Какие продукты образуются при гидролизе этилмагнийиодид

Какие продукты образуются при гидролизе этилмагнийиодид thumbnail

    Напишите реакции этилмагнийиодида со следующими соединениями а) вода б) метанол в) метилацетилен г) уксусная кислота. Объясните, почему во всех случаях образуется одно и то же газообразное вещество (какое ). [c.49]

    Напишите реакции, приводящие к получению следующих соединений а) диэтилртуть б) этилмагнийиодид в) метилцинк-хлорид г) н-бутиллитий. [c.48]

    Этилмагнийбромид или этилмагнийиодид в диэтиловом эфире или тетрагидрофуране при концентрациях менее 0,1 моль/л находится в мономерном состоянии, этилмагнийхлорид в эфире димерен, в тетрагидрофуране мономерен [257, 258]. Сольватация уменьшается при понижении основности эфира [259]. При добавлении диоксана к эфирным растворам магнийорганических соединений осаждается имеющийся в небольших количествах MgXг, тем самым сдвигается равновесие (6.75), так что в конце концов в растворе остается чистый сольватированный R2Mg [260]. Предпочтитель- [c.372]

    Гарриес получил изопрен из ацетона действием этилмагнийиодида ацетон был превращен в диметилэтилкарбинол, который после дегидратации дал триметилэтилен этот углеводород, присоединяя бром, дает р-метил-р, 7-дибромбутан, который при перегонке с натронной известью переходит в изопрен  [c.371]

    Аналогично получены 1) выходы с этилмагнийиодидом — до 25% (ацетали) 2) из магнийизоамилбромида — ацеталь изопро-пилуксусного альдегида т. кип. 180—1 82° (80% выход) 3) из фенилмагнийбромида — ацеталь бензальдегида т. кип. 220—222° выход 45% 4) из бензилмагнийхлорида — ацеталь фенилуксус-ного альдегида т. кип. 245— 246° выход 62% 5) из пара-бром- [c.120]

    При взаимодействии пропионитрила Hз H2 N с этилмагнийиодидом этан можно обнаружить прежде, чем к реакционной смеси будет добавлена вода. Если вместо воды взять ВзО, одним из продуктов будет Hз HD N. а) Чем это объясняется б) Поскольку пропан не реагирует с этилмагнийиодидом, какие заключения можно сделать относительно группы N в) Докажите ваши выводы. [c.12]

    Этилмагнийиодид, имеющий более объемистый алкильный остаток, реагирует хотя и с аналогичным результатом, ио менее энергично, чем метилмагнийиодид [396]. Этим, видимо, объясняется утверждение Виланда и Земпера [89]. будто этилмагнийиодид не реагирует с 4-(п-метоксифеиил)- [c.254]

    Концепция нерпендикулярной атаки с менее затрудненной стороны согласуется с пространственной направленностью 1,4- и 1,6-присоединений реактива Гриньяра. Так, обработка соединения (169) этилмагнийиодидом приводит к соединению (170) с 1 ис-сочленением колец С и В как основному продукту [232]. В этом случае подход с Р-стороны, который должен был бы привести к соответствующему соединению с транс-сочленением колец С и В, вызвал бы сильное 1,3-диаксиальное взаимодействие при-соединяющейся этильной группы с р-атомами водорода при С-8, С-11 и С-15. [c.372]

    Известно множество способов получения диалкилмагниевых производных, но лучшим является добавление диоксана к эфирному раствору реагента Гриньяра. При этом осаждаются галогениды магния и алкилмагнийгалогениды, а диалкилмагний остается в растворе. При немедленном фильтровании реакционной смеси выход колеблется от 7% в случае этилмагнийиодида до 84% в случае бутилмагнийхлорида [6]. Если осаждение проводить спустя несколько часов, то выход увеличивается благодаря тому, что равновесие сдвигается [7]  [c.96]

