

То, как концентрированная серная кислота будет реагировать с цинком, зависит от температуры и концентрации. Уравнения реакций:

Zn + 2H₂­SO₄ = Zn­SO₄ + SO₂ + 2H₂O

3Zn + 4H₂­SO₄ = 3Zn­SO₄ + S + 4H₂O

4Zn + 5H₂­SO₄ = 4Zn­SO₄ + H₂S + 4H₂O

Концентрированная серная кислота является сильным окислителем благодаря степени окисления серы (S⁺⁶). Она взаимодействует даже с малоактивными металлами, то есть с металлами до и после водорода, и, в отличие от разбавленной кислоты, никогда не выделяет водород при этих реакциях. В реакциях концентрированной серной кислоты с металлами всегда образуются три продукта: соль, вода и продукт восстановления серы. Концентрированная серная кислота — это такой сильный окислитель, что окисляет даже некоторые неметаллы (уголь, серу, фосфор).

Источник

Определение

Серная кислота $H_2SO_4$ — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха.

Олеум — раствор серного ангидрида $SO_3$ в концентрированной серной кислоте. Формулы, отражающие состав олеума: $H_2SO_4·SO_3$ и $H_2SO_4·2SO_3$.

Особым свойством концентрированной серной кислоты является ее способность отнимать воду, поэтому ее используют как гигроскопическое средство во многих химических реакциях, особенно при получении органических веществ, для осушки или предотвращения поглощения веществами воды. Для этих целей в лабораториях используют эксикаторы — специальные герметические сосуды:

Какие продукты образуются при взаимодействии цинка с разбавленной серной кислотой Какие продукты образуются при взаимодействии цинка с разбавленной серной кислотой

Кроме того, благодаря этой способности, концентрированная серная кислота обугливает органические вещества (сахар, древесину), вызывает сильные ожоги кожи. На фотографиях представлены «продукты» обугливания — «угольный пирог», получающийся из сахарной пудры действием концентрированной серной кислоты, и обугленная лучина. 

Какие продукты образуются при взаимодействии цинка с разбавленной серной кислотой 

При работе с серной кислотой следует соблюдать особую осторожность, так как даже при попадании на одежду или кожу разбавленной кислоты, по мере испарения воды ее концентрация будет увеличиваться.

Свойства разбавленной серной кислоты

Разбавленная $H_2SO_4$ — вступает в реакции замещения,  за счет окисления катионов $Н^+$:

$H_2SO_4textrm{(разб.)} + Mg = MgSO_4 + H_2uparrow$

$2H^+ + 2bar{e} = H_2^0$ |2      1    окислитель, восстановление

$Mg — 2bar{e} = Mg^{2+}$ |2       1    восстановитель, окисление

$H_2SO_4textrm{(разб.)} + Cu (Ag, Au, Hg) ne$

Поэтому с активными металлами, стоящими до H в ряду напряжений, реагирует как обычная кислота, вытесняя водород. С  благородными металлами (Au, Pt) и металлами, стоящими после Н в ряду напряжений не реагирует. Другие окислительные свойства для разбавленной $H_2SO_4$ нехарактерны. Серная кислота реагирует с основными оксидами и основаниями (в том числе нерастворимыми) и образует два ряда солей: средние — сульфаты ($Na_2SO_4$) и кислые — гидросульфаты ($NaHSO_4$).

Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например:

$H_2SO_4 + BaCl_2 = BaSO_4 downarrow + 2HCl$

Свойства концентрированной серной кислоты

Концентрированные растворы серной кислоты проявляют сильные окислительные свойства, обусловленные наличием в её молекулах атома серы в высшей степени окисления (+6).

1. Концентрированная $H_2SO_4$ взаимодействует с металлами, расположенными в электрохимическом ряду напряжений металлов правее водорода (медь, серебро, ртуть), с образованием сульфатов, воды и продуктов восстановления серы. Глубина восстановления серы зависит от восстановительных свойств металлов:

  • активные металлы (натрий, калий, литий) восстанавливают серную кислоту до сероводорода,

  • металлы, расположенные в ряду напряжений от алюминия до железа — до свободной серы,

  • металлы с меньшей активностью — до сернистого газа. 

