Какие продукты образуются при полном и неполном сгорании сероводорода

Какие продукты образуются при полном и неполном сгорании сероводорода thumbnail

Сера принадлежит к числу веществ, известных человечеству испокон веков. Ещё древние греки и римляне нашли ей разнообразное применение. Куски самородной серы использовались для совершения обряда изгнания злых духов. Так, по легенде, Одиссей, возвратившись в родной дом после долгих странствий, первым делом велел окурить его серой. Много упоминаний об этом веществе встречается в Библии.

В Средние века сера занимала важное место в арсенале алхимиков. Как они считали, все металлы состоят из ртути и серы: чем меньше серы, тем благороднее металл. Практический интерес к этому веществу в Европе возрос в XIII – XIV вв., после появления пороха и огнестрельного оружия. Главным поставщиком серы была Италия.

Кристаллы природной серыКристаллы природной серы

В наши дни сера используется как сырьё для производства серной кислоты, пороха, при вулканизации каучука, в органическом синтезе, а также для борьбы с вредителями сельского хозяйства. Порошок серы применяют в медицине в качестве наружного дезинфицирующего средства.

Сера образует несколько аллотропных модификаций. Устойчивая при комнатной температуре ромбическая сера представляет собой жёлтый порошок, нерастворимый в воде. При кристаллизации из хлороформа CHCl3 или из сероуглерода CS2 она выделяется в виде прозрачных кристаллов октаэдрической формы. ромбическая сера состоит из циклических молекул S8, имеющих форму короны. При 113 оС она плавится, превращаясь в жёлтую легкоподвижную жидкость. При дальнейшем нагревании расплав загустевает, так как в нем образуются цепочки. А если нагреть серу до 445 оС, она закипает. Выливая кипящую серу  струйкой в холодную воду, можно получить пластическую серу – резиноподобную модификацию, состоящую из полимерных цепочек. При медленном охлаждении расплава образуются игольчатые кристаллы моноклинной серы (tпл = 119 оС). Подобно ромбической сере, эта модификация  состоит из молекул S8. При комнатной температуре пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в порошок ромбической серы.

Нахождение в природе

Минерал пиритМинерал пирит

В природе сера находится как в свободном состоянии, так и в виде соединений. Важнейшие из них следующие: FeS2 – пирит; или железный (серный) колчедан, CuS – медный блеск, Ag2S – серебряный блеск, PbS – свинцовый блеск. Сера часто встречается в виде сульфатов: гипса – CaSO4 ∙2H2O; мирабилита, или глауберовой соли Na2SO4∙10H2O; горькой (английской) соли MgSO4 ∙ 7H2O и др. Сера входит в состав нефти, каменного угля, содержится в растительных и животных организмах (в составе белков).

Получение 

Кристаллизация серы в вулканическом озереКристаллизация серы в вулканическом озере

Серу, содержащуюся в свободном состоянии (в виде включений) в горных породах, выплавляют из них в специальных аппаратах – автоклавах.

В лабораторных условиях свободную серу можно получить, например, при сливании растворов сероводородной и сернистой кислот, при неполном сгорании сероводорода:

H2SO3 + 2H2S = 3S + 3H2O

2H2S + O2 = 2H2O + 2S

Химические свойства серы

Сера – типичный активный неметалл. Она реагирует с простыми и сложными веществами. В химических реакциях сера может быть как окислителем, так и восстановителем. Это зависит от окислительно-восстановительных свойств веществ, с которыми она реагирует. Сера проявляет свойства окислителя при взаимодействии с простыми веществами – восстановителями (металлами, водородом, некоторыми неметаллами имеющими меньшую ЭО). Восстановителем сера является по отношению к более сильным окислителям (кислороду, галогенам и кислотам – окислителям).

Взаимодействие серы с простыми веществами

Взаимодействие серы с цинкомВзаимодействие серы с цинком

Сера реагирует как окислитель:

а) с металлами:

2Na + S = Na2S

Mg + S = MgS

2Al + 3S = Al2S3

б) с углеродом:

C + 2S = CS2

в) с фосфором:

2P + 3S = P2S3

г) с водородом:

H2 + S = H2S

как восстановитель:

а) с кислородом:

S + O2 = SO2

б) с хлором:

S + Cl2 = SCl2

в) с фтором:

S + 3F2 = SF6

Взаимодействие серы со сложными веществами

Реакция серы с хлоратом натрия и хлоридом меди (II)Реакция серы с хлоратом натрия и хлоридом меди (II)