    Для анализа металлоорганических соединений элементов I—IV групп (литий-, натрий-, калий-, магний-, кальций- и алюминийорганических соединений) применяют реакцию гидролиза с целью превращения этих веществ в стабильные летучие соединения, которые затем анализируют газохроматографическим методом. Так, виниллитий определяют по продукту его гидролиза— этилену [117]. Использовали реакцию гидролиза для анализа калий-, литий- и натрийорганических соединений [118—122]. При анализе комплексов иодистых фенил- и м-толилкальшя с диоксаном и фенилкальция в растворе тетрагидрофурана методом газо-жидкостной хроматографии определяют продукты их гидролиза С еН в и СбНаСНз [123]. Этилмагнийиодид подвергают гидролизу фосфорной кислотой в реакторе, а затем газообразные продукты реакции вводят в хроматографическую колонку [124]. [c.146]

    Для получения очень чистого этана наиболее пригоден процесс гидролиза этилмагнийиодида. Это маг-нийорганическое соединение синтезируют по методу Гриньяра из свежеперегнанного этилиодида. При взаимодействии с водой образуется этан, который последовательно промывают концентрированной серной кислотой и 20%-ным раствором едкого кали, после чего собирают в ловушке, охлаждаемой жидкими кислородом или азотом. Примеси из этана удаляют многократным повторением цикла испарение — конденсация. Для разложения соединения Гриньяра вместо воды можно применять хлорид аммония [142] [c.207]

    Напишите уравнения реакций этилмагнийиодида со следующими веществами а) вода, б) бромистый этил, в) пропиловый спирт, г) ацетилен. [c.100]

    Разработан способ получения оптически активных сульфоксидов, дающий лучшие результаты, чем описанные выше. Например, при взаимодействии этилмагнийиодида с оптически активным сложным эфиром (—)-ментола и п-толуолсульфиновой кислоты ([а]д — 201°) получается этил-п-толилсульфоксид, имеющий очень высокую оптическую активность ([а] , + 186°) [25]  [c.232]

    Метилэтилфенилкарбинол получают по методу Гриньяра из ацетофенона действием этилмагнийиодида или же из метилэтилкетона и фенилмагнийбромида . [c.662]

    Реакция декаборана с метил-, а также с этилмагнийиодидом протекает в данном случае в двух направлениях, из которых главным является образование, в зависимости от условий, BioHxsMgJ либо BioHi2(MgJ)a, и лишь с незначительным выходом образуются 6-метил-, либо этилдекаборан [162а]  [c.56]

    Напишите, какие структуры могут образоваться при реакции следующих соединений с этилмагнийиодидом (после гидролиза промежуточно образующихся магниевых комплексов). [c.428]

    Исследование катализатора. Молекулярный вес катализатора определяли по Расту. Навеска камфары 0,05 г, катализатора 0,0105 г. Депрессия температуры плавления камфары составила 19°. Подвижный водород выделенной органической части катализатора определяли количественно по методу Церевитинова с этилмагнийиодидом. 0,01 моля органической части катализатора (в расчете на первичный спирт, соответствующий димеру окиси пропилена) выделила 0,01 моля этана. Хлор определяли качественно пробой Бейльштейна и при помощи ИК-спектров. Спектры поглощения в инфракрасной области снимались на спектрофотометре ИКС-14 с призмой Na l в интервале частот 1800— 640 см . [c.245]

Газовая хроматография — Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 2 (1969) — [

c.0

]

Химия тииранов (1978) — [

c.24

]

Источник

Строение дисахаридов

Определение

Дисахариды – это сахароподобные сложные углеводы, молеку­лы которых при гидролизе распадаются на две молекулы моносахаридов. Молекулярная формула дисахаридов $C_{12}H_{22}O_{11}$.

Дисахариды содержатся в продуктах природного происхождения: 

Какие продукты образуются при гидролизе этилмагнийиодид

  • в виде сахарозы (свекловичный сахар) в большом количестве, до 28%, – в сахарной свёкле и сахарном тростнике;

  • в форме лактозы (молочный сахар) – в молоке;

  • в виде трегалозы (грибной сахар) – в грибах,  в дрожжах, высших растениях;

  • в виде мальтозы (солодовый сахар) образуется при частичном гидролизе крахмала и др.

Какие продукты образуются при гидролизе этилмагнийиодидКакие продукты образуются при гидролизе этилмагнийиодидКакие продукты образуются при гидролизе этилмагнийиодид

По своему строению дисахариды могут быть отнесены к гликозидам — соединениям, молекулы которых состоят из двух частей: углеводного остатка и другого органического  фрагмента (агликона), соединенных через гетероатом (соответственно различают О-, N-, S-гликозиды). 