Читайте также:  Кремний витамин в каких продуктах есть

2. Концентрированные растворы серной кислоты не реагируют с золотом и платиной вследствие их малой активности.

3.  Без нагревания не происходят реакции с алюминием, хромом, железом вследствие пассивирования этих металлов: на поверхности этих металлов образуется защитная оксидная плёнка. 

Таким образом, продукт восстановления серной кислоты зависит от концентрации кислоты и активности металла:

Металлыактивныесреднеактивныенеактивные
Li, K, Ba, Ca, Na, Mg | Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb |$H_2$, Cu, Ag, Hg, Au
$H_2SO_4textrm{(разб.)}$

соль + водород:

$H_2SO_4textrm{(разб.)} + Zn = ZnSO_4 + H_2uparrow$

не регаируют

$ne$

$H_2SO_4textrm{(конц.)}$соль + вода + $H_2S$:

соль + вода + S:

$4H_2SO_4textrm{(конц.)} + 3Zn = $

$3ZnSO_4 + 4H_2O + S$

или соль + вода + $SO_2$:

$2Al + 6H_2SO_4textrm{(конц.)}  = $

$Al_2(SO_4)_3 + 6H_2O + 3SO_2$

соль + вода + $SO_2$:

$2H_2SO_4textrm{(конц.)} + 2Ag = $

$Ag_2SO_4 + 2H_2O + SO_2$

кроме Au, Pt, Pd (не реагируют)

Запомни! Концентрированная серная кислоты пассивирует металлические алюминий, хром и железо.

Данные металлы могут растворяться в  $H_2SO_4textrm{(конц.)}$ при сильном нагревании, при этом образуются соль металла (III) и продукты восстановления кислоты:

$8Al+15H_2SO_4textrm{(конц.)} stackrel{t^circ}{=} 4Al_2(SO_4)_3+3H_2Suparrow + 12H_2O $

$2Cr + 6H_2SO_4textrm{(конц.)} stackrel{t^circ}{=} Cr_2(SO_4)_3 + 3SO_2 uparrow+ 6H_2O$

$2Fe + 6H_2SO_4textrm{(конц.)} stackrel{t^circ}{=} Fe_2(SO_4)_3 + 3SO_2uparrow + 6H_2O$

Взаимодействие серной кислоты с неметаллами

Взаимодействие серной кислоты с неметаллами происходит с выделением $SO_2$ и окислением неметаллов до высшей степени окисления:

$C + 2H_2SO_4textrm{(конц.,гор.)} = CO_2uparrow+ 2SO_2uparrow+ 2H_2O$

$S + 2H_2SO_4textrm{(конц.)} = 3SO_2 uparrow+ 2H_2O$

$2P + 5H_2SO_4 = 2H_3PO_4 + 5SO_2uparrow + 2H_2O $

$H_2SO_4textrm{(конц.)} + H_2S = SO_2uparrow + Sdownarrow + 2H_2O$

Источник


Предыдущий
вопрос

Следующий
вопрос

Все вопросы /
Химия

eva


20 Сен 2019 в 04:43

Загрузка…

60

Ответы

Написать ответ

Подписаться на новые ответы

Нет ответов

Не можешь разобраться в этой теме?