а) в воде сера не растворяется и даже не смачивается водой;

б) как восстановитель сера взаимодействует с кислотами-окислителями (HNO3, H2SO4) при нагревании:

S + 2H2SO4 = 3SO2↑ + 2H2O

S + 2HNO3 = H2SO4 + 2NO↑

S + 6HNO3 = H2SO4 + 6NO2↑ + 2H2O

в) проявляя свойства и окислителя, и восстановителя, сера вступает в реакции диспропорционирования (самоокисления-самовосстановления) с растворами щелочей при нагревании:

3S + 6NaOH = 2Na2S + Na2SO3 + 3H2O

              Сероводород и сероводородная кислота

Сера с водородом образует летучее соединение – сероводород H2S. Сероводород – это бесцветный газ с неприятным запахом тухлых яиц, ядовит. В природе сероводород образуется при гниении белковых веществ, содержится в воде минеральных источников. При комнатной температуре в одном объеме воды растворяется 2,5 объёма сероводорода.

Кислотно – основные свойства

Раствор сероводорода в воде – сероводородная вода – является слабой двухосновной кислотой. Сероводородная вода имеет все общие свойства кислот. Она реагирует с: а) основными оксидами, б) основаниями, в) солями, г) металлами:

а) H2S + CaO = CaS + H2O

б) H2S + NaOH = NaHS + H2O

в) CuSO4 + H2S = CuS↓ + H2SO4

г) Ca + H2S = CaS + H2↑

Качественной реакцией на сероводородную кислоту и ее растворимые соли (т.е. на сульфид-ион S2-) является взаимодействие их с растворимыми солями свинца. При этом выделяется осадок сульфида свинца (II) PbS черного цвета:

Na2S + Pb(NO3)2 = PbS↓ + 2NaNO3

Окислительно – восстановительные свойства

В окислительно – восстановительных реакциях как газообразный сероводород, так и сероводородная кислота проявляют сильные восстановительные свойства, так как атом серы в H2S имеет низшую степень окисления – 2, а поэтому может только окисляться. Он легко окисляется:

Горение сероводородаГорение сероводорода

а) кислородом воздуха:

2H2S + O2 = 2H2O + 2S           (при недостатке О2)

2H2S + 3O2 = 2SO2 + 2H2O     ( в избытке О2)

б) бромной водой Br2:

H2S + Br2 = 2HBr + S↓

Бромная вода, имеющая желто-оранжевый цвет, при пропускании через нее сероводорода обесцвечивается;

Читайте также:  Какие продукты кушать для укрепления суставов

в) раствором перманганата калия KMnO4:

5H2S + 2KMnO4 + 3H2SO4 = K2SO4 + 2MnSO4 + 5S↓ + 8H2O

При пропускании сероводорода через раствор перманганата калия происходит его обесцвечивание.

Сероводородная кислота окисляется не только сильными окислителями, такими как кислород, галогены, перманганат калия, но и более слабыми, например солями железа (III), сернистой кислотой и т.д.:

2FeCl3 + H2S = 2FeCl2 + S↓ + 2HCl

H2SO3 + 2H2S = 3S↓ + 3H2O

Применение

Сероводородная вода издавна применялся в медицине для лечения ревматизма и кожных заболеваний. Сероводород является одним из компонентов минеральных вод.

Скачать:

Скачать бесплатно реферат на тему: «Сера» 
Сера.docx (48 Загрузок)

Скачать рефераты по другим темам можно здесь

Источник

    Пример 1. Рассчитайте тепловой эффект реакции горения сероводорода Н25 (г)+ 202 = Н20 (ж)+502 (г) последующим данным  [c.44]

    Реакция горения сероводорода описывается формулой  [c.38]

    Горение сероводорода протекает согласно уравнению [c.58]

    Первый способ. Тепловой эффект реакции горения сероводорода равен сумме тепловых эффектов реакций разложения сероводорода, горения серы и водорода. Тепловой эффект реакции разложения сероводорода равен тепловому эффекту реакции образования сероводорода, взятому с противоположным знаком (см. табл. 6 приложения)  [c.183]

    Иногда вместо полного уравнения реакции дается только ее схема, указывающая, какие вещества вступают в реакцию и какие получаются в результате реакции. В таких случаях обычно заменяют знак равенства стрелкой —>, например, схема реакции горения сероводорода имеет следующий вид  [c.36]