Таким образом, к особенностям строения дисахаридов нужно отнеси:

  • тип гликозидной связи, соединяющей остатки моносахаридов ($alpha$- или $beta$-),

  • наличие (отсутствие) полуацетального гидроксила.

Последнее позволяет отнести определенный дисахарид к классу восстанавливающих или невосстанавливающих сахаров. Для восстанавливающих дисахаридов  характерна возможность образования открытой формы, и, следовательно,   наличие восстановительных свойств. 

В зависимости от того, какой гидроксил второго моносахарида участвует в образовании связи с первым моносахаридом, различают дисахариды двух типов: восстанавливающие (редуцирующие) и невосстанавливающие.

У восстанавливающих дисахаридов связь между моносахаридными остатками образована за счёт полуацетального гидроксила одной молекулы и спиртового гидроксила (чаще всего при четвёртом атоме углерода) второй молекулы.

Вспомнить: полуацетали — соединения, отвечающие структуре: $R-CH(OH)-OR’$, где R и R’ — алкильные радикалы.

Важнейшие представители восстанавливающих моносахаридов: мальтоза, лактоза. В растворе они находятся в таутомерных формах: циклической (полуацетальной) и гидроксикарбонильной (альдегидной).

Молекула мальтозы (солодовый сахар) и лактозы (молочный сахар) состоят из двух мо­лекул $alpha$-D-глюкозы:

Какие продукты образуются при гидролизе этилмагнийиодидКакие продукты образуются при гидролизе этилмагнийиодид

У невосстанавливающих дисахаридов связь между моносахаридами  образована с участием обоих полуацетальных гидроксилов.

Поэтому невосстанавливающие дисахариды не могут переходить в другие таутомерные формы. Важнейшими их представителями являются сахароза (свекловичный сахар) и трегалоза (грибной сахар).

Какие продукты образуются при гидролизе этилмагнийиодидКакие продукты образуются при гидролизе этилмагнийиодид

В сахарозе остаток $alpha$-D-глюкозы связан с остатком $beta$-D-фруктозы 1-2-гликозидной связью, а в  природной трегалозе два остатка D-глюкозы связаны α-1,1-гликозидной связью.

Номенклатура дисахаридов

Строгая номенклатура олигосахаридов весьма громоздка. В названиях линейных олигосахаридов часто применяется последовательное перечисление моносахаридных остатков с указанием типа связи между ними. Чаще применяются тривиальные названия, принятые во всем мире.

Различия химических свойств дисахаридов

Восстанавливающие дисахариды

Представители ряда восстанавливающих дисахаридов обладают восстановительными свойствами, то есть, аналогично образующим их моносахаридам, могут вступать в реакции «серебряного зеркала»  с реактивом Толленса и «медного зеркала» с реактивом Фелинга. 

Невосстанавливающие дисахариды

Так как у невосстанавливающих дисахаридов  связь между моносахаридами осуществляется за счёт обоих полуацетальных гидроксилов, они не могут таутомерно переходить в оксикарбонильную форму, следовательно, не обладают восстановительными свойствами и не могут давать реакции на альдегидную группу (не вступают в реакцию «серебряного зеркала»,  и не реагируют с раствором Фелинга).  

Общие химические свойства дисахаридов

Оба ряда дисахаридов проявляют свойства многоатомных спиртов, а именно образуют растворимые сахараты с гидроксидом меди, и, как все сложные углеводы, гидролизуются в присутствии минеральных кислот или под действием ферментов (природных катализаторов биохимических процессов). Общее уравнение гидролиза можно записать следующим образом:

$C_{12}H_{22}O_{11} + H_2O xrightarrow{H^+} C_6H_{12}O_6 +C_6H_{12}O_6$

При нагревании растворов сахарозы в кислой среде или под действием фермента $beta$-фруктофуранозидазы она гидролизуется, образуя смесь равных количеств глюкозы и фруктозы, которая называется инвертным сахаром. Схема гидролиза приведена на рисунке:

Производство сахарозы

Свекловичный сахар (сахарозу) стали производить в промышленных масштабах из сахарной свеклы еще в начале XIX века в России и в Германии. Трудность производства заключается в многостадийной очистке получаемой сахарозы от примесей других органических веществ, главным образом, карбоновых кислот, присутствующих в соке свеклы. Горячий раствор, образующийся при замачивании стружки свеклы, подвергают обработке «известковым молоком»  — суспензией гидроксида кальция в воде. Большинство образующихся нерастворимых солей выпадает в осадок, а сахароза образует растворимый в воде сахарат кальция, который затем отделяют от осадка. Данные химические процессы можно выразить следующими уравнениями:

$2R-COOH +Ca(OH)_2 longrightarrow (R-COO)_2Ca downarrow + 2H_2O$

$C_{12}H_{22}O_{11} +Ca(OH)_2 longrightarrow C_{12}H_{20}O_{11}Ca +2H_2O$

Для получения сахарозы из сахарата кальция через раствор пропускают углекислый газ. Сахарат кальция разлагается на сахарозу и нерастворимый карбонат кальция:

$C_{12}H_{20}O_{11}Ca + CO_2 + H_2O longrightarrow C_{12}H_{22}O_{11} + CaCO_3 downarrow$

После этого полученный  раствор отфильтровывают и упаривают в вакуумных аппаратах, а выделяющиеся кристаллы сахара отделяют и высушивают. Получаемый сахар имеет желтый оттенок и называется «сахар-сырец».

Какие продукты образуются при гидролизе этилмагнийиодидКакие продукты образуются при гидролизе этилмагнийиодид

Чтобы полностью его очистить, сахар снова растворяют и нагревают с активированным углем, который сорбирует все посторонние вещества. Финальной стадией, позволяющей получить кристаллы сахара одного размера, является перекристаллизация упаренного раствора с использованием затравки — суспензии измельченной сахарозы в изопропиловом спирте. Каждая маленькая частица становится центром кристаллизации, на котором вырастают кристаллы сахара строго заданного одинакового размера. Полученный сахар носит название «сахар-рафинад».

Источник

Дисахариды – органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов. К дисахаридам относятся: изомальтоза, лактоза, лактулоза, мальтоза, мелибиоза, нигероза, сахароза, рутиноза, треголоза, целлобиоза и пр.

Дисахариды, формула, строение, состав, вещество:

Дисахариды (от др. греч. δύο – «два» и σάκχαρον – «сахар») – органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов.

Молекулы дисахаридов состоят из двух остатков моносахаридов, соединённых друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой) – гликозидной связи. Общая формула дисахаридов, как правило, C12H22O11.

Все дисахариды представляют собой бесцветные кристаллы, сладкие на вкус, хорошо растворимы в воде.

К дисахаридам относятся: изомальтоза, лактоза, лактулоза, мальтоза, мелибиоза, нигероза, сахароза (обычный сахар, тростниковый или свекловичный), рутиноза, треголоза, целлобиоза и пр.

Важнейшие наиболее распространенные дисахаридысахароза (пищевой сахар), мальтоза (солодовый сахар) и лактоза (молочный сахар).

Сахароза состоит из остатков глюкозы и фруктозы.

Ее структурная формула (строение молекулы):

Мальтоза состоит из двух остатков глюкозы.

Ее структурная формула (строение молекулы):

Лактоза состоит из остатков глюкозы и галактозы.

Ее структурная формула (строение молекулы):

Дисахариды широко распространены в животных и растительных организмах. Они встречаются в свободном состоянии (как продукты биосинтеза или частичного гидролиза полисахаридов), а также как структурные компоненты гликозидов и других соединений. Многие дисахариды получают из природных источников, так, например, для сахарозы основными источниками служат либо сахарная свёкла, либо сахарный тростник.

Восстанавливающие дисахариды. Невосстанавливающие дисахариды:

По химическим свойствам дисахариды можно разделить на две группы:

  • восстанавливающие;
  • невосстанавливающие.

Если один полуацетальный гидроксил остается свободным, а дисахариды проявляют альдегидные свойства, то такие дисахариды называются восстанавливающими. Если же связь между двумя остатками моносахаридов осуществляется посредством обоих полуацетальных гидроксилов, то для таких дисахаридов альдегидные свойства не характерны и они называются невосстанавливающими. Восстанавливающие дисахариды часто называют гликозо-гликозидами, а невосстанавливающие – гликозидо-гликозидами.