Обратись за помощью к экспертам

Гарантированные бесплатные доработки

Быстрое выполнение от 2 часов

Проверка работы на плагиат

Похожие вопросы

Химия, серебрение железа К какому типу покрытий относится серебрение железа? Напишите уравнения анодного…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Химия, серебрение железа К какому типу покрытий относится серебрение железа? Напишите уравнения анодного…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Может кто расписать? При упаривании 400г 8 %го раствора карбоната натрия масса раствора уменьшилась на 200…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Может кто расписать? При упаривании 400г 8 %го раствора карбоната натрия масса раствора уменьшилась на 200…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

В результате реакции разложения оксида хлора (VII) В результате реакции разложения оксида хлора (VII), термохимическое…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

В результате реакции разложения оксида хлора (VII) В результате реакции разложения оксида хлора (VII), термохимическое…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Сумма коэффициентов в ионном уравнении Вычислите сумму коэффициентов в ионном уравнении реакции получения…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Сумма коэффициентов в ионном уравнении Вычислите сумму коэффициентов в ионном уравнении реакции получения…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Возможна ли реакция 2С + Н2 = С2Н2 при 270С? Возможна ли реакция 2С + Н2 = С2Н2 при 270С? Энтропии равны: 6 130 201…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Возможна ли реакция 2С + Н2 = С2Н2 при 270С? Возможна ли реакция 2С + Н2 = С2Н2 при 270С? Энтропии равны: 6 130 201…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Нужно Определение бихроматов перманганатометрическим методом?? Химия Как приготовить раствор? Какое нужно…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Нужно Определение бихроматов перманганатометрическим методом?? Химия Как приготовить раствор? Какое нужно…

eva

3 Июл в 19:43 03.07.2020 в 19:43
Химия

Ответить

Вычислите массу образовавшегося осадка, если к 55 г AgNO3 прибавить 26 г NaCl.Я хочу понять.​…

eva

3 Июл в 19:42 03.07.2020 в 19:42
Химия

Ответить

Вычислите массу образовавшегося осадка, если к 55 г AgNO3 прибавить 26 г NaCl.Я хочу понять.​…

eva

3 Июл в 19:42 03.07.2020 в 19:42
Химия

Ответить

Предметы

Математика

Физика

Литература

Геометрия

История

Русский язык

Химия

Все предметы

Интересные статьи из справочника

Тест: Угадай мультфильм по картинке

Топ-5 мультфильмов для всех возрастов + тест


2755

+206

Как проходит собеседование при поступлении в магистратуру

Отучились несколько лет на бакалавра, но хотите еще? В статье расскажем, что нужно сделать для успешного зачисления.


387

+120

Как студенту провести летние каникулы с пользой

Расскажем, как провести это лето не только с удовольствием.


687

+98

Дипломная и магистерская: в чем разница?

Раскрываем различия между дипломом и магистерской диссертацией.


17026

+83


4

Какие вопросы задают на защите диплома?

Как к ним подготовиться и что отвечать.


9963

+82


4

Источник

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s22s22p63s23p63d104s1 вместо предполагаемой формулы 1s22s22p63s23p63d94s2. Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI —   белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

Читайте также:  Какой продукт быстро повышает гемоглобин в крови

vzaimodejstvie-medi-s-kislorodom2

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400оС образуется сульфид меди (I):

2cu-plus-s-ravno-cu2s

При избытке серы и проведении реакции при температуре более 400оС образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

cu-plus-s-ravno-cus-v-cs2

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

Cu + Br2  = CuBr2

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

2cu-plus-i2-ravno-2cui

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

cu-plus-hcl-konc-i-cu-plus-hcl-konc-table2

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением: cu-pljus-2h2so4-ravno-cuso4-plus-so2-plus-2h2o

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO↑ + 4H2O

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

vzaimodejstvie-cu-s-oxidami-azota

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

cu-pljus-so2

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 оС может быть получен оксид меди (I):

cu-pljus-cuo-ravno-cu2o

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

cu-pljus-fe2o3-ravno-2feo-plus-cuo

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Cu + 2AgNO3 = Cu(NO3)2 + 2Ag↓

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Fe2(SO4)3 + Cu = CuSO4 + 2FeSO4

Cu + 2FeCl3 = CuCl2  + 2FeCl2

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

2Cu + H2O + СО2 + О2 = (CuOН)2СO3

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d104s2. Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

2Zn + H2O + O2 + CO2 → Zn2(OH)2CO3

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

zn-plus-o2-2

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

zn-plus-cl2-i-zn-plus-s-i-zn-plus-p

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Zn + H2SO4 (20%) → ZnSO4 + H2↑