    Гомогенное горение — это горение горючих газов и паров в среде газового окислителя (в большинстве случаев кислорода воздуха). В промышленных химических печах сжигаются такие газы, как сероводород, водород, СО, углеводороды, хлор и т.д. Большей частью реакции являются цепными. [c.34]

    Из реактора газ поступает во вторую секцию конденсатора-генератора 10, где сера конденсируется и стекает в подземное хранилище 20 через гидравлический затвор 17. Технологический газ проходит сероуловитель 15, в котором механически унесенные капли серы задерживаются слоем насадки из керамических колец. Сера через гидравлический затвор 18 стекает в хранилище 20. Газ направляется в печь дожига 12, где нагревается до 580—600 °С за счет сжигания топливного газа. Воздух для горения топлива и дожига остатков сероводорода до диоксида серы инжектируется топливным газом за счет тяги дымовой трубы 13. [c.112]

    Гомогенные процессы основаны на реакциях между реагентами, находящимися в одной фазе, и не имеют поверхности раздела отдельных частиц системы друг от друга. В промышленных печах гомогенные процессы осуществляются в основном в газовой фазе. К ним относятся окислительные экзотермические реакции горения различных газов, протекающие в пламенах (например, окисление метана, сероводорода, оксида углерода, водорода, синтез хлористого водорода и т. д.). Условно к гомогенным процессам можно отнести окисление паров серы, фосфора, жидких топлив, потому что непосредственно химическая реакция протекает между паровой фазой окисляемого реагента и газовой средой окислителя, которые совместно образуют горючую газовую фазу. На эти реакции могут быть распространены закономерности гомогенных процессов. [c.23]

    Составить уравнение полного и неполного горения сероводорода. Вычислить для первого случая количества продуктов реакции, выраженные в грамм-молекулах и литрах (н. у.) для второго случая — в граммах при условии, что сгорит 3,4 г сероводорода. [c.80]

    При 300 С на выходе из реактора удаляется большая часть адсорбированного сероводорода, а при 340 С за счет кислорода, содержащегося в циркуляционном газе, 0,2—0,5% (об.), начинается медленное окисление присутствующего пирофорного материала в верхней части реактора. Более высокая концентрация кислорода при окислении пирофорных соединений вызовет чрезмерно большое повышение температуры. Для обеспечения плавного подъема температуры на выходе из реактора максимальная температура на выходе из печи не должна превышать 360 °С. Если горение кокса не начинается при указанных условиях, то осторожно повышают концентра -цию кислорода путем подачи воздуха в циркулирующий инертный газ, а температуру на выходе из печи не изменяют. [c.128]

    Одно из обязательных условий, которое следует учитывать при выборе схемы — необходимость обеспечения устойчивого пламенного горения сероводорода в реакционной печи. При содержании сероводорода в кислом газе более 50% используют классическую схему процесса Клауса (рис. 4.36). Если содержание сероводорода в кислых газах менее 50%, гомогенное горение его в реакционной печи при Н2 0J = 2 становится неустойчивым, в связи с чем применяют иную схему процесса (с раздельным потоком). В таком случае в реакционную печь направляется только 1/3 кислых газов, которые [c.164]

    Сероводород — целевой компонент кислого газа. Содержание Нз8 более 50 % по объему обеспечивает устойчивое горение [c.95]

    На термической ступени установок Клауса применяют цилиндрические реакторы, состоящие из топочной камеры и трубчатого теплообменника. В торцевой части топочной камеры расположены горелочные устройства. Основная часть сероводородного газа и воздуха обычно подается по тангенциальным каналам. В зоне смешения горение происходит в закрученном потоке. Проходя решетку из расположенного в шахматном порядке огнеупорного кирпича, продукты сгорания поступают в основной топочный объем также цилиндрической формы, но большего диаметра. Затем продукты сгорания охлаждаются водой, проходя по трубному пространству трубчатого теплообменника, и поступают в конденсатор, откуда полученная в термической ступени сера выводится в хранилище серы. Технологический газ после термической ступени, содержащий непрореагировавший сероводород, сернистый ангидрид, образовавшийся одновременно с серой при пламенном сжигании сероводорода, а также серооксид углерода и сероуглерода (продукты побочных реакций, протекающих в реакторе), вновь подогревается в подогревателе до 220-300 °С и поступает на каталитическую ступень. В каталитическом слое происходит основная реакция [c.100]