К первой группе (восстанавливающие дисахариды) относятся: лактоза, мальтоза, целлобиоза. Ко второй (невосстанавливающие дисахариды): сахароза, трегалоза.

Химические свойства дисахаридов:

Основные химические реакции дисахаридов следующие:

1. реакция гидролиза дисахаридов:

При гидролизе дисахариды расщепляются на составляющие их моносахариды за счёт разрыва гликозидных связей между ними. Данная реакция является обратной процессу образования дисахаридов из моносахаридов.

Гидролиз протекает в кислой среде и (или) при нагревании.

C12H22O11 + H2O → 2C6H12O6 (to, Н+).

В результате гидролиза α-мальтозы образуются две молекулы глюкозы.

C12H22O11 + H2O → C6H12O6 + C6H12O6 (to, Н+).

В результате гидролиза лактозы образуются глюкоза и галактоза.

C12H22O11 + H2O → C6H12O6 + C6H12O6 (to, Н+).

В результате гидролиза сахарозы образуются глюкоза и фруктоза.

2. восстанавливающие дисахариды – мальтоза, лактоза и целлобиоза – реагируют с аммиачным раствором оксида серебра:

C12H22O11 + Ag2O → C12H22O12 + 2Ag (НH3).

В результате реакции образуется среди прочего чистое серебро.

3. восстанавливающие дисахариды – мальтоза, лактоза и целлобиоза – могут восстанавливать гидроксид меди (II) до оксида меди (I):

C12H22O11 + 2Cu(OH)2 → C12H22O12 + Cu2O + 2H2O.

В результате реакции образуются среди прочего оксида меди (I) и вода.

4. невосстанавливающие дисахариды не реагируют с аммиачным раствором оксида серебра и не восстанавливают гидроксид меди (II) до оксида меди (I), т.к. не содержат полуацетальные гидроксилы.

Функции дисахаридов:

Диисахариды выполняют выполняют следующие функции:

Энергетическая функция. Так, сахароза и мальтоза служат источниками глюкозы для организма человека. Сахароза к тому же – важнейший источник углеводов (она составляет 99,4 % от всех получаемых организмом углеводов). Лактоза используются для диетического детского питания.

Структурная функция. Целлобиоза имеет важное значение для жизни растений, так как она входит в состав целлюлозы.

Ссылка на источник

Источник

Углеводы — органические соединения, чаще всего природного происхождения, состоящие только из углерода, водорода и кислорода.

Углеводы играют огромную роль в жизнедеятельности всех живых организмов.

Свое название данный класс органических соединений получил за то, что первые изученные человеком углеводы имели общую формулу вида Cx(H2O)y . Т.е. их условно посчитали соединениями углерода и воды. Однако позднее оказалось, что состав некоторых углеводов отклоняется от этой формулы. Например, такой углевод как дезоксирибоза имеет формулу С5Н10О4. В то же время существуют некоторые соединения, формально соответствующие формуле Cx(H2O)y, однако к углеводам не относящиеся, как, например, формальдегид (СН2О) и уксусная кислота (С2Н4О2).

Тем не менее, термин «углеводы» исторически закрепился за данным классом соединений, в связи с чем повсеместно используется и в наше время.

Классификация углеводов

В зависимости от способности углеводов расщепляться при гидролизе на другие углеводы с меньшей молекулярной массой их делят на простые (моносахариды) и сложные (дисахариды, олигосахариды, полисахариды).

Как легко догадаться, из простых углеводов, т.е. моносахаридов, нельзя гидролизом получить углеводы с еще меньшей молекулярной массой.

При гидролизе одной молекулы дисахарида образуются две молекулы моносахарида, а при полном гидролизе одной молекулы любого полисахарида получается множество молекул моносахаридов.

Химические свойства моносахаридов на примере глюкозы и фруктозы

Самыми распространенными моносахаридами являются глюкоза и фруктоза, имеющие следующие структурные формулы:

углеводы глюкоза и фруктоза

Как можно заметить, и в молекуле глюкозы, и в молекуле фруктозы присутствует по 5 гидроксильных групп, в связи с чем их можно считать многоатомными спиртами.