Zn + 2HCl  →  ZnCl2 + H2↑

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900oC (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Zn + H2O = ZnO + H2↑

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Zn + 2H2SO4 = ZnSO4 + SO2↑ + 2H2O

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

3Zn + 8HNO3(40%) = 3Zn(NO3)2 + 2NO↑ + 4H2O

4Zn +10HNO3(20%) = 4Zn(NO3)2 + N2O↑ + 5H2O

5Zn + 12HNO3(6%) = 5Zn(NO3)2 + N2↑ + 6H2O

4Zn + 10HNO3(0,5%) = 4Zn(NO3)2 + NH4NO3 + 3H2O

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2↑

Zn + Ba(OH)2 + 2H2O = Ba[Zn(OH)4] + H2↑

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

zn-plus-2naoh-i-zn-plus-baoh2

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

4Zn + NaNO3 + 7NaOH + 6H2O → 4Na2[Zn(OH)4] + NH3↑

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Zn + 4NH3·H2O → [Zn(NH3)4](OH)2 + H2↑ + 2H2O

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Zn + CuCl2 = Cu + ZnCl2

Zn + FeSO4 = Fe + ZnSO4

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 22s 22p 63s 23p63d54s1, т.е. в случае хрома,  также как и в случае атома меди,  наблюдается так называемый «проскок электрона»

Читайте также:  Диметиламиноэтанол в каких продуктах питания

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 oС порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

4Cr + 3O2 =ot=> 2Cr2O3

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 oC соответственно):

2Cr + 3F2 =ot=> 2CrF3

2Cr + 3Cl2 =ot=> 2CrCl3

С бромом же хром реагирует при температуре красного каления (850-900 oC):

2Cr + 3Br2 =ot=> 2CrBr3

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 oС:

2Cr + N2 =ot=> 2CrN

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

Cr + S  =ot=>  CrS

2Cr + 3S  =ot=>  Cr2S3

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает  между раскаленным до красного каления хромом и перегретым водяным паром:

2Cr + 3H2O =ot=>  Cr2O3 + 3H2↑

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

Cr + 6HNO3(конц.) =to=> Cr(NO3)3 + 3NO2↑ + 3H2O

2Cr + 6H2SO4(конц)  =to=> Cr2(SO4)3 + 3SO2↑ + 6H2O

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

10Cr + 36HNO3(разб) = 10Cr(NO3)3 + 3N2↑ + 18H2O

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

Cr + 2HCl = CrCl2 + H2↑

Cr + H2SO4(разб.) = CrSO4 + H2↑

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

4Cr + 12HCl + 3O2 = 4CrCl3 + 6H2O

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s22s22p63s23p63d64s2, то есть железо относится к d-элементам,  поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей,  а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах.  При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду,  выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

3Fe + 2O2 =to=> Fe3O4

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Fe + S =to=> FeS

Либо же при избытке серы дисульфид железа:

Fe + 2S =to=> FeS2

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =to=> 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =to=> 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =to=> 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Fe + I2 =to=> FeI2 – йодид железа (ll)

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

2Fe(OH)3 + 6HI = 2FeI2 + I2 + 6H2O

Fe2O3 + 6HI = 2FeI2 + I2 + 3H2O

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Взаимодействие со сложными веществами

Взаимодействие с кислотами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.)  и HNO3 любой концентрации):

Fe + H2SO4 (разб.) =  FeSO4 + H2↑

Fe + 2HCl =  FeCl2 + H2↑

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной  и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

2Fe + 6H2SO4 = ot=> Fe2(SO4)3 + 3SO2 + 6H2O

Fe + 6HNO3 =ot=> Fe(NO3)3 + 3NO2 + 3H2O

Обратите внимание на то,  что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

4Fe + 6H2O + 3O2 = 4Fe(OH)3

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 оС). т.е.:

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Источник