    Различают горение заранее перемешанной смеси (сероводород, водород, углеводород и т. д.) и горение при раздельном истечении горючего и окислителя, когда лимитирующей стадией процесса является перемешивание (диффузия) двух потоков (водород и хлор, СО и др.). [c.35]

Читайте также:  Какие продукты можно есть при артрозе коленных суставов

    Полученное нами уравнение для расчета теплового эффекта реакции горения сероводорода есть выражение одного из следствий закона Гесса  [c.44]

    Небольшое количество образца помещают на шпатель и подносят к краю пламени газовой горелки. Отмечают воспламеняемость образца, поведение при медленном нагревании (чернеет ли, плавится ли с разложением или без него, обугливается или сгорает). Затем исследуют цвет пламени при введении в него полимера, запах выделяющихся газов, кислотный или основный характер образующихся паров. Так, полимеры на основе ароматических углеводородов горят желтым коптящим пламенем, при выделении алифатических углеводородов пламя менее коптящее. Чем больше кислорода в продуктах разложения, тем все более голубым становится пламя. Запах определяется выделением определенных газов хлора, сероводорода, аммиака и др. Производные целлюлозы при горении имеют запах горящего дерева, белки — жженого волоса или подгорелого молока, полиамидные волокна (найлон)—свежего сельдерея или горелых растений и т. д. [c.220]

    Эта реакция является экзотермической и обратимой при повышенных температурах. Иногда получается, что в вышеуказанном диапазоне изменения концентрации сероводорода температура горения в реакционной печи становится слишком низкой, чтобы обеспечить протекание термических реакций образования серы, и побочные реакции, особенно с участием углеводородов, резко увеличивают образование побочных продуктов. Поэтому такая схема работает хорошо только при отсутствии углеводородов в кислом газе или при их наличии в незначительных количествах (до 2 %). Иногда (при использовании физических абсорбентов для очистки газа от кислых компонентов) считают допустимым содержание углеводородов в кислом газе до 5 %, хотя это, безусловно, вызывает дополнительные сложности в эксплуатации установок Клауса. [c.102]

    Уголь предварительно измельчается до частиц размером не более 0,1 мм и сушится до остаточного содержания влаги не выше 8% (масс.). Угольная пыль из бункеров подается в горелки потоком части необходимого для процесса кислорода. Остальной кислород насыщается водяным паром, нагревается и вводится непосредственно в камеру. Через трубчатую рубашку в реактор вводится перегретый водяной пар, который создает завесу, предохраняющую стенки реактора от воздействия высоких температур. При температуре газов в зоне горения до 2000°С углерод топлива практически полностью вступает в реакцию за 1 с. Горячий генераторный газ охлаждается в котле-утилизаторе до 300 °С и отмывается водой в скруббере до содержания пыли менее 10 мг/м . Содержащаяся в угле сера Ба 90% превращается в сероводород и на 10%—в сероокись углерода. Шлак выводится в жидком виде и затем гранулируется. [c.96]

    При пожарах шахтные воды, попадая в водный бассейн, загрязняют его токсичными продуктами горения угля фенолами, крезолами, нафтенами, аммиаком, сероводородом, полициклическими ароматическими углеводородами, микроэлементами. [c.198]

    Очищенный от механических примесей, воды, сероводорода природный газ (II) поступает в печь (2), куда воздуходувкой (1) подают воздух (I). Сажа вместе с газами (Ш), образующимися при горении, по трубопроводу (3) направляется в холодильник (4), где охлаждается в результате испарения воды (IV), впрыскиваемой форсунками. Из холодильника (4) сажа, газы и пары воды поступают в электрофильтр (5) для выделения сажи. Затем с помощью шнека (6) и элеватора (7) сажа направляется в сепаратор (8) цеха обработки, где из нее удаляются посторонние включения. Затем сажа отправляется на гранулирование в барабан (9). [c.40]

    Отрицательное значение энтальпии реакции горения сероводорода означает, что данная реакция экзотермическая. [c.44]

    Запись данных опыта. Отметить наблюдаемые явления. Написать уравнения реакций а) получения сероводорода, б) его полного сгорания, в) взаимодействия с водой газа, полученного при горении сероводорода. [c.140]