В составе молекулы глюкозы имеется альдегидная группа, т.е. фактически глюкоза является многоатомным альдегидоспиртом.

В случае фруктозы можно обнаружить в ее молекуле кетонную группу, т.е. фруктоза является многоатомным кетоспиртом.

Химические свойства глюкозы и фруктозы как карбонильных соединений

Все моносахариды могут реагировать в присутствии катализаторов с водородом. При этом карбонильная группа восстанавливается до спиртовой гидроксильной. Так, в частности, гидрированием глюкозы в промышленности получают искусственный подсластитель – гексаатомный спирт сорбит:

гидрирование глюкозы сорбит

Молекула глюкозы содержит в своем составе альдегидную группу, в связи с чем логично предположить, что ее водные растворы дают качественные реакции на альдегиды. И действительно, при нагревании водного раствора глюкозы со свежеосажденным гидроксидом меди (II) так же, как и в случае любого другого альдегида, наблюдается выпадение из раствора кирпично-красного осадка оксида меди (I). При этом альдегидная группа глюкозы окисляется до карбоксильной – образуется глюконовая кислота:

окисление глюкозы до глюконовой кислоты

Также глюкоза вступает и в реакцию «серебряного зеркала» при действии на нее аммиачного раствора оксида серебра. Однако, в отличие от предыдущей реакции вместо глюконовой кислоты образуется ее соль – глюконат аммония, т.к. в растворе присутствует растворенный аммиак:

взаимодействие глюкозы с аммиачным раствором оксида серебра

Фруктоза и другие моносахариды, являющиеся многоатомными кетоспиртами, в качественные реакции на альдегиды не вступают.

Химические свойства глюкозы и фруктозы как многоатомных спиртов

Поскольку моносахариды, в том числе глюкоза и фруктоза, имеют в составе молекул несколько гидроксильных групп. Все они дают качественную реакцию на многоатомные спирты. В частности, в водных растворах моносахаридов растворяется свежеосажденный гидроксид меди (II). При этом вместо голубого осадка Cu(OH)2 образуется темно-синий раствор комплексных соединений меди.

Реакции брожения глюкозы

Спиртовое брожение

При действии на глюкозу некоторых ферментов глюкоза способна превращаться в этиловый спирт и углекислый газ:

брожение глюкозы

Молочнокислое брожение

Помимо спиртового типа брожения существует также и немало других. Например, молочнокислое брожение, которое протекает при скисании молока, квашении капусты и огурцов:

молочнокислое брожение

Особенности существования моносахаридов в водных растворах

Моносахариды существуют в водном растворе в трех формах – двух циклических (альфа- и бета-) и одной нециклической (обычной). Так, например, в растворе глюкозы существует следующее равновесие:

глюкоза равновесие в растворе

Как можно видеть, в циклических формах отсутствует альдегидная группа, в связи с тем что она участвует в образовании цикла. На ее основе образуется новая гидроксильная группа, которую называют ацетальным гидроксилом. Аналогичные переходы между циклическими и нециклической формами наблюдаются и для всех других моносахаридов.

Дисахариды. Химические свойства.

Общее описание дисахаридов

Дисахаридами называют углеводы, молекулы которых состоят из двух остатков моносахаридов, связанных между собой за счет конденсации двух полуацетальных гидроксилов либо же одного спиртового гидроксила и одного полуацетального. Связи, образующиеся таким образом между остатками моносахаридов, называют гликозидными. Формулу большинства дисахаридов можно записать как C12H22O11.

Наиболее часто встречающимся дисахаридом является всем знакомый сахар, химиками называемый сахарозой. Молекула данного углевода образована циклическими остатками одной молекулы глюкозы и одной молекулы фруктозы. Связь между остатками дисахаридов в данном случае реализуется за счет отщепления воды от двух полуацетальных гидроксилов:

строение молекулы глюкозы

Поскольку связь между остатками моносахаридов образована при конденсации двух ацетальных гидроксилов, для молекулы сахара невозможно раскрытие ни одного из циклов, т.е. невозможен переход в карбонильную форму. В связи с этим сахароза не способна давать качественные реакции на альдегиды.

Подобного рода дисахариды, которые не дают качественные реакции на альдегиды, называют невосстанавливающими сахарами.