    Л 2, /7-теплообменники 3-трубчатая печь беспламенного горения 4 —реактор 5, 22 — сепараторы высокого давления б —отпариая атмосферная колонна 7 —вакуумная колонна Я — барометрический конденсатор 9—двухступенчатый паровой эжектор 10, 13, 18, 23, 2 — холодильники /V — абсорбер 72 —десорбер /4—сепаратор для отделения сероводорода 15, 20, 21, 24, 3/ —насосы 16-рн-бойлер /9 —емкост(> для моноэтаноламина (МЭА) 25- газовый циркуляционный компрессор 26, Зв-приемный и выкидной сепараторы циркуляционного газового компрессора 27-сепаратор низкого давления 29 — рамный фильтр- [c.232]

    Наконец, к случайным примесям воздуха относятся такие вещества, как сероводород и аммиак, выделяющиеся при гниении органических остатков диоксид серы ЗОг, получающийся при обжиге сернистых руд или при горении угля, содержащего серу оксиды азота, образующиеся при электрических разрядах в атмосфере, и т. п. Эти примеси обычно встречаются в ничтожных количествах [c.453]

    Для утилизации газообразного сероводорода нужно создавать специальное производство (сернокислотный завод) либо сжигать этот газ. Сжигание сероводорода необходимо для того, чтобы сероводород (газ чрезвычайно ядовитый) превратить в двуокись серы (газ менее ядовитый) кроме того, высокая температура продуктов горения заставляет подниматься газ в воздухе на значительную высоту, чем исключаются опасные скопления газа на поверхности земли. [c.425]

    Диоксид серы образуется при горении сероводорода в условиях достаточного доступа кислорода  [c.162]

    Через некоторое время, необходимое для вытеснения воздуха, выделяющийся из пробирки газ можно поджечь у отверстия оттянутого конца трубки. Наблюдайте горение сероводорода при достаточном доступе воздуха. [c.163]

    Опыт 212. Горение сероводорода [c.117]

    Из схемы реакции вытекает, что на каждые две молекулы восстановителя надо взять три молекулы окислителя. В результате процесса окисления образуется два атома 5+ и шесть атомов 0 2 Уравнение реакции горения сероводорода в окончательной форме примет вид  [c.40]

    Пример 17. Определить жаропроизводительную способность сероводорода, горение которого в воздухе происходит по уравнению  [c.53]

    Содержание H2S в кислом газе определяет стабильность горения в зоне термической реакции. При содержании сероводорода более 45% горение устойчиво, при более низком требуются специальные меры для поддержания стабильности пламени — предварительный подогрев кислого газа и (или) воздуха, бай-пасирование части кислого газа мимо горелок, подача дополнительного количества SO2, получаемого при сжигании серы, и др. [c.186]

Читайте также:  Если есть давление какие продукты употреблять

    Химико-технологическое сжигание исходных материалов в печах осуществляется в двух целевых направлениях. Первое из них — получение новых продуктов на основе реакции горения. В данном случае получаемые в печи продукты горения являются целевыми продуктами технологической линии промышленного производства. К этому направлению относятся сжигание серы, фосфора, фосфорсодержаш,его шлама, СО, углеводорода, сероводорода, водорода и др. Второе целевое направление —это термическое обезвреживание отходов, основанное также на реакции горения. Обезвреживание отходов (находяш,ихся в различных фазовых состояниях) происходит за счет самостоятельного горения или при добавлении горючего материала. Термическое обезвреживание отходов является химико-технологическим приемом превраш,ения их в нейтральные по отношению к природе продукты и должно стать составной частью современной промышленной технологии. [c.36]

    Благодаря большой зкзотермичности реакции окисления N2 до БОз, в печи устанавливается необходимая температура и осуществляется устойчивое горение. Образовавшийся газ смешивается с 2/3 оставшегося кислого газа и перед поступлением в каталитический реактор соотношение ЮJ мe должно равняться двум [34]. Если концентрация сероводорода оказывается менее 30%, пламя становится неустойчивым и при отношении N28= 1,5. В этом случае нёобходимь й сернистый газ можно получить сжиганием жидкой серы. Сера поступает в печь в таком избытке, чтобы на выходе из нее образовался только 50, (весь кислород расходуется). Образовавшийся 50, смешивается с кислым газом в соотношении, обеспечивающем [c.165]