Тем не менее, существуют дисахариды, которые дают качественные реакции на альдегидную группу. Такая ситуация возможна, когда в молекуле дисахарида остался полуацетальный гидроксил из альдегидной группы одной из исходных молекул моносахаридов.

В частности, в реакцию с аммиачным раствором оксида серебра, а также гидроксидом меди (II) подобно альдегидам вступает мальтоза. Связано это с тем, что в её водных растворах существует следующее равновесие:

мальтоза равновесие в растворе

Как можно видеть, в водных растворах мальтоза существует в виде двух форм – с двумя циклами в молекуле и одним циклом в молекуле и альдегидной группой. По этой причине мальтоза, в отличие от сахарозы, дает качественную реакцию на альдегиды.

Гидролиз дисахаридов

Все дисахариды способны вступать в реакцию гидролиза, катализируемую кислотами, а также различными ферментами. В ходе такой реакции из одной молекулы исходного дисахарида образуется две молекулы моносахарида, которые могут быть как одинаковыми, так и различными в зависимости от состава исходного моносахарида.

Так, например, гидролиз сахарозы приводит к образованию глюкозы и фруктозы в равных количествах:

гидролиз сахарозы

А при гидролизе мальтозы образуется только глюкоза:

гидролиз мальтозы

Дисахариды как многоатомные спирты

Дисахариды, являясь многоатомными спиртами, дают соответствующую качественную реакцию с гидроксидом меди (II), т.е. при добавлении их водного раствора ко свежеосажденному гидроксиду меди (II) нерастворимый в воде голубой осадок Cu(OH)2 растворяется с образованием темно-синего раствора.

Полисахариды. Крахмал и целлюлоза

Полисахариды — сложные углеводы, молекулы которых состоят из большого числа остатков моносахаридов, связанных между собой гликозидными связями.

Есть и другое определение полисахаридов:

Полисахаридами называют сложные углеводы, молекулы которых образуют при полном гидролизе большое число молекул моносахаридов.

В общем случае формула полисахаридов может быть записана как (C6H10O5)n.

Крахмал – вещество, представляющее собой белый аморфный порошок, не растворимый в холодной воде и частично растворимый в горячей с образованием коллоидного раствора, называемого в быту крахмальным клейстером.

Крахмал образуется из углекислого газа и воды в процессе фотосинтеза в зеленых частях растений под действием энергии солнечного света. В наибольших количествах крахмал содержится в картофельных клубнях, пшеничных, рисовых и кукурузных зернах. По этой причине указанные источники крахмала и являются сырьем для его получения в промышленности.

Целлюлоза – вещество, в чистом состоянии представляющее собой белый порошок, не растворимый ни в холодной, ни в горячей воде. В отличие от крахмала целлюлоза не образует клейстер. Практически из чистой целлюлозы состоит фильтровальная бумага, хлопковая вата, тополиный пух. И крахмал, и целлюлоза являются продуктами растительного происхождения. Однако, роли, которые они играют в жизни растений, различны. Целлюлоза является в основном строительным материалом, в частности, главным образом ей образованы оболочки растительных клеток. Крахмал же несет в основном запасающую, энергетическую функцию.

Химические свойства крахмала и целлюлозы

Горение

Все полисахариды, в том числе крахмал и целлюлоза, при полном сгорании в кислороде образуют углекислый газ и воду:

углеводы полисахариды горение

Образование глюкозы

При полном гидролизе как крахмала, так и целлюлозы образуется один и тот же моносахарид – глюкоза:

углеводы целлюлоза и крахмал гидролиз

Качественная реакция на крахмал

При действии йода на что-либо, в чем содержится крахмал, появляется синее окрашивание. При нагревании синяя окраска исчезает, при охлаждении появляется вновь.

При сухой перегонке целлюлозы, в частности древесины, происходит ее частичное разложение с образованием таких низкомолекулярных продуктов как метиловый спирт, уксусная кислота, ацетон и т.д.

Поскольку и в молекулах крахмала, и в молекулах целлюлозы имеются спиртовые гидроксильные группы, данные соединения способны вступать в реакции этерификации как с органическими, так и с неорганическими кислотами:

взаимодействие целлюлозы с азотной и уксусной кислотами

Источник