    Чтобы быть уверенными в полном разложении неприятно пахнущих веществ, например меркаптанов, сероводорода, соляной кислоты, камеру сжигания необходимо рассчитывать на достаточно высокую температуру (около 800°С) или оборудовать устройствами для последующего дожигания газообразных выбросов. Один из методов повышения температуры в камере сжигания — подогрев воздуха, падаваемого на горение. В США имеются специальные воздухонагреватели, отапливаемые газом, а в Европе компания Карборундум Компани производит высокотемпературные газовоздушные трубчатые теплообменники. [c.372]

    Продуктами реакции при горении сложного вещества в избытке кислорода являются оксиды элементов, входящих в его состав. Одним из продуктов реакции горения сероводорода будет оксид водорода Н2О, другим — оксид серы (ЗОг с примесью 50з). Известно, что процесс 2502-Н О2 250з протекает с заметной скоростью только при высоких температурах и в присутствии катализаторов. Поэтому мы с полным основанием можем считать, что продуктом горения сероводорода является диоксид серы  [c.40]

    Горючими составляющими богатых (коксового, природного обезводороженного) газов являются водород, метан, оксид углерода, тяжелые углеводороды (в расчетах процессов горения принимают, что последние полностью состоят из этилена — С Н ) и сероводород. [c.133]

    Важную роль сыграли в изучении простых, особенно двухатомнь[Х, радикалов оптические методы. Однако до последнего времени они давали возможность обнаруживать свободные радикалы либо в пламенах (свободный радикал ОН при горении водорода), либо в случаях, когда радикалы сравнительно малоактивны (свободный радикал 80 при медленном горении сероводорода). [c.20]

    Сероводород. Сероводородная кислота. Сульфиды. Получение сероводорода и его горение. Пробирку наполните на ее объема мелкими кусочками сульфида железа (II) и закрепите на штативе. Налейте в пробирку 2—3 мл концентрированной соляной кислоты и быстро закройте пробкой с вмонтированной в нее газоотводной конусообразной трубкой. Выделяющийся сероводород подожгите и поднесите к пламени дно фарфоровой чашки, заполненной наполовину холодной водой. Наблюдайте образование желтого налета элементарной серы на поверхностн чашки. Отставьте чашку и над пламенем горящего сероводорода подержите смоченную водой полоску синей лакмусовой бумаги. Изменяется ли цвет индикаторной бумаги Напишите уравнения реакций полного сгорания сероводорода. Почему [c.127]

    Оригинальный прибор для опытов с сероводородом без тяги предлагает учитель Р. Г. Алимов (рис. 46). Прибор состоит из реакционной пробирки I (размер 150X15 мм), приемника 2 для раствора сероводорода в воде, пробирки 3 с бромной водой и волейбольной камеры, предназначенной для сбора избыточного сероводорода. В верхнюю часть пробирки 1 помещают узкую полоску фильтровальной бумаги, смоченной раствором нитрата свинца. В пробирку наливают 4—5 мл 20-процентного раствора серной кислоты и опускают 2—3 г сульфида железа. Реакция идет интенсивно без нагревания. Под действием сероводорода фильтровальная бумага быстро чернеет, а через 2—3 мин обесцвечивается бромная вода в пробирке 3. Открыв кран у трубки с оттянутым концом, можно демонстрировать горение сероводорода в воздухе. Через кран приемника 2 надо отбирать сероводородную воду. Отбор следует проводить в процессе газовыделения, во избежание перели- [c.88]

    Диоксид серы (сернистый газ) получается при горении серы, при обжиге сульфидов, при восстановлении серной кислоты. Это — бесцветный газ ( кип = —37°С), с резким запахом, сопровождающим горение серы, менее токсичен, чем сероводород, хорощо растворим в воде (40 об. в 1 об. Н2О). Водный раствор ЗОг назы-вaeteя сернистой кислотой, которая не существует в свободном виде. В растворе молекулы ЗО2 занимают полости между молекулами воды, увеличивая поляризацию связей О—Н, в результате чего раствор приобретает кислый характер  [c.244]

Химический тренажер. Ч.1 (1986) — [

c.12

,

c.47

]

Лекционные опыты по общей химии (1950) — [

c.0

]

Лекционные опыты и демонстрации по общей и неорганической химии (1976) — [

c.143

]

Технология серной кислоты Издание 2 (1983) — [

c.61

]

Справочник сернокислотчика Издание 2 1971 (1971) — [

c.349

,

c.351

,

c.409

,

c.482

]

Производство серной кислоты (1956) — [

c.60

]

Технология серной кислоты (1983) — [

c.61

]

Лабораторные работы по неорганической химии (1948) — [

c.117

]

Источник